請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88368完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳發林 | zh_TW |
| dc.contributor.advisor | Falin Chen | en |
| dc.contributor.author | 吳承峰 | zh_TW |
| dc.contributor.author | Cheng-Feng Wu | en |
| dc.date.accessioned | 2023-08-09T16:45:16Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-09 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-19 | - |
| dc.identifier.citation | 1.Turner, J. S., Buoyancy Effects in Fluids. Cambridge University Press.(1979)
2.W. S. Jevons, On the cirrous form of cloud. London, Edinburgh, and Dublin Philos, Mag. J. Sci., 4th Series, 14, 22–35 (1857) 3.Raymond W. Schmitt Jr., The Ocean’s Salt Fingers. Scientific American(1995) 4.L. Rayleigh, Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density, Proc. London Math. Soc., 14, 170–177 (1883) 5.Radko, Timour, Double-Diffusive Convection, Cambridge University, (2013) 6.H. A. Stommel, A. B. Arons, and D. Blanchard, An oceanographic curiosity: the perpetual salt fountain, Deep-Sea Res., 3, 152–153 (1956). 7.M. E. Stern, The “salt-fountain” and thermohaline convection. Tellus, 12,172–175 (1960). 8.H. E. Huppert, J. S. Turner, Double-diffusive convection, J. Fluid Mech., 106, 299–329 (1981). 9.K. Tsubaki, S. Maruyama, A. Komiya, H. Mitsugashira, Continuous measurement of an artificial upwelling of deep sea water induced by the perpetual salt fountain, Deep-Sea Research I 54 (2007) 75–84, Elsevier (2007) 10.S. A. Thorpe, P. K. Hutt, R. Soulsby, The effect of horizontal gradients on thermohaline convection, J. Fluid Mech., 38(2), 375-400 (1969). 11.J. E. Hart, On sideways diffusive instability, J. Fluid Mech., 49 279-288 (1971) 12.C. F. Chen, D. G. Briggs, R. A. Wirtz, Stability of thermal convection in a salinity gradient due to lateral heating, Int. J. Heat Mass Transf., 14, 57–65 (1971). 13.R. A. Wirtz, D. G. Briggs, C. F. Chen Physical and numerical experiments on layered convection in a density-stratified fluid. Geophys. Fluid Dyn. 3, 265-288 14.R. C. Paliwal, C. F. Chen, Double-diffusive instability in an inclined fluid layer, J. Fluid Mech., 98, 769–785 (1980). 15.H. E. Huppert, J. S. Turner, Ice blocks melting into a salinity gradient, J. Fluid Mech., 100, 367–384 (1980) 16.S. Thangam, A. Zebib, C. F. Chen, Transition from shear to sideways diffusive instability in a vertical slot, J. Fluid Mech., 112, 151–160 (1981) 17.J. W. Elder, Laminar free convection in a vertical slot, J.F.M., 23, 77–98 (1965). 18.Yen-Ming Chen, A. J. Pearlsein, Stability of free-convection flows of variableviscosity fluids in vertical and inclined slots, J. Fluid Mech., 198, 513–541 (1989) 19.C. F. Chen, F. Chen, Salt-finger convection generated by lateral heating of a solute gradient, J. Fluid Mech., 352, 161–176 (1997) 20.C. L. Chan, W. Y. Chen, C.F. Chen, Secondary motion in convection layers generated by lateral heating of a solute gradient, J. Fluid Mech., 455, 1–19 (2002). 21.T. Y. Chang, F. Chen, M. H. Chang, Three-dimensional stability analysis for a salt-finger convecting layer, J. Fluid Mech., 841, 636-653 (2018). 22.Wen-Yu Huang, Falin Chen, Stability of the double-diffusive convection generated through the interaction of horizontal temperature and concentration gradients in the vertical slot, AIP Advances 13, 055215 (2023) 23.C. Beckermann, R. Viskanta, Double-diffusive convection during dendritic solidification of a binary mixture. Phys. Chem. Hydrodynamics. 10. 195-213 24.C. C. Wang, F. Chen, On the double-diffusive layer formation in the vertical annulus driven by radial thermal and salinity gradients, Mech. R. C., 125, 103991 (2022). 25.C. M. Vest, V. S. Arpaci, Stability of natural convection in a vertical slot, J. Fluid Mech., 36, 1-25 (1969) 26.I. T. Dolapci, Chebyshev collocation method for solving linear differential equations, Mathematical and Computational Application, 9, 107-115 (2004). 27.John P. Boyd, Chebyshev and Fourier Spectral Methods., Courier Corporation, (2001) 28.C. B. Moler, G. W. Stewart, An algorithm for generalized matrix eigenvalue problems, Society for Industrial and Applied Mathematics, 10, 241-256 (1973). 29.R. F. Bergholz, Instability of steady natural convection in a vertical fluid layer, J. Fluid Mech., 84, 743-768 (1978). 30.I. G. Choi, A. Korpela, Stability of the conduction regime of natural convection in a tall vertical annulus, J. Fluid Mech., 99 725-738 (1980) 31.N. J. Balmforth, J. A. Biello, Double diffusive instability in a tall thin slot, J. Fluid Mech., 375 203-233 (1998) | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88368 | - |
| dc.description.abstract | 本論文建立一套高寬比相當大的垂直槽系統,利用側向加熱的方式,達到左壁低溫、右壁為高溫,其中,容器內液體存在著垂直濃度梯度,藉以模擬冰山附近的溫鹽環流所造成的雙擴散對流之流體穩定性分析,本文係以垂直槽中的熱對流題目為啟發,再於其中加入垂直濃度梯度液體,將此分析結果與過往論文進行加叉比對,進而得到新的結論。
吾人以時域的線性穩定性分析此題目,從Boussinesq approximation的統御方程式起手,求解出基態解,再以此基態解加入微小擾動,並以正規模態展開的方式分析此微小擾動隨著時間的發展情形,藉此分析此系統之穩定性狀態;數值方法則是利用切比雪夫配置法來求解系統特徵值,最後,以蒐集出來的中性曲線圖,繪製出穩定性邊界圖,將此圖結果與其他論文比較,歸納出結論。 結果顯示,在Pr=7、Le=100的案例中,吾人所作之結果相較於本研究所比較的論文有更高的準確性,並透過蒐集到相當多且有利的數據,將系統的穩定模式區分為五個階段,包含:溫度浮力模式(TBM)、擴散浮力模式(DBM)、擴散剪力模式(DSM)、鹽指剪力模式(SSM)以及鹽指浮力模式(SBM)等。之後,分析不同普朗特數和路易斯數會如何影響系統的穩定模式,再以上述五種不同模式為基礎,將普朗特數影響區分為三個區塊,並同樣發現再普朗特數為12.5時,系統會發生模態轉換,這與過去論文所得結論相同;至於路易斯數影響部分,吾人同樣將其區分為兩個區塊,於Le=1 & 2 區塊中,找尋到新的漸近線關係式,在 Le>2 區塊中,則是驗證了過去所得的漸近線關係式之正確性。 | zh_TW |
| dc.description.abstract | A system of a vertically oriented slot with a large aspect ratio is considered in this study. The slot is subjected to lateral heating on both sides, resulting low temperature in left-hand side compared to the right-hand side, which is maintained at a higher temperature. Additionally, a constant vertical salinity gradient is imposed on the liquid inside the slot. The objective of this research is to analyze the stability of double-diffusive convection near the iceberg. This study was motivated by the problem of heat convection in a vertical slot and we extends it by incorporating a vertical salinity gradient. The obtained results are compared with those presented in previous studies, leading to novel conclusions.
In this study, we employed the concept of temporal instability to analyze the problem. Initially, the Boussinesq approximation was applied to the governing equation, which allowed us to determine the basic state solution. Subsequently, the linearized perturbation equation was utilized to investigate the instability of the system. To facilitate the analysis, we expanded the perturbation equation using the normal mode expansion. For numerical calculation, the Chebyshev collocation method was employed to compute the eigenvalues of the equation. By generating extensive neutral curves, we were able to plot the stability boundary and compare our findings with those reported in other references. Through this comparative analysis, we derived novel and insightful conclusions. Our results revealed the presence of five distinct stability modes in the case of a Prandtl number of 7 and a Lewis number of 100. This finding was made possible by utilizing a more precise approach and analyzing a vast amount of data. Additionally, we examined the influence of different Prandtl and Lewis numbers on the system's stability. Based on the five stability modes mentioned earlier, we identified three regions that correspond to the effect of the Prandtl number on the stability boundary. Notably, we observed a mode transition at a Prandtl number of 12.5, which aligns with the findings of previous studies. Regarding the effect of the Lewis number, we distinguished it into two parts. In the region where the Lewis number is equal to 1 and 2, we derived a new asymptotic solution. In the region where the Lewis number exceeds 2, we validated the results of the asymptotic solution proposed in previous papers. These findings contribute to a deeper understanding of the system's stability behavior under varying Prandtl and Lewis numbers. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-09T16:45:16Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-09T16:45:16Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 I
摘要 II Abstract III 目錄 V 圖目錄 VII 表目錄 VIII 符號說明 IX 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 5 1.3 研究動機 8 1.4 研究方法 9 第二章 理論模型 10 2.1 問題描述及邊界條件 10 2.2 Boussinesq approximation 12 2.3 統御方程式 13 2.4 統御方程式之無因次化 14 2.5 基態流場 16 2.5.1 探討壓力基態解 16 2.5.2 流速、溫度、濃度基態解 17 第三章 線性穩定性分析 23 3.1 微小擾動方程式(Small Perturbation Equation) 23 3.2 正規模態展開(Normal Modes Expansion) 25 3.3 Squire’s Transformation 27 3.4 二維線性穩定性分析 29 3.4.1 二維線性化微小擾動方程式 29 3.4.2 二維正規模態展開 31 第四章 數值分析 32 4.1 數值方法 32 4.1.1 頻譜分析法(Spectral Method) 32 4.1.2 切比雪夫配置法(Chebyshev Collocation Method) 33 4.2 收斂測試 36 第五章 結果與討論 38 5.1 以 𝑷𝒓 = 𝟔. 𝟕、𝑳𝒆 = 𝟏𝟎𝟎 為例 38 5.1.1 中性曲線圖(Neutral Curve) 38 5.1.2 穩定性邊界圖(Stability Boundary Curve)與比較 39 5.1.3 穩定模式(Stability Mode)討論 40 5.2 Prandtl Number Effect 44 5.2.1 𝟏 ≤ 𝑷𝒓 ≤ 𝟏𝟐 及其穩定性邊界圖 44 5.2.2 𝟏𝟑 ≤ 𝑷𝒓 ≤ 𝟏𝟎𝟎 及其穩定性邊界圖 48 5.3 Lewis Number Effect 50 第六章 結論與未來展望 53 6.1 結論 53 6.2 未來展望 54 參考文獻 55 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 雙擴散對流 | zh_TW |
| dc.subject | 側向加熱 | zh_TW |
| dc.subject | 流體穩定性 | zh_TW |
| dc.subject | 模態轉換 | zh_TW |
| dc.subject | 切比雪夫配置法 | zh_TW |
| dc.subject | hydrodynamic stability | en |
| dc.subject | lateral heating | en |
| dc.subject | mode transition | en |
| dc.subject | Double-diffusive convection | en |
| dc.subject | Chebyshev collocation method | en |
| dc.title | 橫向加熱驅動垂直分層流體之雙擴散對流穩定性分析 | zh_TW |
| dc.title | Stability analysis of double diffusive convection generated by lateral heating of vertical solute gradient | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 施陽正;牛仰堯 | zh_TW |
| dc.contributor.oralexamcommittee | Yang-Cheng Shih ;Yang-Yao Niu | en |
| dc.subject.keyword | 雙擴散對流,流體穩定性,側向加熱,模態轉換,切比雪夫配置法, | zh_TW |
| dc.subject.keyword | Double-diffusive convection,hydrodynamic stability,lateral heating,mode transition,Chebyshev collocation method, | en |
| dc.relation.page | 58 | - |
| dc.identifier.doi | 10.6342/NTU202301370 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-07-20 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 應用力學研究所 | - |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 2.52 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
