請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88377完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡進發 | zh_TW |
| dc.contributor.advisor | Jing-Fa Tsai | en |
| dc.contributor.author | 蘇富丞 | zh_TW |
| dc.contributor.author | Fu-Cheng Su | en |
| dc.date.accessioned | 2023-08-09T16:47:35Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-09 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-26 | - |
| dc.identifier.citation | Stocker, T. (Ed.). (2014). Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
US EPA. (2023). Climate change indicators: Greenhouse Gases. Retrieved from https://www.epa.gov/climate-indicators/greenhouse-gases United Nations. (2015). 2015 UNFCCC COP 21 Paris France. Retrieved from http://www.cop21paris.org/ United Nations. What is net zero? Retrieved from https://www.un.org/en/climatechange/net-zero-coalition Bureau of Energy, Ministry of Economic Affairs, Taiwan. (2020). 能源轉型白皮書 Bureau of Energy, Ministry of Economic Affairs, Taiwan. (2016). Wind power 4-year promotion program. FOWI. (2019). About Formosa I. Retrieved from https://formosa1windpower.com/en/ Taiwan Power Company. (2021). Sustainability Report. FOWII. (2023). About Formosa II. Retrieved from https://formosa2windpower.com/en/ Bureau of Energy, Ministry of Economic Affairs, Taiwan. (2021). 離岸風力發電區塊開發場址容量分配作業要點 Henderson, A. R., & Witcher, D. (2010). Floating offshore wind energy—a review of the current status and an assessment of the prospects. Wind Engineering, 34(1), 1-16. Butterfield, S., Musial, W., Jonkman, J., & Sclavounos, P. (2007). Engineering challenges for floating offshore wind turbines (No. NREL/CP-500-38776). National Renewable Energy Lab. (NREL), Golden, CO (United States). Fukushima Floating Offshore Wind Farm Demonstration Project. (2013). Retrieved from http://www.fukushima-forward.jp/english/ Yamaguchi, H., & Imakita, A. (2018). Learning from field test regarding damping of a floater motion-2mw fowt “Fukushima Mirai”. In Grand Renewable Energy proceedings Japan council for Renewable Energy (2018) (p. 177). Japan Council for Renewable Energy. Ohta, M., Komatsu, M., Ito, H., & Kumamoto, H. (2013, October). Development of a V-shaped semi-submersible floating structure for 7MW offshore wind turbine. In Proceedings of the international symposium on marine and offshore renewable energy, Tokyo, Japan (pp. 28-30). Roddier, D., Cermelli, C., Aubault, A., & Weinstein, A. (2010). WindFloat: A floating foundation for offshore wind turbines. Journal of renewable and sustainable energy, 2(3), 033104. Robertson, A., Jonkman, J., Masciola, M., Song, H., Goupee, A., Coulling, A., & Luan, C. (2014). Definition of the semisubmersible floating system for phase II of OC4 (No. NREL/TP-5000-60601). National Renewable Energy Lab. (NREL), Golden, CO (United States). Perez, L. R. (2014). Design, testing and validation of a scale model semisubmersible offshore wind turbine under regular/irregular waves and wind loads (Doctoral dissertation). University of Strathclyde. Allen, Christopher, Viscelli, Anthony, Dagher, Habib, Goupee, Andrew, Gaertner, Evan, Abbas, Nikhar, Hall, Matthew, & Barter, Garrett. Definition of the UMaine VolturnUS-S reference platform developed for the IEA wind 15-megawatt offshore reference wind turbine. United States. Gaertner, E., Rinker, J., Sethuraman, L., Zahle, F., Anderson, B., Barter, G. E., ... & Viselli, A. (2020). IEA wind TCP task 37: definition of the IEA 15-megawatt offshore reference wind turbine (No. NREL/TP-5000-75698). National Renewable Energy Lab. (NREL), Golden, CO (United States). Ma, P. H. (2022). Experimental study on the seakeeping performance of a cylinder with damping devices (Master’s thesis). National Taiwan University. 4C Offshore. Global offshore wind speeds rankings. Retrieved from https://www.4coffshore.com/windfarms/windspeeds.aspx Guo, Y., Wang, H., & Lian, J. (2022). Review of integrated installation technologies for offshore wind turbines: Current progress and future development trends. Energy Conversion and Management, 255, 115319. Hsu, I. J., Ivanov, G., Ma, K. T., Huang, Z. Z., Wu, H. T., Huang, Y. T., & Chou, M. (2022, June). Optimization of semi-submersible hull design for floating offshore wind turbines. In International Conference on Offshore Mechanics and Arctic Engineering (Vol. 85932, p. V008T09A065). American Society of Mechanical Engineers. ITTC. (2021). Floating offshore platform experiments. In ITTC – Recommended Procedures and Guidelines, 7.5-02-07-03.1, Revision 03. Koken, M. (2017). The experimental determination of the moment of inertia of a model airplane. Malta, E. B., Gonc¸ alves, R. T., Matsumoto, F. T., Pereira, F. R., Fujarra, A. L., & Nishimoto, K. (2010, January). Damping coefficient analyses for floating offshore structures. In International Conference on Offshore Mechanics and Arctic Engineering (Vol. 49095, pp. 83-89). Newman, J. N. (2018). Marine hydrodynamics. The MIT Press. ITTC. (2021). Seakeeping experiments. ITTC – Recommended Procedures and Guidelines, 7.5-02-07-02.1, Revision 07. Doong, D. J., Tsai, C. H., Chen, Y. C., Peng, J. P., & Huang, C. J. (2015). Statistical analysis on the long-term observations of typhoon waves in the Taiwan Sea. Journal of Marine Science and Technology, 23(6), 893-900. American Bureau of Shipping. (2016). Guidance notes on selecting design wave by long term stochastic method. American Bureau of Shipping. (2020). Guide for building and classing floating offshore wind turbines. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88377 | - |
| dc.description.abstract | 本研究建立了一個1/100 TaidaFloat半潛式浮臺的縮尺模型,該浮臺是由底部的三個浮筒連接三個不對稱的六角柱所組成,並搭配一個3x3的懸鍊式繫泊系統。為了解浮臺的運動特性,針對縮尺模型進行了自由衰減運動及耐海性能試驗,根據自由衰減試驗的結果確定了模型在六個自由度下的自然頻率和阻尼比。並且在六個自由度中又分別進行了在不同的初始速度值的自由衰減運動試驗,以了解不同初始速度對於阻尼比的影響,由結果顯示在六個自由度中,阻尼比與不同初速度皆大致呈線性關係。透過耐海性能試驗可以求得六個自由度的反應振幅運算子(Response Amplitude Operator, RAO),而在本試驗中於5種浪向下進行規則波與不規則波條件的耐海性能試驗,浪向分別為0°、45°、90°、135°和180°。在規則波條件的耐海性能試驗結果顯示,縱移(Surge)、橫移(Sway)、起伏(Heave)、平擺(Yaw)的RAO均會隨著波浪頻率降低而逐漸增加,另外縱移在波浪頻率約為0.74Hz時有一局部峰值是由俯仰(Pitch)的自然頻率所誘導。同樣橫移也會在橫搖(Roll)的自然頻率附近誘導出局部的峰值。在不規則波的耐海性能試驗結果顯示,六自由度都會在其自然頻率上產生明顯的峰值,同時也會受到非規則波浪中央頻率範圍,約為0.6Hz~0.9Hz,而產生較明顯的RAO局部峰值。此外在不規則波試驗中產生了拍擊現象,使得在橫搖和平擺的倍數自然頻率上被激發出較大的RAO局部峰值。在綜合考量了規則波與不規則的耐海性能試驗的結果後,發現在浪向45°時,浮臺整體的運動反應較小,因此日後欲在臺灣海峽上安裝浮臺時,選擇浪向45°是較為理想的狀態。 | zh_TW |
| dc.description.abstract | In this study, a scaled-down model of a 1/100 TaidaFloat semi-submersible floating platform was constructed. The floating platform comprises three asymmetric hexagonal columns connected by three pontoons at the bottom, and it is equipped with a 3x3 catenary mooring system. To investigate the motion characteristics of the floating platform, experiments on free decay motion and seakeeping performance were conducted using the scaled model. The natural frequencies and damping ratios of the model’s six degrees of freedom were determined based on the results of the free decay experiments. Moreover, experiments were conducted to observe the free decay motion at different initial velocity values for each degree of freedom (DOF), aiming to assess the impact of various initial velocities on the damping ratio, which showed a roughly linear relationship.
The six degrees of freedom Response Amplitude Operator (RAO) can be obtained through the seakeeping performance experiment. The experiments were conducted under regular wave and irregular wave conditions, encompassing five wave directions: 0°, 45°, 90°, 135°, and 180°. In regular wave experiments, RAO values for surge, sway, heave, and yaw increased as wave frequency decreased. Notably, a local peak surge value appeared at a wave frequency of approximately 0.74 Hz due to the pitch-induced surge. Similarly, sway exhibited a local peak value near the natural frequency of roll. As for the seakeeping performance experiments involving irregular waves, obvious peaks were observed at the natural frequencies of all six degrees of freedom. These degrees of freedom were also influenced by the peak frequency of the irregular waves, which was approximately 0.6 Hz to 0.9 Hz, resulting in local RAO peak values. Additionally, the irregular wave experiments induced a slamming phenomenon, leading to local RAO peak values at the multiples of the natural frequencies of roll and yaw. After considering the results of seakeeping performance experiments with regular and irregular waves, it was observed that the floating platform exhibits smaller motion response at a wave direction of 45°. Therefore, for future installations in the Taiwan Strait, a wave direction of 45° is recommended for optimal performance. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-09T16:47:35Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-09T16:47:35Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要 I
Abstract II 目錄 III 圖目錄 V 表目錄 IX 符號表 XI Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Literature Review 2 1.3 Research Purpose 4 1.4 Thesis Structure 5 Chapter 2 Experiments and Research Methods 6 2.1 Scaling Law 6 2.2 Definition of Motion Coordinate System 7 2.3 Moment of Inertia 7 2.4 Free Decay Experiment 8 2.4.1 Free Decay Motion in Translational Mode 8 2.4.2 Free Decay Motion in Rotational Mode 11 2.5 Seakeeping Performance Experiment under Regular Wave Conditions 13 2.6 Seakeeping Performance Experiment under Irregular Wave Conditions 14 Chapter 3 Experimental Model and System 17 3.1 Model Design and Production 17 3.1.1 The Design of the TaidaFloat 17 3.1.2 The Experiment Model of the TaidaFloat 18 3.2 Experimental Environment and Measurement System 20 3.2.1 The Specifications of the NTU Towing Tank 20 3.2.2 Experimental Conditions 20 3.2.3 Measurement System 20 3.3 Instrument Calibration 21 3.4 Experimental Procedures 23 3.4.1 The Experimental Procedure of Measuring the Moment of Inertia 23 3.4.2 Free Decay Experimental Procedure 24 3.4.3 Seakeeping Performance Experimental Procedure 25 Chapter 4 Experiment Results and Discussions 27 4.1 Moment of Inertia Experiments 27 4.2 Free Decay Experiments 27 4.3 Seakeeping Performance Experiments 29 4.3.1 Seakeeping Performance Experiments of Regular Waves 29 4.3.2 Seakeeping Performance Experiments of Irregular Waves 33 Chapter 5 Conclusion 35 5.1 Conclusions 35 5.2 Suggestions 36 References 39 | - |
| dc.language.iso | en | - |
| dc.subject | 半潛式浮臺 | zh_TW |
| dc.subject | 耐海性能試驗 | zh_TW |
| dc.subject | 自由衰減試驗 | zh_TW |
| dc.subject | 反應振幅運算子 | zh_TW |
| dc.subject | 颱風環境條件 | zh_TW |
| dc.subject | Free Decay Experiment | en |
| dc.subject | Seakeeping Performance Experiment | en |
| dc.subject | Response Amplitude Operator | en |
| dc.subject | Semi-submersible Floating Platform | en |
| dc.subject | Typhoon Environment | en |
| dc.title | TaidaFloat半潛式浮臺耐海性能試驗之研究 | zh_TW |
| dc.title | Experimental Study on the Seakeeping Performance of the TaidaFloat Semi-submersible Floating Platform | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林恆山;林宗岳 | zh_TW |
| dc.contributor.oralexamcommittee | Hen-Shan Lin ;Tsung-Yueh Lin | en |
| dc.subject.keyword | 半潛式浮臺,自由衰減試驗,耐海性能試驗,反應振幅運算子,颱風環境條件, | zh_TW |
| dc.subject.keyword | Semi-submersible Floating Platform,Free Decay Experiment,Seakeeping Performance Experiment,Response Amplitude Operator,Typhoon Environment, | en |
| dc.relation.page | 101 | - |
| dc.identifier.doi | 10.6342/NTU202302059 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-07-27 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 工程科學及海洋工程學系 | - |
| dc.date.embargo-lift | 2028-07-26 | - |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 3.57 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
