Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生命科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88365
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor潘建源zh_TW
dc.contributor.advisorChien-Yuan Panen
dc.contributor.author洪茂庭zh_TW
dc.contributor.authorMao-Ting Hungen
dc.date.accessioned2023-08-09T16:44:26Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-09-
dc.date.issued2023-
dc.date.submitted2023-07-25-
dc.identifier.citationAllan, S. M., Tyrrell, P. J., & Rothwell, N. J. (2005). Interleukin-1 and neuronal injury. Nature reviews. Immunology, 5(8), 629–640.
Arend, W. P., & Leung, D. Y. (1994). IgG induction of IL-1 receptor antagonist production by human monocytes. Immunological reviews, 139, 71–78.
Bajo, M., Patel, R. R., Hedges, D. M., Varodayan, F. P., Vlkolinsky, R., Davis, T. D., Burkart, M. D., Blednov, Y. A., & Roberto, M. (2019). Role of MyD88 in IL-1β and Ethanol Modulation of GABAergic Transmission in the Central Amygdala. Brain sciences, 9(12), 361.
Bajo, M., Varodayan, F. P., Madamba, S. G., Robert, A. J., Casal, L. M., Oleata, C. S., Siggins, G. R., & Roberto, M. (2015). IL-1 interacts with ethanol effects on GABAergic transmission in the mouse central amygdala. Frontiers in pharmacology, 6, 49.
Bear MF, Connors BW, Paradiso MA (2016). Neuroscience: Exploring the brain (Fourth edition.). Philadelphia: Wolters Kluwer.
Bellinger, F. P., Madamba, S., & Siggins, G. R. (1993). Interleukin 1 beta inhibits synaptic strength and long-term potentiation in the rat CA1 hippocampus. Brain research, 628(1-2), 227–234.
Brewer G. J. (1997). Isolation and culture of adult rat hippocampal neurons. Journal of neuroscience methods, 71(2), 143–155.
Brini, M., Calì, T., Ottolini, D., & Carafoli, E. (2014). Neuronal calcium signaling: function and dysfunction. Cellular and molecular life sciences : CMLS, 71(15), 2787–2814.
Campbell, V. A., Segurado, R., & Lynch, M. A. (1998). Regulation of intracellular Ca2+ concentration by interleukin-1beta in rat cortical synaptosomes: an age-related study. Neurobiology of aging, 19(6), 575–579.
Carlson, N. G., Wieggel, W. A., Chen, J., Bacchi, A., Rogers, S. W., & Gahring, L. C. (1999). Inflammatory cytokines IL-1 alpha, IL-1 beta, IL-6, and TNF-alpha impart neuroprotection to an excitotoxin through distinct pathways. Journal of immunology (Baltimore, Md. : 1950), 163(7), 3963–3968.
Caruso, F., Pedersen, J. Z., Incerpi, S., Kaur, S., Belli, S., Florea, R. M., & Rossi, M. (2022). Mechanism of Caspase-1 Inhibition by Four Anti-inflammatory Drugs Used in COVID-19 Treatment. International journal of molecular sciences, 23(3), 1849.
Choi D. W. (1992). Excitotoxic cell death. Journal of neurobiology, 23(9), 1261–1276.
Church, L. D., Cook, G. P., & McDermott, M. F. (2008). Primer: inflammasomes and interleukin 1beta in inflammatory disorders. Nature clinical practice. Rheumatology, 4(1), 34–42.
Clements, J. D., Feltz, A., Sahara, Y., & Westbrook, G. L. (1998). Activation kinetics of AMPA receptor channels reveal the number of functional agonist binding sites. The Journal of neuroscience : the official journal of the Society for Neuroscience, 18(1), 119–127.
Costas-Ferreira, C., & Faro, L. R. F. (2021). Systematic Review of Calcium Channels and Intracellular Calcium Signaling: Relevance to Pesticide Neurotoxicity. International journal of molecular sciences, 22(24), 13376.
Davis, C. N., Mann, E., Behrens, M. M., Gaidarova, S., Rebek, M., Rebek, J., Jr, & Bartfai, T. (2006). MyD88-dependent and -independent signaling by IL-1 in neurons probed by bifunctional Toll/IL-1 receptor domain/BB-loop mimetics. Proceedings of the National Academy of Sciences of the United States of America, 103(8), 2953–2958.
De Stefani, D., Patron, M., & Rizzuto, R. (2015). Structure and function of the mitochondrial calcium uniporter complex. Biochimica et biophysica acta, 1853(9), 2006–2011.
Depino, A. M., Alonso, M., Ferrari, C., del Rey, A., Anthony, D., Besedovsky, H., Medina, J. H., & Pitossi, F. (2004). Learning modulation by endogenous hippocampal IL-1: blockade of endogenous IL-1 facilitates memory formation. Hippocampus, 14(4), 526–535.
Depino, A., Ferrari, C., Pott Godoy, M. C., Tarelli, R., & Pitossi, F. J. (2005). Differential effects of interleukin-1beta on neurotoxicity, cytokine induction and glial reaction in specific brain regions. Journal of neuroimmunology, 168(1-2), 96–110.
Desson, S. E., & Ferguson, A. V. (2003). Interleukin 1beta modulates rat subfornical organ neurons as a result of activation of a non-selective cationic conductance. The Journal of physiology, 550(Pt 1), 113–122.
Dinarello C. A. (2018). Overview of the IL-1 family in innate inflammation and acquired immunity. Immunological reviews, 281(1), 8–27.
DiSabato, D. J., Quan, N., & Godbout, J. P. (2016). Neuroinflammation: the devil is in the details. Journal of neurochemistry, 139 Suppl 2(Suppl 2), 136–153.
Dolphin A. C. (2006). A short history of voltage-gated calcium channels. British journal of pharmacology, 147 Suppl 1(Suppl 1), S56–S62.
Dong, X. X., Wang, Y., & Qin, Z. H. (2009). Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta pharmacologica Sinica, 30(4), 379–387.
Ebong, S. J., Call, D. R., Bolgos, G., Newcomb, D. E., Granger, J. I., O'Reilly, M., & Remick, D. G. (1999). Immunopathologic responses to non-lethal sepsis. Shock (Augusta, Ga.), 12(2), 118–126.
Ebtesam M. Abd-El-Basset (2016). Effect of Interleukin-1Beta (IL-1β) on the Cortical Neurons Survival and Neurites Outgrowth. Advances in Bioscience and Biotechnology, 07(01): 28-37.
Endo M. (2009). Calcium-induced calcium release in skeletal muscle. Physiological reviews, 89(4), 1153–1176.
Fan, Z., Pan, Y. T., Zhang, Z. Y., Yang, H., Yu, S. Y., Zheng, Y., Ma, J. H., & Wang, X. M. (2020). Systemic activation of NLRP3 inflammasome and plasma α-synuclein levels are correlated with motor severity and progression in Parkinson's disease. Journal of neuroinflammation, 17(1), 11.
Fang, J., Wang, Y., & Krueger, J. M. (1998). Effects of interleukin-1 beta on sleep are mediated by the type I receptor. The American journal of physiology, 274(3), R655–R660.
Ferri, C. C., Yuill, E. A., & Ferguson, A. V. (2005). Interleukin-1beta depolarizes magnocellular neurons in the paraventricular nucleus of the hypothalamus through prostaglandin-mediated activation of a non selective cationic conductance. Regulatory peptides, 129(1-3), 63–71.
Fry, W. M., & Ferguson, A. V. (2021). The subfornical organ and organum vasculosum of the lamina terminalis: Critical roles in cardiovascular regulation and the control of fluid balance. Handbook of clinical neurology, 180, 203–215.
Garlanda, C., Riva, F., Bonavita, E., Gentile, S., & Mantovani, A. (2013). Decoys and Regulatory "Receptors" of the IL-1/Toll-Like Receptor Superfamily. Frontiers in immunology, 4, 180.
Gherardi, G., Monticelli, H., Rizzuto, R., & Mammucari, C. (2020). The Mitochondrial Ca2+ Uptake and the Fine-Tuning of Aerobic Metabolism. Frontiers in physiology, 11, 554904.
Glancy, B., Willis, W. T., Chess, D. J., & Balaban, R. S. (2013). Effect of calcium on the oxidative phosphorylation cascade in skeletal muscle mitochondria. Biochemistry, 52(16), 2793–2809.
Goldin A. L. (2003). Mechanisms of sodium channel inactivation. Current opinion in neurobiology, 13(3), 284–290.
Griffin, W. S., Sheng, J. G., Royston, M. C., Gentleman, S. M., McKenzie, J. E., Graham, D. I., Roberts, G. W., & Mrak, R. E. (1998). Glial-neuronal interactions in Alzheimer's disease: the potential role of a 'cytokine cycle' in disease progression. Brain pathology (Zurich, Switzerland), 8(1), 65–72.
Halle, A., Hornung, V., Petzold, G. C., Stewart, C. R., Monks, B. G., Reinheckel, T., Fitzgerald, K. A., Latz, E., Moore, K. J., & Golenbock, D. T. (2008). The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nature immunology, 9(8), 857–865.
HANKS, J. H., & WALLACE, R. E. (1949). Relation of oxygen and temperature in the preservation of tissues by refrigeration. Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.), 71(2), 196–200.
Hewett, S. J., Jackman, N. A., & Claycomb, R. J. (2012). Interleukin-1β in Central Nervous System Injury and Repair. European journal of neurodegenerative disease, 1(2), 195–211.
Hirota, H., Kiyama, H., Kishimoto, T., & Taga, T. (1996). Accelerated Nerve Regeneration in Mice by upregulated expression of interleukin (IL) 6 and IL-6 receptor after trauma. The Journal of experimental medicine, 183(6), 2627–2634.
Huang, Y., Smith, D. E., Ibáñez-Sandoval, O., Sims, J. E., & Friedman, W. J. (2011). Neuron-specific effects of interleukin-1β are mediated by a novel isoform of the IL-1 receptor accessory protein. The Journal of neuroscience : the official journal of the Society for Neuroscience, 31(49), 18048–18059.
Iglesias, I., Castillo, C. A., León, D., Ruíz, M. A., Albasanz, J. L., & Martín, M. (2007). Metabotropic glutamate receptor/phospholipase C system in female rat heart. Brain research, 1153, 1–11.
Ikegaya, Y., Delcroix, I., Iwakura, Y., Matsuki, N., & Nishiyama, N. (2003). Interleukin-1beta abrogates long-term depression of hippocampal CA1 synaptic transmission. Synapse (New York, N.Y.), 47(1), 54–57.
Iori, V., Aronica, E., & Vezzani, A. (2017). Epigenetic control of epileptogenesis by miR-146a. Oncotarget, 8(28), 45040–45041.
Jablonska, E., Piotrowski, L., & Grabowska, Z. (1997). Serum Levels of IL-1b, IL-6, TNF-a, sTNF-RI and CRP in Patients with Oral Cavity Cancer. Pathology oncology research : POR, 3(2), 126–129.
Jain, A., Kaczanowska, S., & Davila, E. (2014). IL-1 Receptor-Associated Kinase Signaling and Its Role in Inflammation, Cancer Progression, and Therapy Resistance. Frontiers in immunology, 5, 553.
Kadamur, G., & Ross, E. M. (2013). Mammalian phospholipase C. Annual review of physiology, 75, 127–154.
Kany, S., Vollrath, J. T., & Relja, B. (2019). Cytokines in Inflammatory Disease. International journal of molecular sciences, 20(23), 6008.
Katsuki, H., Nakai, S., Hirai, Y., Akaji, K., Kiso, Y., & Satoh, M. (1990). Interleukin-1 beta inhibits long-term potentiation in the CA3 region of mouse hippocampal slices. European journal of pharmacology, 181(3), 323–326.
Lei, Q., Yi, T., & Chen, C. (2018). NF-κB-Gasdermin D (GSDMD) Axis Couples Oxidative Stress and NACHT, LRR and PYD Domains-Containing Protein 3 (NLRP3) Inflammasome-Mediated Cardiomyocyte Pyroptosis Following Myocardial Infarction. Medical science monitor : international medical journal of experimental and clinical research, 24, 6044–6052.
Li, Y., Liu, L., Kang, J., Sheng, J. G., Barger, S. W., Mrak, R. E., & Griffin, W. S. (2000). Neuronal-glial interactions mediated by interleukin-1 enhance neuronal acetylcholinesterase activity and mRNA expression. The Journal of neuroscience : the official journal of the Society for Neuroscience, 20(1), 149–155.
Lipstein, N., Chang, S., Lin, K. H., López-Murcia, F. J., Neher, E., Taschenberger, H., & Brose, N. (2021). Munc13-1 is a Ca2+-phospholipid-dependent vesicle priming hub that shapes synaptic short-term plasticity and enables sustained neurotransmission. Neuron, 109(24), 3980–4000.e7.
Liu, L., Yang, T. M., Liedtke, W., & Simon, S. A. (2006). Chronic IL-1beta signaling potentiates voltage-dependent sodium currents in trigeminal nociceptive neurons. Journal of neurophysiology, 95(3), 1478–1490.
Liu, T., Jiang, C. Y., Fujita, T., Luo, S. W., & Kumamoto, E. (2013). Enhancement by interleukin-1β of AMPA and NMDA receptor-mediated currents in adult rat spinal superficial dorsal horn neurons. Molecular pain, 9, 16.
Liu, Z., Gan, L., Xu, Y., Luo, D., Ren, Q., Wu, S., & Sun, C. (2017). Melatonin alleviates inflammasome-induced pyroptosis through inhibiting NF-κB/GSDMD signal in mice adipose tissue. Journal of pineal research, 63(1), 10.1111/jpi.12414.
Lopez-Castejon, G., & Brough, D. (2011). Understanding the mechanism of IL-1β secretion. Cytokine & growth factor reviews, 22(4), 189–195.
Luís, J. P., Simões, C. J. V., & Brito, R. M. M. (2022). The Therapeutic Prospects of Targeting IL-1R1 for the Modulation of Neuroinflammation in Central Nervous System Disorders. International journal of molecular sciences, 23(3), 1731.
Ma, X. C., Chen, L. T., Oliver, J., Horvath, E., & Phelps, C. P. (2000). Cytokine and adrenal axis responses to endotoxin. Brain research, 861(1), 135–142.
Matsuwaki, T., Eskilsson, A., Kugelberg, U., Jönsson, J. I., & Blomqvist, A. (2014). Interleukin-1β induced activation of the hypothalamus-pituitary-adrenal axis is dependent on interleukin-1 receptors on non-hematopoietic cells. Brain, behavior, and immunity, 40, 166–173.
Mekahli, D., Bultynck, G., Parys, J. B., De Smedt, H., & Missiaen, L. (2011). Endoplasmic-reticulum calcium depletion and disease. Cold Spring Harbor perspectives in biology, 3(6), a004317.
Mendiola, A. S., & Cardona, A. E. (2018). The IL-1β phenomena in neuroinflammatory diseases. Journal of neural transmission (Vienna, Austria : 1996), 125(5), 781–795.
Milescu, L. S., Yamanishi, T., Ptak, K., & Smith, J. C. (2010). Kinetic properties and functional dynamics of sodium channels during repetitive spiking in a slow pacemaker neuron. The Journal of neuroscience : the official journal of the Society for Neuroscience, 30(36), 12113–12127.
Mogi, M., Harada, M., Narabayashi, H., Inagaki, H., Minami, M., & Nagatsu, T. (1996). Interleukin (IL)-1 beta, IL-2, IL-4, IL-6 and transforming growth factor-alpha levels are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson's disease. Neuroscience letters, 211(1), 13–16.
Mousa, A., & Bakhiet, M. (2013). Role of cytokine signaling during nervous system development. International journal of molecular sciences, 14(7), 13931–13957.
Munton, R. P., Vizi, S., & Mansuy, I. M. (2004). The role of protein phosphatase-1 in the modulation of synaptic and structural plasticity. FEBS letters, 567(1), 121–128.
Neeb, L., Hellen, P., Boehnke, C., Hoffmann, J., Schuh-Hofer, S., Dirnagl, U., & Reuter, U. (2011). IL-1β stimulates COX-2 dependent PGE₂ synthesis and CGRP release in rat trigeminal ganglia cells. PloS one, 6(3), e17360.
Nemeth, D. P., & Quan, N. (2021). Modulation of Neural Networks by Interleukin-1. Brain plasticity (Amsterdam, Netherlands), 7(1), 17–32.
Niswender, C. M., & Conn, P. J. (2010). Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annual review of pharmacology and toxicology, 50, 295–322.
O'Neill, C. M., Lu, C., Corbin, K. L., Sharma, P. R., Dula, S. B., Carter, J. D., Ramadan, J. W., Xin, W., Lee, J. K., & Nunemaker, C. S. (2013). Circulating levels of IL-1B+IL-6 cause ER stress and dysfunction in islets from prediabetic male mice. Endocrinology, 154(9), 3077–3088.
Opal, S. M., & DePalo, V. A. (2000). Anti-inflammatory cytokines. Chest, 117(4), 1162–1172.
Öztürk, Z., O'Kane, C. J., & Pérez-Moreno, J. J. (2020). Axonal Endoplasmic Reticulum Dynamics and Its Roles in Neurodegeneration. Frontiers in neuroscience, 14, 48.
Pan, W., Zadina, J. E., Harlan, R. E., Weber, J. T., Banks, W. A., & Kastin, A. J. (1997). Tumor necrosis factor-alpha: a neuromodulator in the CNS. Neuroscience and biobehavioral reviews, 21(5), 603–613.
Park, S. Y., Kang, M. J., & Han, J. S. (2018). Interleukin-1 beta promotes neuronal differentiation through the Wnt5a/RhoA/JNK pathway in cortical neural precursor cells. Molecular brain, 11(1), 39.
Parpaleix, A., Amsellem, V., Houssaini, A., Abid, S., Breau, M., Marcos, E., Sawaki, D., Delcroix, M., Quarck, R., Maillard, A., Couillin, I., Ryffel, B., & Adnot, S. (2016). Role of interleukin-1 receptor 1/MyD88 signalling in the development and progression of pulmonary hypertension. The European respiratory journal, 48(2), 470–483.
Perrier, S., Darakhshan, F., & Hajduch, E. (2006). IL-1 receptor antagonist in metabolic diseases: Dr Jekyll or Mr Hyde?. FEBS letters, 580(27), 6289–6294.
Pickard, L., Noël, J., Henley, J. M., Collingridge, G. L., & Molnar, E. (2000). Developmental changes in synaptic AMPA and NMDA receptor distribution and AMPA receptor subunit composition in living hippocampal neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience, 20(21), 7922–7931.
Purves D, Augustine GJ, Fitzpatrick D, Katz LC, LaMantia A, McNamara JO, Williams SM (2001). Voltage-Gated Ion Channels. Neuroscience (2nd ed.). Sunderland, Mass: Sinauer Associates.
Rah, S. Y., Mushtaq, M., Nam, T. S., Kim, S. H., & Kim, U. H. (2010). Generation of cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate by CD38 for Ca2+ signaling in interleukin-8-treated lymphokine-activated killer cells. The Journal of biological chemistry, 285(28), 21877–21887.
Ralay Ranaivo, H., Craft, J. M., Hu, W., Guo, L., Wing, L. K., Van Eldik, L. J., & Watterson, D. M. (2006). Glia as a therapeutic target: selective suppression of human amyloid-beta-induced upregulation of brain proinflammatory cytokine production attenuates neurodegeneration. The Journal of neuroscience : the official journal of the Society for Neuroscience, 26(2), 662–670.
Ramesh, G., Jarzembowski, L., Schwarz, Y., Poth, V., Konrad, M., Knapp, M. L., Schwär, G., Lauer, A. A., Grimm, M. O. W., Alansary, D., Bruns, D., & Niemeyer, B. A. (2021). A short isoform of STIM1 confers frequency-dependent synaptic enhancement. Cell reports, 34(11), 108844.
Rizzuto R. (2001). Intracellular Ca(2+) pools in neuronal signalling. Current opinion in neurobiology, 11(3), 306–311.
Roberto, M., Patel, R. R., & Bajo, M. (2018). Ethanol and Cytokines in the Central Nervous System. Handbook of experimental pharmacology, 248, 397–431.
Rodríguez, A., Freixes, M., Dalfó, E., Martín, M., Puig, B., & Ferrer, I. (2005). Metabotropic glutamate receptor/phospholipase C pathway: a vulnerable target to Creutzfeldt-Jakob disease in the cerebral cortex. Neuroscience, 131(4), 825–832.
Rogers, T. B., Inesi, G., Wade, R., & Lederer, W. J. (1995). Use of thapsigargin to study Ca2+ homeostasis in cardiac cells. Bioscience reports, 15(5), 341–349.
Rossi, S., Furlan, R., De Chiara, V., Motta, C., Studer, V., Mori, F., Musella, A., Bergami, A., Muzio, L., Bernardi, G., Battistini, L., Martino, G., & Centonze, D. (2012). Interleukin-1β causes synaptic hyperexcitability in multiple sclerosis. Annals of neurology, 71(1), 76–83.
Rossi, S., Motta, C., Studer, V., Macchiarulo, G., Volpe, E., Barbieri, F., Ruocco, G., Buttari, F., Finardi, A., Mancino, R., Weiss, S., Battistini, L., Martino, G., Furlan, R., Drulovic, J., & Centonze, D. (2014). Interleukin-1β causes excitotoxic neurodegeneration and multiple sclerosis disease progression by activating the apoptotic protein p53. Molecular neurodegeneration, 9, 56.
Ruiz, A., Matute, C., & Alberdi, E. (2009). Endoplasmic reticulum Ca(2+) release through ryanodine and IP(3) receptors contributes to neuronal excitotoxicity. Cell calcium, 46(4), 273–281.
Sacco, T., & Tempia, F. (2002). A-type potassium currents active at subthreshold potentials in mouse cerebellar Purkinje cells. The Journal of physiology, 543(Pt 2), 505–520.
Salussolia, C. L., Prodromou, M. L., Borker, P., & Wollmuth, L. P. (2011). Arrangement of subunits in functional NMDA receptors. The Journal of neuroscience : the official journal of the Society for Neuroscience, 31(31), 11295–11304.
Samad, T. A., Moore, K. A., Sapirstein, A., Billet, S., Allchorne, A., Poole, S., Bonventre, J. V., & Woolf, C. J. (2001). Interleukin-1beta-mediated induction of Cox-2 in the CNS contributes to inflammatory pain hypersensitivity. Nature, 410(6827), 471–475.
Sano, R., & Reed, J. C. (2013). ER stress-induced cell death mechanisms. Biochimica et biophysica acta, 1833(12), 3460–3470.
Santulli, G., & Marks, A. R. (2015). Essential Roles of Intracellular Calcium Release Channels in Muscle, Brain, Metabolism, and Aging. Current molecular pharmacology, 8(2), 206–222.
Schneider, H., Pitossi, F., Balschun, D., Wagner, A., del Rey, A., & Besedovsky, H. O. (1998). A neuromodulatory role of interleukin-1beta in the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 95(13), 7778–7783.
Shaftel, S. S., Griffin, W. S., & O'Banion, M. K. (2008). The role of interleukin-1 in neuroinflammation and Alzheimer disease: an evolving perspective. Journal of neuroinflammation, 5, 7.
Simi, A., Tsakiri, N., Wang, P., & Rothwell, N. J. (2007). Interleukin-1 and inflammatory neurodegeneration. Biochemical Society transactions, 35(Pt 5), 1122–1126.
Söderlund, J., Schröder, J., Nordin, C., Samuelsson, M., Walther-Jallow, L., Karlsson, H., Erhardt, S., & Engberg, G. (2009). Activation of brain interleukin-1beta in schizophrenia. Molecular psychiatry, 14(12), 1069–1071.
Soni, H., Kumar, R., Kanthakumar, P., & Adebiyi, A. (2021). Interleukin 1 beta-induced calcium signaling via TRPA1 channels promotes mitogen-activated protein kinase-dependent mesangial cell proliferation. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 35(7), e21729.
Strijbos, P. J., & Rothwell, N. J. (1995). Interleukin-1 beta attenuates excitatory amino acid-induced neurodegeneration in vitro: involvement of nerve growth factor. The Journal of neuroscience : the official journal of the Society for Neuroscience, 15(5 Pt 1), 3468–3474.
Sukumaran, P., Nascimento Da Conceicao, V., Sun, Y., Ahamad, N., Saraiva, L. R., Selvaraj, S., & Singh, B. B. (2021). Calcium Signaling Regulates Autophagy and Apoptosis. Cells, 10(8), 2125.
Takeda, M., Kitagawa, J., Takahashi, M., & Matsumoto, S. (2008). Activation of interleukin-1beta receptor suppresses the voltage-gated potassium currents in the small-diameter trigeminal ganglion neurons following peripheral inflammation. Pain, 139(3), 594–602.
Takemiya, T., Fumizawa, K., Yamagata, K., Iwakura, Y., & Kawakami, M. (2017). Brain Interleukin-1 Facilitates Learning of a Water Maze Spatial Memory Task in Young Mice. Frontiers in behavioral neuroscience, 11, 202.
Takemura, M., Mishima, T., Wang, Y., Kasahara, J., Fukunaga, K., Ohashi, K., & Mizuno, K. (2009). Ca2+/calmodulin-dependent protein kinase IV-mediated LIM kinase activation is critical for calcium signal-induced neurite outgrowth. The Journal of biological chemistry, 284(42), 28554–28562.
Takeuchi, O., & Akira, S. (2010). Pattern recognition receptors and inflammation. Cell, 140(6), 805–820.
Tang, D., Kang, R., Coyne, C. B., Zeh, H. J., & Lotze, M. T. (2012). PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunological reviews, 249(1), 158–175.
Taube, J. S., & Schwartzkroin, P. A. (1988). Mechanisms of long-term potentiation: EPSP/spike dissociation, intradendritic recordings, and glutamate sensitivity. The Journal of neuroscience : the official journal of the Society for Neuroscience, 8(5), 1632–1644.
Thornberry, N. A., Bull, H. G., Calaycay, J. R., Chapman, K. T., Howard, A. D., Kostura, M. J., Miller, D. K., Molineaux, S. M., Weidner, J. R., & Aunins, J. (1992). A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature, 356(6372), 768–774.
Traynelis, S. F., Wollmuth, L. P., McBain, C. J., Menniti, F. S., Vance, K. M., Ogden, K. K., Hansen, K. B., Yuan, H., Myers, S. J., & Dingledine, R. (2010). Glutamate receptor ion channels: structure, regulation, and function. Pharmacological reviews, 62(3), 405–496.
Varughese, J. T., Buchanan, S. K., & Pitt, A. S. (2021). The Role of Voltage-Dependent Anion Channel in Mitochondrial Dysfunction and Human Disease. Cells, 10(7), 1737.
Verkhratsky A. (2002). The endoplasmic reticulum and neuronal calcium signalling. Cell calcium, 32(5-6), 393–404.
Verkhratsky, A. J., & Petersen, O. H. (1998). Neuronal calcium stores. Cell calcium, 24(5-6), 333–343.
Verkhratsky, A., & Shmigol, A. (1996). Calcium-induced calcium release in neurones. Cell calcium, 19(1), 1–14.
Vezzani, A., Maroso, M., Balosso, S., Sanchez, M. A., & Bartfai, T. (2011). IL-1 receptor/Toll-like receptor signaling in infection, inflammation, stress and neurodegeneration couples hyperexcitability and seizures. Brain, behavior, and immunity, 25(7), 1281–1289.
Viviani, B., Bartesaghi, S., Gardoni, F., Vezzani, A., Behrens, M. M., Bartfai, T., Binaglia, M., Corsini, E., Di Luca, M., Galli, C. L., & Marinovich, M. (2003). Interleukin-1beta enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases. The Journal of neuroscience : the official journal of the Society for Neuroscience, 23(25), 8692–8700.
Wang, J., Ou, S. W., & Wang, Y. J. (2017). Distribution and function of voltage-gated sodium channels in the nervous system. Channels (Austin, Tex.), 11(6), 534–554.
Wang, Y., Mattson, M. P., & Furukawa, K. (2002). Endoplasmic reticulum calcium release is modulated by actin polymerization. Journal of neurochemistry, 82(4), 945–952.
Weber, A., Wasiliew, P., & Kracht, M. (2010). Interleukin-1 (IL-1) pathway. Science signaling, 3(105), cm1.
Wei, S., Qiu, C. Y., Jin, Y., Liu, T. T., & Hu, W. P. (2021). TNF-α acutely enhances acid-sensing ion channel currents in rat dorsal root ganglion neurons via a p38 MAPK pathway. Journal of neuroinflammation, 18(1), 92.
Wettschureck, N., & Offermanns, S. (2005). Mammalian G proteins and their cell type specific functions. Physiological reviews, 85(4), 1159–1204.
Wuchert, F., Ott, D., Rafalzik, S., Roth, J., & Gerstberger, R. (2009). Tumor necrosis factor-alpha, interleukin-1beta and nitric oxide induce calcium transients in distinct populations of cells cultured from the rat area postrema. Journal of neuroimmunology, 206(1-2), 44–51.
Yan, X. & Weng, H. R. (2013). Endogenous interleukin-1β in neuropathic rats enhances glutamate release from the primary afferents in the spinal dorsal horn through coupling with presynaptic N-methyl-D-aspartic acid receptors. The Journal of biological chemistry, 288(42), 30544–30557.
Yan, X., Li, F., Maixner, D. W., Yadav, R., Gao, M., Ali, M. W., Hooks, S. B., & Weng, H. R. (2019). Interleukin-1beta released by microglia initiates the enhanced glutamatergic activity in the spinal dorsal horn during paclitaxel-associated acute pain syndrome. Glia, 67(3), 482–497.
Yan, X., Liu, J., Ye, Z., Huang, J., He, F., Xiao, W., Hu, X., & Luo, Z. (2016). CaMKII-Mediated CREB Phosphorylation Is Involved in Ca2+-Induced BDNF mRNA Transcription and Neurite Outgrowth Promoted by Electrical Stimulation. PloS one, 11(9), e0162784.
Yang, S., Liu, Z. W., Wen, L., Qiao, H. F., Zhou, W. X., & Zhang, Y. X. (2005). Interleukin-1beta enhances NMDA receptor-mediated current but inhibits excitatory synaptic transmission. Brain research, 1034(1-2), 172–179.
Yaseen, M. M., Abuharfeil, N. M., & Darmani, H. (2023). The role of IL-1β during human immunodeficiency virus type 1 infection. Reviews in medical virology, 33(1), e2400.
Yasuda, R., Hayashi, Y., & Hell, J. W. (2022). CaMKII: a central molecular organizer of synaptic plasticity, learning and memory. Nature reviews. Neuroscience, 23(11), 666–682.
Yellen G. (2002). The voltage-gated potassium channels and their relatives. Nature, 419(6902), 35–42.
Yirmiya, R., Winocur, G., & Goshen, I. (2002). Brain interleukin-1 is involved in spatial memory and passive avoidance conditioning. Neurobiology of learning and memory, 78(2), 379–389.
Yoshida, S., Takahashi, M., Kadoi, J., Kitagawa, J., Saiki, C., Takeda, M., & Matsumoto, S. (2007). The functional difference between transient and sustained K+ currents on the action potentials in tetrodotoxin-resistant adult rat trigeminal ganglion neurons. Brain research, 1152, 64–74.
Yoshihara, M., Adolfsen, B., & Littleton, J. T. (2003). Is synaptotagmin the calcium sensor?. Current opinion in neurobiology, 13(3), 315–323.
Zalutsky, R. A., & Nicoll, R. A. (1990). Comparison of two forms of long-term potentiation in single hippocampal neurons. Science (New York, N.Y.), 248(4963), 1619–1624.
Zemel, B. M., Ritter, D. M., Covarrubias, M., & Muqeem, T. (2018). A-Type KV Channels in Dorsal Root Ganglion Neurons: Diversity, Function, and Dysfunction. Frontiers in molecular neuroscience, 11, 253.
Zhang, P., Bi, R. Y., & Gan, Y. H. (2018). Glial interleukin-1β upregulates neuronal sodium channel 1.7 in trigeminal ganglion contributing to temporomandibular joint inflammatory hypernociception in rats. Journal of neuroinflammation, 15(1), 117.
Zhang, R., Yamada, J., Hayashi, Y., Wu, Z., Koyama, S., & Nakanishi, H. (2008). Inhibition of NMDA-induced outward currents by interleukin-1beta in hippocampal neurons. Biochemical and biophysical research communications, 372(4), 816–820.
Zhang, W., Ye, F., Pang, N., Kessi, M., Xiong, J., Chen, S., Peng, J., Yang, L., & Yin, F. (2022). Restoration of Sarco/Endoplasmic Reticulum Ca2+-ATPase Activity Functions as a Pivotal Therapeutic Target of Anti-Glutamate-Induced Excitotoxicity to Attenuate Endoplasmic Reticulum Ca2+ Depletion. Frontiers in pharmacology, 13, 877175.
Zhou, C., Qi, C., Zhao, J., Wang, F., Zhang, W., Li, C., Jing, J., Kang, X., & Chai, Z. (2011). Interleukin-1β inhibits voltage-gated sodium currents in a time- and dose-dependent manner in cortical neurons. Neurochemical research, 36(6), 1116–1123.
Zhou, C., Tai, C., Ye, H. H., Ren, X., Chen, J. G., Wang, S. Q., & Chai, Z. (2006). Interleukin-1beta downregulates the L-type Ca2+ channel activity by depressing the expression of channel protein in cortical neurons. Journal of cellular physiology, 206(3), 799–806.
Zhou, C., Ye, H. H., Wang, S. Q., & Chai, Z. (2006). Interleukin-1beta regulation of N-type Ca2+ channels in cortical neurons. Neuroscience letters, 403(1-2), 181–185.
Zybura, A., Hudmon, A., & Cummins, T. R. (2021). Distinctive Properties and Powerful Neuromodulation of Nav1.6 Sodium Channels Regulates Neuronal Excitability. Cells, 10(7), 1595.
何祐豪 (民 108)。探討NLRP3-Caspase 1 機制在鋅離子引發大鼠初代培養神經元死亡的角色。國立臺灣大學生命科學系,臺北市。
高陵 (民 111)。研究白介素-1β刺激提升初代培養大鼠胚胎皮質神經細胞胞內鈣離子濃度的訊息途徑。國立臺灣大學生命科學系,臺北市。
曾惠群 (民 108)。探討鋅離子在多巴胺誘導對大鼠初代培養神經細胞焦亡中的影響。國立臺灣大學生命科學系,臺北市。
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88365-
dc.description.abstract介白素-1β (IL-1β) 是免疫反應的發炎前期細胞激素 (proinflammatory cytokines) 之一,且為許多神經疾病及退化的指標。IL-1β 的典型訊息路徑是與其受體蛋白 IL-1R1 結合,活化下游骨髓分化初級反應蛋白 88 (MyD88),進而透過轉錄因子 NF-κB,啟動發炎相關基因的表現。因此多數關於 IL-1β 的研究,多著重於長期處理對細胞活性的影響,但對於 IL-1β 對神經傳導的立即影響及機制則了解較少。在本篇研究中,我們利用全細胞膜片鉗技術及鈣離子螢光影像,紀錄初代培養大鼠胚胎皮質神經元受 IL-1β 刺激時的電訊號與胞內鈣離子濃度 ([Ca2+]i) 的變化。實驗結果顯示 IL-1β (10 ng/mL) 顯著地增加了自發性興奮性突觸後電流 (EPSCs) 及動作電位的頻率。將細胞預處理 IL-1R1 阻斷劑,IL-1RA (1 ng/mL) 及 MyD88 抑制劑,ST2825 (10 μM),則抑制了此頻率的增加。然而 IL-1β 處理並不影響神經細胞的靜止態維持電流 (holding current) 及靜止膜電位 (resting membrane potential);且對麩氨酸 (glutamate) 誘導的電流,亦無顯著影響。紀錄電流-電壓關係,IL-1β 可些微增加向內鈉離子電流,但不改變向外鉀離子電流。IL-1β 對電壓依賴型鈉離子通道 (Nav) 的失活態電壓 (inactivation voltage) 及從失活態恢復到活性態的時間 (recovery time) 也沒有影響。透過鈣離子螢光染劑 fura-2 紀錄 [Ca2+]i 的變化,我們發現 IL-1β濃度在 0.5-1μg/mL之間,皆可顯著地增加 [Ca2+]。 ST2825(10μM) 及 thapsigargin(3μM,使內質網鈣離子耗盡) 阻斷了此 [Ca2+]i 的增加。APV (100 μM) 與 DNQX (1 μM) 分別為 N-甲基-D-天門冬胺酸受體(NMDARs) 及 α-氨基-3-羥基-5-甲基-4-異惡唑丙酸受體 (AMPARs) 拮抗劑,處理細胞後,可抑制 IL-1β 引起的 [Ca2+]i 增加。此外,thapsigargin (3 μM) 的預處理同樣也抑制了 IL-1β 所誘導的 EPSCs 頻率上升。綜合這些結果我們認為 IL-1β 透過 IL-1R1–MyD88 訊息傳遞路徑,由胞內鈣庫釋放鈣離子,在不影響細胞膜離子通道活性狀況下,導致神經遞質釋放;透過神經突觸傳導,在神經之間正向回饋提升神經興奮性,增加 EPSCs 及動作電位的頻率。因此在神經發炎初期,尚未引起神經細胞程序性死亡機制時,IL-1β 濃度的上升,會使神經細胞更加容易興奮,進而影響神經傳導活性。zh_TW
dc.description.abstractInterleukin-1β (IL-1β) is a proinflammatory cytokine and a hallmark of many neurologic disorders, including neurodegeneration. The canonical signaling pathway of IL-1β is to activate myeloid differentiation primary response 88 (MyD88) after the binding of IL-1β to its receptor (IL-1R1), activating NF-κB to transcript inflammatory-related genes. Most studies focused on the long-term effects of IL-1β on cellular activities. However, the immediate influence of IL-1β on neurotransmission is unclear. In this study, we applied the whole-cell patch clamp technique to record the electric activities and Ca2+ fluorescence imaging to monitor the changes in the intracellular Ca2+ concentration ([Ca2+]i) from the primary cultured rat embryonic cortical neurons under IL-1β treatment. Our results show that IL-1β (10 ng/mL) significantly increases the frequency of excitatory postsynaptic currents (EPSCs) and action potentials firing. Pretreating the cultured neurons with IL-1RA (1 ng/mL), an IL-1R1 antagonist, and ST2825 (10 μM), a MyD88 inhibitor, suppressed these increments in electric activities. However, IL-1β treatment did not affect the holding current, resting membrane potential, and glutamate-evoked currents. The current-voltage curve shows that IL-1β slightly and significantly increased the inward Na+ currents when depolarized to -20 mV from a holding potential of -70 mV, but did not change the outward K+ currents. The inactivation voltage and recovery time of the voltage-gated Na+ channels showed no difference after IL-1β treatment. We then loaded the cultured neurons with fura-2, a Ca2+-sensitive fluorescence dye, to monitor the changes in [Ca2+]i. IL-1β at 0.5-1 μg/mL could significantly elevate the [Ca2+]i. ST2825 (10 μM) and thapsigargin (3 μM, to deplete intracellular Ca2+ ER stores) blocked this elevation; blocking synaptic transmission by the N-methyl-D-aspartate receptors (NMDARs) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) antagonists, APV (100 μM) and DNQX (1 μM), respectively, also suppress this [Ca2+]i increment. Moreover, pretreating the cultured neurons with thapsigargin (3 μM) inhibited the enhancement effects of IL-1β on EPSCs frequency. These results demonstrate that IL-1β facilitates the excitability of neurons by releasing Ca2+ from ER Ca2+ stores via IL-1R1–MyD88 pathway without affecting the ion channels on the cell membrane. This elevation of [Ca2+]i triggers neurotransmitter release and enhances neuron excitability resulting in positive feedback among the cultured neurons through synaptic transmission. Therefore, at the early stage of neuroinflammation, before the activation of programmed cell death, the increase in the concentration of IL-1b will enhance the neuron excitability to regulate the excitability of neuronal circuits.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-09T16:44:26Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-09T16:44:26Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
中文摘要 ii
Abstract iv
Contents vi
1. Introduction 1
1.1 Cytokines 1
1.2 Interleukin-1β (IL-1β) 2
1.3 The signaling pathway, synthesis, and release of IL-1β 3
1.4 IL-1β in the central nervous system 7
1.5 The level of IL-1β concentration in the central nervous system 8
1.6 Glutamate receptors 9
1.7 Glutamatergic neurons and excitatory postsynaptic potential 11
1.8 Membrane potential and action potential 12
1.9 Voltage-gated ion channels in neurons 13
1.10 Endoplasmic reticulum Ca2+ stores 15
1.11 Mitochondrial Ca2+ stores 17
1.12 Neuronal Ca2+ signaling 18
1.13 IL-1β regulates LTP in the hippocampus 19
1.14 IL-1β regulates VGCCs and [Ca2+]i in the neurons 20
1.15 IL-1β regulates NMDA-induced [Ca2+]i elevation in the neurons 21
1.16 Aims 23
2. Materials and Methods 25
2.1 Chemicals 25
2.2 Primary cultured rat embryonic cortical neurons 25
2.3 Electrophysiology 27
2.4 Ca2+ imaging 30
2.5 Data analysis 31
3. Results 32
3.1 Differentiation of primary cultured rat embryonic cortical neurons 32
3.2 IL-1β increases the frequency of EPSCs through the IL-1R1–MyD88 pathway 32
3.3 IL-1RA and ST2825 do not affect the characteristics of EPSCs 33
3.4 IL-1α increases the frequency of EPSCs through the IL-1R1–MyD88 pathway 34
3.5 IL-1β has no apparent effect on the EPSC amplitude 35
3.6 IL-1β has no apparent effect on the ionotropic glutamate receptor 36
3.7 IL-1β increases the APs firing rate through IL-1R1–MyD88 pathway 37
3.8 IL-1β does not significantly affect the membrane potential at the resting state 38
3.9 IL-1β has no apparent effects on the voltage-dependent inward INa and outward IK 40
3.10 IL-1β has no apparent effect on the steady-state inactivation of Nav 41
3.11 IL-1β has no apparent effect on Nav recovery from inactivation 42
3.12 High concentration of IL-1β induced [Ca2+]i in a dose-dependent manner 43
3.13 Blocking the NMDA receptors inhibits the IL-1β-induced [Ca2+]i elevation 44
3.14 Blocking the AMPA receptors inhibits the IL-1β-induced [Ca2+]i elevation 45
3.15 APV and DNQX do not affect depolarization-evoked Ca2+ response 46
3.16 AMPA/NMDA receptor ratio in primary cultured cortical neurons 47
3.17 IL-1β-induced [Ca2+]i elevation via MyD88 signaling pathway 48
3.18 ST2825 does not affect the depolarization-evoked Ca2+ response 49
3.19 Depleting ER Ca2+ stores with Tg inhibits the IL-1β-induced [Ca2+]i elevation 50
3.20 Tg does not affect the depolarization-evoked Ca2+ response 51
3.21 Depleting ER Ca2+ stores with Tg inhibits the increment in EPSCs frequency induced by IL-1β 52
3.22 Tg does not affect the characteristics of EPSCs 53
4. Discussion 54
4.1 IL-1β regulates neurotransmission 55
4.2 IL-1β regulates neurotransmission via IL-1R1–MyD88 signaling pathway 57
4.3 IL-1β, voltage-independent ion channels, and membrane potential 58
4.4 IL-1β and voltage-dependent Na+ and K+ channels 61
4.5 IL-1β regulates [Ca2+]i level in a dose-dependent manner 64
4.6 IL-1β regulates [Ca2+]i via MyD88 signaling pathway 66
4.7 IL-1β, ER Ca2+ stores, and synaptic transmission 67
4.8 IL-1β, ER Ca2+ stores, and excitotoxicity 69
4.9 The physiological effect of IL-1β on the nervous system 70
Conclusion 73
References 74
Tables 98
Table 1 Characteristics of the EPSCs before and after mock or IL-1β treatment in the presence of inhibitors 98
Table 2 Characteristics of the basal EPSCs under IL-1RA or ST2825 pre-treatment 99
Table 3 Characteristics of the EPSCs before and after IL-1α treatment in the presence of inhibitors 100
Table 4 Characteristics of the APs before and after IL-1β treatment in the presence of inhibitors 101
Table 5 Glutamate-evoked inward current, holding current, and RMP before and after mock or IL-1β treatment 102
Table 6 Properties of Nav and Kv before and after mock or IL-1β treatment 103
Table 7 Characteristics of the EPSCs with APV and DNQX treatment 104
Table 8 The Δ Ratio (F340/F380) of Ca2+ responses with different drug treatment 105
Table 9 Characteristics of the EPSCs before and after IL-1β treatment in the presence of Tg 106
Figures 107
Fig. 1 The morphology of primary cultured rat embryonic cortical neurons at different days in vitro (DIVs). 107
Fig. 2 IL-1β increases the frequency of EPSCs through the IL-1R1–MyD88 pathway in cultured cortical neurons 109
Fig. 3 IL-1RA and ST2825 do not affect the characteristics of EPSCs in cultured cortical neurons 111
Fig. 4 IL-1α increases the frequency of EPSCs through the IL-1R1–MyD88 pathway in cultured cortical neurons 113
Fig. 5 IL-1β has no apparent effect on the EPSCs amplitude in cultured cortical neurons 115
Fig. 6 Glutamate-evoked inward current with mock treatment in cultured cortical neurons 117
Fig. 7 IL-1β has no apparent effects on glutamate-evoked inward current in cultured cortical neurons 119
Fig. 8 IL-1β increases the frequency of APs firing through the IL-1R1–MyD88 pathway in cultured cortical neurons 121
Fig. 9 IL-1β has no apparent effects on the holding current at –70 mV and RMP in cultured cortical neurons 123
Fig. 10 Local puff of IL-1β does not change the holding current at –70 mV in cultured cortical neurons 125
Fig. 11 Voltage-dependent-inward INa and outward IK current with mock treatment in cultured cortical neurons 127
Fig. 12 IL-1β has no apparent effects on the voltage-dependent inward INa and outward IK current in cultured cortical neurons 129
Fig. 13 IL-1β has no apparent effects on the steady-state inactivation of Nav in cultured cortical neurons 131
Fig. 14 IL-1β has no apparent effects on the Nav recovery from inactivation in cultured cortical neurons 133
Fig. 15 High concentration of IL-1β induces [Ca2+]i elevation in a dose-dependent manner in cultured cortical neurons 135
Fig. 16 Blocking NMDA receptor inhibits the IL-1β-induced [Ca2+]i elevation in cultured cortical neurons 137
Fig. 17 Blocking AMPA receptor inhibits the IL-1β-induced [Ca2+]i elevation in cultured cortical neurons 139
Fig. 18 KCl- and Glutamate-inducing [Ca2+]i elevation with APV and DNQX treatment in cultured cortical neurons 141
Fig. 19 AMPA/NMDA receptor ratio in primary cultured cortical neurons 143
Fig. 20 IL-1β induces [Ca2+]i elevation through MyD88 pathway in cultured cortical neurons 145
Fig. 21 KCl-inducing [Ca2+]i elevation with ST2825 treatment in cultured cortical neurons 147
Fig. 22 Depleting ER Ca2+ stores with Tg inhibits the IL-1β-induced [Ca2+]i elevation in cultured cortical neurons 149
Fig. 23 DHPG-inducing [Ca2+]i elevation with Tg treatment in cultured cortical neurons 151
Fig. 24 Depleting ER Ca2+ stores with Tg treatment inhibits the increment in EPSCs frequency induced by IL-1β in cultured cortical neurons 153
Fig. 25 Tg does not affect the characteristics of EPSCs in cultured cortical neurons 155
Fig. 26 Summary figure 157
-
dc.language.isoen-
dc.subject胞內鈣庫zh_TW
dc.subject興奮性突觸後電流zh_TW
dc.subject電壓依賴型鈉離子通道zh_TW
dc.subject神經發炎zh_TW
dc.subject介白素-1βzh_TW
dc.subject神經傳遞zh_TW
dc.subject骨髓分化初級反應蛋白 88zh_TW
dc.subjectvoltage-gated Na+ channelsen
dc.subjectexcitatory postsynaptic currentsen
dc.subjectinterleukin-1βen
dc.subjectintracellular Ca2+ storesen
dc.subjectmyeloid differentiation primary response 88en
dc.subjectneuroinflammationen
dc.subjectneurotransmissionen
dc.title介白素-1β 於初代培養大鼠胚胎皮質神經元中透過 IL-1R1–MyD88 訊息傳遞路徑增強神經傳導zh_TW
dc.titleInterleukin-1β Enhances Neurotransmission via IL-1R1– MyD88 Signaling Pathway in Primary Cultured Rat Embryonic Cortical Neuronsen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張芳嘉;湯志永;江皓森zh_TW
dc.contributor.oralexamcommitteeFang-Chia Chang;Chih-Yung Tang;Hao-Sen Chiangen
dc.subject.keyword興奮性突觸後電流,介白素-1β,胞內鈣庫,骨髓分化初級反應蛋白 88,神經發炎,神經傳遞,電壓依賴型鈉離子通道,zh_TW
dc.subject.keywordexcitatory postsynaptic currents,interleukin-1β,intracellular Ca2+ stores,myeloid differentiation primary response 88,neuroinflammation,neurotransmission,voltage-gated Na+ channels,en
dc.relation.page157-
dc.identifier.doi10.6342/NTU202301985-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-07-26-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生命科學系-
dc.date.embargo-lift2028-07-24-
顯示於系所單位:生命科學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
57.78 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved