Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生命科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88374
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周銘翊zh_TW
dc.contributor.advisorMing-Yi Chouen
dc.contributor.author莊欣如zh_TW
dc.contributor.authorHsin-Ju Chuangen
dc.date.accessioned2023-08-09T16:46:50Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-09-
dc.date.issued2023-
dc.date.submitted2023-07-25-
dc.identifier.citationAltinok, I., Grizzle, J.M., 2004. Excretion of ammonia and urea by phylogenetically diverse fish species in low salinities. Aquac, 238(1-4), 499-507. https://doi.org/10.1016/j.aquaculture.2004.06.020.
Alves-Bezerra, M., Cohen, D.E., 2017. Triglyceride metabolism in the miver. Compr Physiol, 8(1), 1-8. https://doi.org/10.1002/cphy.c170012.
Arukwe, A., Goksoyr, A., 2003. Eggshell and egg yolk proteins in fish: hepatic proteins for the next generation: oogenetic, population, and evolutionary implications of endocrine disruption. Comp Hepatol, 2(1), 4. https://doi.org/10.1186/1476-5926-2-4.
Baltzegar, D.A., Reading, B.J., Douros, J.D., Borski, R.J., 2014. Role for leptin in promoting glucose mobilization during acute hyperosmotic stress in teleost fishes. J Endocrinol, 220(1), 61-72. https://doi.org/10.1530/JOE-13-0292.
Bhutia, Y.D., Ganapathy, V., 2016. Glutamine transporters in mammalian cells and their functions in physiology and cancer. Biochim Biophys Acta, 1863(10), 2531-2539. https://doi.org/10.1016/j.bbamcr.2015.12.017.
Brett, J.R., 1972. Metabolic demand for oxygen in fish, particularly salmonids, and a comparison with other vertebrates. Respir Physiol, 14(1), 151-170. https://doi.org/10.1016/0034-5687(72)90025-4.
Cahill, G.F., Jr., 2006. Fuel metabolism in starvation. Annu Rev Nutr, 26, 1-22. https://doi.org/10.1146/annurev.nutr.26.061505.111258.
Carballal, S., Vitvitsky, V., Kumar, R., Hanna, D.A., Libiad, M., Gupta, A., Jones, J. W., Banerjee, R., 2021. Hydrogen sulfide stimulates lipid biogenesis from glutamine that is dependent on the mitochondrial NAD(P)H pool. J Biol Chem, 297(2), 100950. https://doi.org/10.1016/j.jbc.2021.100950.
Chuang, H.J., Chang, C.Y., Ho, H.P., Chou, M.Y., 2021. Oxytocin signaling acts as a marker for environmental stressors in zebrafish. Int J Mol Sci, 22(14). https://doi.org/ARTN 745910.3390/ijms22147459
Chuang, H.J., Chiu, L., Yan, J.J., Chang, C.Y., Tang, Y.H., Chou, M.Y., Yu, H.T., Hwang, P.P., 2023. Responses of medaka (Oryzias latipes) ammonia production and excretion to overcome acidified environments. J Hazard Mater, 445, 130539. https://doi.org/10.1016/j.jhazmat.2022.130539.
Curthoys, N.P., Watford, M., 1995. Regulation of glutaminase activity and glutamine metabolism. Annu. Rev. Nutr., 15, 133-159. https://doi.org/10.1146/annurev.nu.15.070195.001025
Dabrowski, K., Kaushik, S.J., Fauconneau, B., 1987. Rearing of sturgeon (Acipenser baeri Brandt) larvae: III. nitrogen and energy metabolism and amino acid absorption. Aquac, 65(1), 31-41. https://doi.org/10.1016/0044-8486(87)90268-7.
Della Torre, S., Mitro, N., Meda, C., Lolli, F., Pedretti, S., Barcella, M., Ottobrini, L., Metzger, D., Caruso, D., Maggi, A., 2018. Short-term fasting reveals amino acid metabolism as a major sex-discriminating factor in the liver. Cell Metab, 28(2), 256-267 e5. https://doi.org/10.1016/j.cmet.2018.05.021.
Dong, Z.D., Chen, Y.B., Li, H.C., Huan, Z., Li, X.Y., Zhang, N., Guo, Y.S., Shao, C. W., Wang, Z.D., 2022. Liver comparative transcriptome analysis reveals the mechanism of the Hainan medaka, Oryzias curvinotus, to adapt to salinity. J World Aquac Soc. https://doi.org/10.1111/jwas.12934.
Effenberger, M., Bommert, K.S., Kunz, V., Kruk, J., Leich, E., Rudelius, M., Bargou, R., Bommert, K., 2017. Glutaminase inhibition in multiple myeloma induces apoptosis via MYC degradation. Oncotarget, 8(49), 85858-85867. https://doi.org/10.18632/oncotarget.20691.
Einum, S., Fleming, I.A., 2000. Selection against late emergence and small offspring in Atlantic salmon (Salmo salar). Evolution, 54(2), 628-639. https://doi.org/10.1111/j.0014-3820.2000.tb00064.
Emami, N.K., Jung, U., Voy, B., Dridi, S., 2020. Radical response: effects of heat stress-induced oxidative stress on lipid metabolism in the avian liver. Antioxidants (Basel), 10(1). https://doi.org/10.3390/antiox10010035.
Evans, D.H., Piermarini, P.M., Choe, K.P., 2005. The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev, 85(1), 97-177. https://doi.org/10.1152/physrev.00050.2003.
Faria, A.M., Lopes, A.F., Silva, C.S.E., Novais, S.C., Lemos, M.F.L., Goncalves, E.J., 2018. Reproductive trade-offs in a temperate reef fish under high pCO2 levels. Mar Environ Res, 137, 8-15. https://doi.org/10.1016/j.marenvres.2018.02.027.
Fisel, P., Schaeffeler, E., Schwab, M., 2018. Clinical and functional relevance of the monocarboxylate transporter family in disease pathophysiology and drug therapy. Clin Transl Sci, 11(4), 352-364. https://doi.org/10.1111/cts.12551.
Flik, G., Fenwick, J.C., Kolar, Z., Mayer-Gostan, N., Wendelar Bonga, S.E., 1986. Effects of ovine prolactin on calcium uptake and distribution in Oreochromis mossambicus. Am J Physiol, 250(2 Pt 2), R161-166. https://doi.org/10.1152/ajpregu.1986.250.2.R161.
Flores, A., Wiff, R., Diaz, E., 2015. Using the gonadosomatic index to estimate the maturity ogive: application to Chilean hake (Merluccius gayi gayi). ICES J Mar Sci, 72(2), 508-514. https://doi.org/10.1093/icesjms/fsu155.
Fromm, P.O., 1980. A review of some physiological and toxicological responses of freshwater fish to acid stress. Environ Biol Fishes, 5. https://doi.org/10.1007/BF00000954
Furukawa, F., Tseng, Y.C., Liu, S.T., Chou, Y.L., Lin, C.C., Sung, P.H., Uchida, K., Lin, L.Y., Hwang, P.P., 2015. Induction of phosphoenolpyruvate carboxykinase (PEPCK) during acute acidosis and its role in acid secretion by V-ATPase-expressing ionocytes. Int J Biol Sci, 11(6), 712-725. https://doi.org/10.7150/ijbs.11827.
Garcia, L.O., Braun, N., Becker, A.G., Loro, V.L., Baldisserotto, B., 2012. Ammonia excretion at different life stages of silver catfish. Acta Sci, 34, 15-19. https://doi.org/10.4025/actascianimsci.v34i1.11898.
Garrett, T.A., Guan, Z., Raetz, C.R., 2007. Analysis of ubiquinones, dolichols, and dolichol diphosphate-oligosaccharides by liquid chromatography-electrospray ionization-mass spectrometry. Methods Enzymol, 432, 117-143. https://doi.org/10.1016/S0076-6879(07)32005-3.
Gershanovich, A.D., Pototskij, I.V., 1995. The peculiarities of non-fecal nitrogen-excretion in sturgeons (Pisces, Acipenseridae) -2. effects of water temperature, salinity and pH. Comp Biochem Physiol A Physiol, 111(2), 313-317. https://doi.org/Doi 10.1016/0300-9629(94)00201-4.
Hamm, L.L., Nakhoul, N., Hering-Smith, K.S., 2015. Acid-Base Homeostasis. Clin J Am Soc Nephrol, 10(12), 2232-2242. https://doi.org/10.2215/CJN.07400715.
Harvey, H.H., Jackson, D.A., 1995. Acid stress and extinction of a spring-spawning fish population. Water Air and Soil Poll, 85(2), 383-388. https://doi.org/ 10.1007/Bf00476859.
Hirata, T., Kaneko, T., Ono, T., Nakazato, T., Furukawa, N., Hasegawa, S., Wakabayashi, S., Shigekawa, M., Chang, M.H., Romero, M.F., Hirose, S., 2003. Mechanism of acid adaptation of a fish living in a pH 3.5 lake. Am J Physiol Regul Integr Comp Physiol, 284(5), R1199-1212. https://doi.org/10.1152/ajpregu.00267.2002.
Hsu, H.H., Lin, L.Y., Tseng, Y.C., Horng, J.L., Hwang, P.P., 2014. A new model for fish ion regulation: identification of ionocytes in freshwater- and seawater-acclimated medaka (Oryzias latipes). Cell Tissue Res, 357(1), 225-243. https://doi.org/10.1007/s00441-014-1883-z.
Hurst, T.P., Copeman, L.A., Haines, S.A., Meredith, S.D., Daniels, K., Hubbard, K.M., 2019. Elevated CO2 alters behavior, growth, and lipid composition of Pacific cod larvae. Mar Environ Res, 145, 52-65. https://doi.org/10.1016/j.marenvres.2019.02.004.
Ip, Y.K., Chew, S.F., 2010. Ammonia production, excretion, toxicity, and defense in fish: a review. Front Physiol, 1, 134. https://doi.org/10.3389/fphys.2010.00134.
Jensen, J., Rustad, P.I., Kolnes, A.J., Lai, Y.C., 2011. The role of skeletal muscle glycogen breakdown for regulation of insulin sensitivity by exercise. Front Physiol, 2, 112. https://doi.org/10.3389/fphys.2011.00112.
Katsanos, C.S., Madura, J.A., 2nd, Roust, L.R., 2016. Essential amino acid ingestion as an efficient nutritional strategy for the preservation of muscle mass following gastric bypass surgery. Nutrition, 32(1), 9-13. https://doi.org/10.1016/j.nut.2015.07.005
Kaushik, S.J., Seiliez, I., 2010. Protein and amino acid nutrition and metabolism in fish: current knowledge and future needs. Aquac Res, 41(3), 322-332. https://doi.org/10.1111/j.1365-2109.2009.02174.
Keat-Chuan, N.C., Aun-Chuan, O.P., Wong, W.L., Khoo, G., 2017. A review of fish taxonomy conventions and species identification techniques. J Survey in Fisheries Sci, 4(1), 54-93. https://doi.org/10.17762/sfs.v4i1.140.
Kuan, P.L., You, J.Y., Wu, G.C., Tseng, Y.C., 2022. Temperature increases induce metabolic adjustments in the early developmental stages of bigfin reef squid (Sepioteuthis lessoniana). Sci Total Environ, 844, 156962. https://doi.org/10.1016/j.scitotenv.2022.156962.
Lai, W., Xu, D., Li, J., Wang, Z., Ding, Y., Wang, X., Li, X., Xu, N., Mai, K., Ai, Q., 2021. Dietary polystyrene nanoplastics exposure alters liver lipid metabolism and muscle nutritional quality in carnivorous marine fish large yellow croaker (Larimichthys crocea). J Hazard Mater, 419, 126454. https://doi.org/10.1016/j.jhazmat.2021.126454.
Lamonte, G., Tang, X., Chen, J.L., Wu, J., Ding, C.K., Keenan, M.M., Sangokoya, C., Kung, H.N., Ilkayeva, O., Boros, L.G., Newgard, C.B., Chi, J.T., 2013. Acidosis induces reprogramming of cellular metabolism to mitigate oxidative stress. Cancer Metab, 1(1), 23. https://doi.org/10.1186/2049-3002-1-23.
Lazic, S.E., Semenova, E., Williams, D.P., 2020. Determining organ weight toxicity with Bayesian causal models: Improving on the analysis of relative organ weights. Sci Rep, 10(1), 6625. https://doi.org/10.1038/s41598-020-63465-y.
Leduc, A.O.H.C., Munday, P.L., Brown, G.E., Ferrari, M.C.O., 2013. Effects of acidification on olfactory-mediated behaviour in freshwater and marine ecosystems: a synthesis. Philos Trans R Soc B-Biol Sci, 368(1627). https://doi.org/ARTN 20120447.10.1098/rstb.2012.0447.
Li, X., Zheng, S., Ma, X., Cheng, K., Wu, G., 2020. Effects of dietary protein and lipid levels on the growth performance, feed utilization, and liver histology of largemouth bass (Micropterus salmoides). Amino Acids, 52(6-7), 1043-1061. https://doi.org/10.1007/s00726-020-02874-9.
Liew, H.J., Fazio, A., Faggio, C., Blust, R., De Boeck, G., 2015. Cortisol affects metabolic and ionoregulatory responses to a different extent depending on feeding ration in common carp, Cyprinus carpio. Comp Biochem Physiol A Mol Integr Physiol, 189, 45-57. https://doi.org/10.1016/j.cbpa.2015.07.011.
Lim, C.K., Wong, W.P., Lee, S.M., Chew, S.F., Ip, Y.K., 2004. The ammonotelic African lungfish, Protopterus dolloi, increases the rate of urea synthesis and becomes ureotelic after feeding. J Comp Physiol B, 174(7), 555-564. https://doi.org/10.1007/s00360-004-0444-2.
Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆Ct method. Methods, 25(4), 402-408. https://doi.org/10.1006/meth.2001.1262.
Loong, A.M., Hiong, K.C., Lee, S.M., Wong, W.P., Chew, S.F., Ip, Y.K., 2005. Ornithine-urea cycle and urea synthesis in African lungfishes, Protopterus aethiopicus and Protopterus annectens, exposed to terrestrial conditions for six days. J Exp Zool A Comp Exp Biol, 303(5), 354-365. https://doi.org/10.1002/jez.a.147.
Lovell, R.T., 1994. Energy requirements of fish. Appl Anim Sci, 10(4), 145-149. https://doi.org/10.15232/S1080-7446(15)31969-0.
Mauvais-Jarvis, F., 2015. Sex differences in metabolic homeostasis, diabetes, and obesity. Biol Sex Differ, 6, 14. https://doi.org/10.1186/s13293-015-0033-y.
McBride, R.S., Somarakis, S., Fitzhugh, G.R., Albert, A., Yaragina, N.A., Wuenschel, M.J., Alonso-Fernandez, A., Basilone, G., 2015. Energy acquisition and allocation to egg production in relation to fish reproductive strategies. Fish Fish, 16(1), 23-57. https://doi.org/10.1111/faf.12043.
Mcdonald, D.G., Cavdek, V., Calvert, L., Milligan, C.L., 1991. Acid-Base Regulation in the Atlantic Hagfish Myxine-Glutinosa. J Exp Biol, 161, 201-215. https://doi.org/10.1242/jeb.161.1.201.
Metcalfe, N.B., Van Leeuwen, T E., Killen, S.S., 2016. Does individual variation in metabolic phenotype predict fish behaviour and performance? J Fish Biol, 88(1), 298-321. https://doi.org/10.1111/jfb.12699.
Miller, G.M., Watson, S.A., McCormick, M.I., Munday, P.L., 2013. Increased CO2 stimulates reproduction in a coral reef fish. Glob Chang Biol, 19(10), 3037-3045. https://doi.org/10.1111/gcb.12259.
Mommsen, T.P., Vijayan, M.M., Moon, T.W., 1999. Cortisol in teleosts: dynamics, mechanisms of action, and metabolic regulation. Rev Fish Bio Fish, 9(3), 211-268. https://doi.org/10.1023/A:1008924418720.
Moon, T.W., 2001. Glucose intolerance in teleost fish: fact or fiction? Comp Biochem Physiol B Biochem Mol Biol, 129(2-3), 243-249. https://doi.org/10.1016/s1096-4959(01)00316-5.
Mota, V.C., Hop, J., Sampaio, L.A., Heinsbroek, L.T.N., Verdegem, M.C.J., Eding, E.H., Verreth, J.A.J., 2018. The effect of low pH on physiology, stress status and growth performance of turbot (Psetta maxima L.) cultured in recirculating aquaculture systems. Aquac Res, 49(10), 3456-3467. https://doi.org/10.1111/are.13812.
Nagelkerken, I., Alemany, T., Anquetin, J.M., Ferreira, C.M., Ludwig, K.E., Sasaki, M., Connell, S.D., 2021. Ocean acidification boosts reproduction in fish via indirect effects. PLoS Biol, 19(1), e3001033.
Parsons, P.A., 2005. Environments and evolution: interactions between stress, resource inadequacy and energetic efficiency. Biol Rev, 80(4), 589-610. https://doi.org/10.1017/S1464793105006822.
Perlman, D.F., Goldstein, L., 1988. Nitrogen metabolism. In: Shuttleworth T.J. (Eds.), Physiology of elasmobranch fishes. Springer, Berlin, Heidelberg, pp. 253-275. https://doi.org/10.1007/978-3-642-73336-9_9.
Peters, A., Schweiger, U., Pellerin, L., Hubold, C., Oltmanns, K.M., Conrad, M., Schultes, B., Born, J., Fehm, H.L., 2004. The selfish brain: competition for energy resources. Neurosci Biobehav Rev, 28(2), 143-180. https://doi.org/10.1016/j.neubiorev.2004.03.002.
Polakof, S., Panserat, S., Soengas, J.L., Moon, T.W., 2012. Glucose metabolism in fish: a review. J Comp Physiol B, 182(8), 1015-1045. https://doi.org/10.1007/s00360-012-0658-7.
Pourafshar, N., Pourafshar, S., Soleimani, M., 2018. Urine ammonium, metabolic acidosis and progression of chronic kidney disease. Nephron, 138(3), 222-228. https://doi.org/10.1159/000481892.
Randall, D.J., Wright, P.A., 1987. Ammonia distribution and excretion in fish. Fish Physiol. Biochem, 3(3), 107-120. https://doi.org/10.1007/BF02180412.
Reidel, A., Boscolo, W.R., Feiden, A., Romagosa, E., 2010. The effect of diets with different levels of protein and energy on the process of final maturation of the gametes of Rhamdia quelen stocked in cages. Aquac, 298(3-4), 354-359. https://doi.org/10.1016/j.aquaculture.2009.11.005.
Rosival, V., 2010. Another explanation for decreased oxygen consumption in lactic acidosis. Crit Care, 14(4), 427. https://doi.org/10.1186/cc9072.
Rui, L., 2014. Energy metabolism in the liver. Compr Physiol, 4(1), 177-197. https://doi.org/10.1002/cphy.c130024.
Sackville, M.A., Cameron, C.B., Gillis, J.A., Brauner, C.J., 2022. Ion regulation at gills precedes gas exchange and the origin of vertebrates. Nature, 610(7933), 699-703. https://doi.org/10.1038/s41586-022-05331-7.
Smith, R.L., Soeters, M.R., Wüst, R.C.I., Houtkooper, R.H., 2018. Metabolic flexibility as an adaptation to energy resources and requirements in health and disease. Endocrine eviews, 39, 489-517. https://doi.org/10.1210/er.2017-00211.
Spanaki, C., Plaitakis, A., 2012. The role of glutamate dehydrogenase in mammalian ammonia metabolism. Neurotox Res, 21(1), 117-127. https://doi.org/10.1007/s12640-011-9285-4.
Stalnecker, C.A., Ulrich, S.M., Li, Y.X., Ramachandran, S., McBrayer, M.K., DeBerardinis, R.J., Cerione, R.A., Erickson, J.W., 2015. Mechanism by which a recently discovered allosteric inhibitor blocks glutamine metabolism in transformed cells. Proc Natl Acad Sci USA, 112(2), 394-399. https://doi.org/10.1073/pnas.1414056112.
Steele, S.L., Yancey, P.H., Wright, P.A., 2005. The little skate Raja erinacea exhibits an extrahepatic ornithine urea cycle in the muscle and modulates nitrogen metabolism during low-salinity challenge. Physio Biochem Zool, 78(2), 216-226. https://doi.org/Doi 10.1086/427052.
Tizianello, A., Deferrari, G., Garibotto, G., Robaudo, C., Acquarone, N., Ghiggeri, G.M., 1982. Renal ammoniagenesis in an early stage of metabolic acidosis in man. J Clin Invest, 69(1), 240-250. https://doi.org/10.1172/jci110436.
Tseng, Y.C., Hwang, P.P., 2008. Some insights into energy metabolism for osmoregulation in fish. Comp Biochem Physiol C-Toxic Pharmacol, 148(4), 419-429. https://doi.org/10.1016/j.cbpc.2008.04.009.
Tseng, Y.C., Yan, J.J., Furukawa, F., Hwang, P.P., 2020. Did acidic stress resistance in vertebrates evolve as Na+/H+ exchanger-mediated ammonia excretion in fish? BioEssays, 42(5), e1900161. https://doi.org/10.1002/bies.201900161.
Tseng, Y.C., Yan, J.J., Furukawa, F., Chen, R.D., Lee, J.R., Tsou, Y.L., Liu, T.Y., Tang, Y.H., Hwang, P.P., 2022. Teleostean fishes may have developed an efficient Na+ uptake for adaptation to the freshwater system. Front Physiol, 13, 947958. https://doi.org/10.3389/fphys.2022.947958.
Volff, J.N., 2005. Genome evolution and biodiversity in teleost fish. Heredity (Edinb), 94(3), 280-294. https://doi.org/10.1038/sj.hdy.6800635
Walsh, P. J., Wang, Y., Campbell, C.E., De Boeck, G., Wood, C.M., 2001. Patterns of nitrogenous waste excretion and gill urea transporter mRNA expression in several species of marine fish. Mar Biol, 139(5), 839-844. https://doi.org/10.1007/s002270100639.
Wang, M.C., Hsu, M.T., Lin, C.C., Hsu, S.C., Chen, R.D., Lee, J.R., Chou, Y.L., Tseng, H.P., Furukawa, F., Hwang, S.L., Hwang, P.P., Tseng, Y.C., 2022. Adaptive metabolic responses in a thermostabilized environment: Transgenerational trade-off implications from tropical tilapia. Sci Total Environ, 806(Pt 2), 150672. https://doi.org/10.1016/j.scitotenv.2021.150672.
Wang, Y., Walsh, P.J., 2000. High ammonia tolerance in fishes of the family Batrachoididae (Toadfish and Midshipmen). Aquat Toxicol, 50(3), 205-219. https://doi.org/10.1016/s0166-445x(99)00101-0.
Weiner, I.D., Verlander, J.W., 2013. Renal ammonia metabolism and transport. Compr Physiol, 3(1), 201-220. https://doi.org/10.1002/cphy.c120010.
Weiner, I.D., Verlander, J.W., 2014. Ammonia transport in the kidney by Rhesus glycoproteins. Am J Physio Renal Physiol, 306(10), F1107-F1120. https://doi.org/10.1152/ajprenal.00013.2014.
Weiner, I.D., Verlander, J.W., 2017a. Ammonia transporters and their role in acid-base balance. Physiol Rev, 97(2), 465-494. https://doi.org/10.1152/physrev.00011.2016.
Welch, M.J., Munday, P.L., 2016. Contrasting effects of ocean acidification on reproduction in reef fishes. Coral Reefs, 35(2), 485-493. https://doi.org/10.1007/s00338-015-1385-9.
Whittaker, J., Cuthbert, C., Hammond, V.A., Alberti, K.G., 1982. The effects of metabolic acidosis in vivo on insulin binding to isolated rat adipocytes. Metab Clin Exp, 31(6), 553-557. https://doi.org/10.1016/0026-0495(82)90094-4.
Wilkie, M.P., Turnbull, S., Bird, J., Wang, Y.S., Claude, J.F., Youson, J.H., 2004. Lamprey parasitism of sharks and teleosts: high capacity urea excretion in an extant vertebrate relic. Com Biochem Physiol A Mol Int Physiol, 138(4), 485-492. https://doi.org/10.1016/j.cbpb.2004.06.001.
Wood, C.M., 1993. Ammonia and urea metabolism and excretion. In: Evans, D.H. (Eds.), The Physiology of Fishes. CRC Press, Florida, pp. 379-425. https://doi.org/10.1007/BF00044133.
Wood, C.M., Munger, R.S., Toews, D.P., 1989. Ammonia, urea and H+ distribution and the evolution of ureotelism in amphibians. J Exp Biol, 144, 215-233. https://doi.org/10.1242/jeb.144.1.215.
Wright, P.A., Wood, C.M., 1985. An analysis of branchial ammonia excretion in the fresh-water rainbow-trout - effects of environmental pH change and sodium uptake blockade. J Exp Biol, 114(Jan), 329-353. https://doi.org/10.1242/jeb.114.1.329.
Wright, P.A., & Wood, C.M., 2009. A new paradigm for ammonia excretion in aquatic animals: role of Rhesus (Rh) glycoproteins. J Exp Biol, 212(2303-2312). https://doi.org/10.1242/jeb.023085.
Wright, P.A., Wood, C.M., Hiroi, J., Wilson, J.M., 2016. (Uncommon) Mechanisms of branchial ammonia excretion in the common carp (Cyprinus carpio) in response to environmentally induced metabolic acidosis. Physiol Biochem Zool, 89(1), 26-40. https://doi.org/10.1086/683990.
Wrong, O., Davies, H.E.F., 1959. The excretion of acid in renal disease. Q J Med, 28(110), 259. https://doi.org/10.1093/oxfordjournals.qjmed.a066844.
Wu, S.C., Horng, J.L., Liu, S.T., Hwang, P.P., Wen, Z.H., Lin, C.S., Lin, L.Y., 2010. Ammonium-dependent sodium uptake in mitochondrion-rich cells of medaka (Oryzias latipes) larvae. Am J Physiol Cell Physiol, 298(2), C237-250. https://doi.org/10.1152/ajpcell.00373.2009.
Xu, L., Chen, J., Jia, L., Chen, X., Awaleh Moumin, F., Cai, J., 2020. SLC1A3 promotes gastric cancer progression via the PI3K/AKT signalling pathway. J Cell Mol Med, 24(24), 14392-14404. https://doi.org/10.1111/jcmm.16060.
Yada, T., Ito, F., 1998. Sexual difference in acid tolerance in medaka Oryzias latipes. Fish Sci, 64(5), 694-699. https://doi.org/10.2331/fishsci.64.694.
Yan, J.J., Hwang, P.P., 2019. Novel discoveries in acid-base regulation and osmoregulation: A review of selected hormonal actions in zebrafish and medaka. Gen Comp Endocrinol, 277, 20-29. https://doi.org/10.1016/j.ygcen.2019.03.007.
Zhang, Z., Hu, J., 2007. Development and validation of endogenous reference genes for expression profiling of medaka (Oryzias latipes) exposed to endocrine disrupting chemicals by quantitative real-time RT-PCR. Toxicol Sci, 95(2), 356-368. https://doi.org/10.1093/toxsci/kfl161.
Zhang, G.F., Sadhukhan, S., Tochtrop, G.P., Brunengraber, H., 2011. Metabolomics, pathway regulation, and pathway discovery. J Biol Chem, 286(27), 23631-23635. https://doi.org/10.1074/jbc.R110.171405.
Zouch, H., Cabrol, L., Chifflet, S., Tedetti, M., Karray, F., Zaghden, H., Sayadi, S., Quemeneur, M., 2018. Effect of acidic industrial effluent release on microbial diversity and trace metal dynamics during resuspension of coastal sediment. Front Microbiol, 9, 3103. https://doi.org/10.3389/fmicb.2018.03103.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88374-
dc.description.abstract氣候變遷相關的環境酸化對地球上動物來說是個無法阻擋的災難。硬骨魚身為成功演化的水生脊椎動物被認為已經發展出有效率的策略以應對環境的酸化。當面對酸逆境時,哺乳類和硬骨魚都會活化排氨來排酸。然而,相較於哺乳類,硬骨魚是排氨動物 (ammonotelism),主要倚賴鰓來排氨且其排氨量極大。硬骨魚不同哺乳類的代謝狀況也使他們可以做出更大程度的能量調度 (energy allocation)。根據上述,我們合理的假設排氨硬骨魚可能已經發展出獨特的機制以即時且有效率地應對酸、甚至適應酸性環境。日本青鱂魚 (Oryzias latipes) 作為本篇研究的實驗物種將被馴養於pH 4.5的淡水之中以驗證以上假說。
麩醯胺酸代謝是產氨作用 (ammoniagenesis) 的主要來源,而glutaminase (GLS) 調控的產氨作用也同樣地運作於哺乳類腎臟排氨的細胞中。在青鱂魚的鰓中,本研究出乎意料地發現了一群新型的、富含GLS的細胞 (GLS cells),並大部分表現於排氨的離子細胞 (NHE cells) 旁。GLS cells可以執行完整的麩醯胺酸分解 (glutaminolysis) 且在酸化環境下被顯著的誘導。鰓上GLS cells和NHE cells的分工展現了不同於人類腎臟的近曲小管的機制,也讓青鱂魚的鰓在面對酸逆境時快速且有效率地活化排氨。
酸性環境下,青鱂魚多個器官的產氨作用改變了代謝的恆定,造成了器官間的能量調動。其中,肌肉、肝臟和卵巢有著最大的變化。在相對較低的基礎代謝下,被酸化的青鱂魚肌肉釋放氨基酸以支持全身的產氨。大量的代謝物也被肝臟吸收,透過促進脂肪合成作用 (lipogenesis) 和肝醣合成作用 (glycogenesis) 增加了青鱂魚的能量儲存。透過肝臟和卵巢間雌激素受體的訊息傳遞,青鱂魚進一步強化了生殖能力,而他們的子代成長也較快,指出環境酸化使青鱂魚有更好的適性 (fitness)。總結以上,青鱂魚在酸化環境下展現了一系列獨特且有效率的策略來對抗酸逆境。本研究不只完整呈現了硬骨魚在面對環境酸化的機制,也透過青鱂魚從生態的觀點上證明了一個經權衡後的能量調度。這些訊息對於精準預測硬骨魚在氣候變遷造成的環境酸化的生存和族群永續十分有價值。更多硬骨魚的物種正在等待被研究以支持本篇研究的發現。
zh_TW
dc.description.abstractClimate change-associated environmental acidification poses an unstoppable disaster for animals on Earth. As the successfully evolved aquatic vertebrates, teleosts are believed to have developed efficient strategies to cope with environmental acidification. When facing acidic stress, both mammals and teleosts activate ammonia excretion to eliminate acid. However, teleosts are ammonotelism, mainly using the gills for ammonia excretion and excreting a great amount of ammonia than mammals. The differential metabolism of teleosts from mammals also give them a greater extent of energy allocation. Accordingly, it is reasonable to assume that ammonotelic teleosts may have a unique mechanisms to timely and efficiently cope with acid and even adapt to acidic environments. In this study, Japanese medaka (Oryzias latipes) acclimated to pH 4.5 fresh water (FW) was used as the experimental model to validate the hypotheses.
Glutamine metabolism serves as a main source of ammoniagenesis, and GLS-mediated ammoniagenesis is functioned in the ammonia-excreting cells of mammalian kidney. In medaka gills, surprisingly, the present study identified novel glutaminase (GLS)-rich cells (GLS cells), which were mostly nearby the ammonia-excreting Na+/H+ exchanger (NHE) cells. GLS cells conducted an entire process of glutaminolysis and were induced under acidic environments. The unique labor division of GLS and NHE cells demonstrates distinct mechanisms compared with those of the proximal tubular cells in human kidney. This unique trait also enables medaka gills to enhance ammonia excretion promptly and efficiently upon exposure of acidic stress.
Systemic ammoniagenesis altered metabolic homeostasis, resulting in inter-organ energy mobilization in medaka under acidic environments. Among the organs, the muscle, liver, and ovary showed the most significant changes. Under relatively lower basal metabolic rate, medaka muscle released the amino acids to support systemic ammoniagenesis during acidic stress. The abundant metabolites were absorbed by the liver, which increased medaka energy storage by activating lipogenesis and glycogenesis. With the up-regulation of estrogen receptor (Esr) signaling between the liver and ovary, medaka ultimately enhanced reproductive activities, and their offspring grew faster, indicating the improved fitness of medaka under environmental acidification. To sum up, medaka showed a series of unique and efficient strategies to overcome acidic stress. The present study not only revealed comprehensive mechanisms in teleosts under acidic environments, but also demonstrates a trade-off energy allocation from an ecological perspective through acidified medaka. This information is valuable for precisely predicting the survival and population sustainability of teleosts under environmental acidification caused by climate changes. Further studies on additional teleostean species are eagerly awaited to support our finding.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-09T16:46:50Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-09T16:46:50Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
序言 ii
Chinese abstract iii
English abstract v
Contents vii
Background and Aims 1
Chapter 1. Unique machinery of ammonia production and excretion in medaka (Oryzias latipes) gills under freshwater acidification 4
1.1 Introduction 5
1.2 Materials and methods 8
1.3 Results 15
1.4 Discussion 19
1.5 Summary 24
Chapter 2. Freshwater acidification induces inter-organ energy mobilization to promote reproductive performance in medaka (Oryzias latipes) 25
2.1 Introduction 26
2.2 Materials and methods 30
2.3 Results 42
2.4 Discussion 48
2.5 Summary 56
Conclusion 57
Tables and Figures 58
References 98
-
dc.language.isoen-
dc.title硬骨魚在淡水酸化下獨特的產氨及能量代謝機制zh_TW
dc.titleUnique machineries of ammoniagenesis and energy metabolism in teleosts under freshwater acidificationen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree博士-
dc.contributor.coadvisor黃鵬鵬zh_TW
dc.contributor.coadvisorPung-Pung Hwangen
dc.contributor.oralexamcommittee曾庸哲;張清風;林惠真;兵藤晉zh_TW
dc.contributor.oralexamcommitteeYung-Che Tseng;Ching-Fong Chang;Hui-Chen Lin;Susumu Hyodoen
dc.subject.keyword環境酸化,青鱂魚,鰓,排氨,產氨作用,代謝,能量調動,zh_TW
dc.subject.keywordenvironmental acidification,medaka,gills,ammonia excretion,ammoniagenesis,metabolism,energy allocation,en
dc.relation.page111-
dc.identifier.doi10.6342/NTU202302024-
dc.rights.note未授權-
dc.date.accepted2023-07-27-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生命科學系-
顯示於系所單位:生命科學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  目前未授權公開取用
15.88 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved