請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88364完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王永松 | zh_TW |
| dc.contributor.advisor | Yung-Song Wang | en |
| dc.contributor.author | 王睦翔 | zh_TW |
| dc.contributor.author | Mu-Hsiang Wang | en |
| dc.date.accessioned | 2023-08-09T16:44:09Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-09 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-27 | - |
| dc.identifier.citation | Adams, N. L. (2001). UV radiation evokes negative phototaxis and covering behavior in the sea urchin Strongylocentrotus droebachiensis. Marine Ecology Progress Series, 213, 87-95.
Bapary, M. A. J., Amin, M. N., Takeuchi, Y., & Takemura, A. (2011). The stimulatory effects of long wavelengths of light on the ovarian development in the tropical damselfish, Chrysiptera cyanea. Aquaculture, 314(1-4), 188-192. Bonham, K., & Held, E. E. (1963). Ecological observations on the sea cucumbers Holothuria atra and H. leucospilota at Rongelap Atoll, Marshall Islands. Chao, S.-M., & Wu, S.-C. (2015). Response of the sea cucumber Holothuria cinerascens to the predatory gastropod Tonna perdix. Platax, 2015, 81-88. Chesher, R. H. (1969). Destruction of Pacific corals by the sea star Acanthaster planci. Science, 165(3890), 280-283. Choi, C. Y., Shin, H. S., Choi, Y. J., Kim, N. N., Lee, J., & Kil, G.-S. (2012). Effect of LED light spectra on starvation-induced oxidative stress in the cinnamon clownfish Amphiprion melanopus. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 163(3-4), 357-363. Crook, A. C., Verling, E., & Barnes, D. K. (1999). Comparative study of the covering reaction of the purple sea urchin, Paracentrotus lividus, under laboratory and field conditions. Journal of the Marine Biological Association of the United Kingdom, 79(6), 1117-1121. de Dios, H. H., & Sotto, F. (2014). Phototactic behavior of crown-of-thorns starfish, Acanthaster planci (Linnaeus, 1758) to different light spectra. Journal of Science, Engineering and Technology (JSET), 2, 1-16. Delroisse, J., Lanterbecq, D., Eeckhaut, I., Mallefet, J., & Flammang, P. (2013). Opsin detection in the sea urchin Paracentrotus lividus and the sea star Asterias rubens. Cah Biol Mar, 54(4), 721-727. Dong, G., Dong, S., Wang, F., & Tian, X. (2010). Effects of light intensity on daily activity rhythm of juvenile sea cucumber, Apostichopus japonicus (Selenka). Aquaculture Research, 41(11), 1640-1647. Dumont, C. P., Drolet, D., Deschênes, I., & Himmelman, J. H. (2007). Multiple factors explain the covering behaviour in the green sea urchin, Strongylocentrotus droebachiensis. Animal Behaviour, 73(6), 979-986. Hamel, J. F., & Mercier, A. (2000). Cuvierian tubules in tropical holothurians: usefulness and efficiency as a defence mechanism. Marine & Freshwater Behaviour & Phy, 33(2), 115-139. Hecht, S., Shlaer, S., & Pirenne, M. H. (1942). Energy, quanta, and vision. The Journal of general physiology, 25(6), 819-840. Hou, S., Jin, Z., Jiang, W., Chi, L., Xia, B., & Chen, J. (2019). Physiological and immunological responses of sea cucumber Apostichopus japonicus during desiccation and subsequent resubmersion. PeerJ, 7, e7427. Hsieh, Y.-J., Ho, Y.-S., & Wang, Y.-S. (2023). Illumination of different light wavelengths on growth performance and physiological response of juvenile sweetfish, Plecoglossus altivelis. Aquaculture Reports, 30, 101569. Ichihashi, M., Ueda, M., Budiyanto, A., Bito, T., Oka, M., Fukunaga, M., Tsuru, K., & Horikawa, T. (2003). UV-induced skin damage. Toxicology, 189(1-2), 21-39. Jiang, J., Zhao, Z., Pan, Y., Dong, Y., Gao, S., Li, S., Wang, C., Yang, H., Lin, S., & Zhou, Z. (2019). Gender specific differences of immune competence in the sea cucumber Apostichopus japonicus before and after spawning. Fish & Shellfish Immunology, 90, 73-79. Kühnhold, H., Kamyab, E., Novais, S., Indriana, L., Kunzmann, A., Slater, M., & Lemos, M. (2017). Thermal stress effects on energy resource allocation and oxygen consumption rate in the juvenile sea cucumber, Holothuria scabra (Jaeger, 1833). Aquaculture, 467, 109-117. l’Eclairage, C. I. d. (2017). Colorimetry for Display Technologies (17-21-039). CIE Standard No. 17-21-039 Lee, S., Ferse, S. C., Ford, A., Wild, C., & Mangubhai, S. (2017). Effect of sea cucumber density on the health of reef-flat sediments. In. Wildlife Conservation Society. Li, Y.-Y., Su, F.-J., Hsieh, Y.-J., Huang, T.-C., & Wang, Y.-S. (2021). Embryo Development and Behavior in Sea Urchin (Tripneustes gratilla) Under Different Light Emitting Diodes Condition. Frontiers in Marine Science, 8, 785. Lin, C., Zhang, L., Liu, S., Gao, S., Xu, Q., & Yang, H. (2013). A comparison of the effects of light intensity on movement and growth of albino and normal sea cucumbers (Apostichopus japonicus Selenka). Marine and Freshwater Behaviour and Physiology, 46(6), 351-366. Liu, S.-S., Hu, M.-L., & Ko, W.-C. (2002). Isolation of proteoglycan from sea cucumber and investigation of its biological activities. Fisheries science, 68(sup2), 1645-1646. Liu, X., Chenggang, L., Sun, L., Liu, S., Sun, J., & Yang, H. (2020). Behavioural response of different epithelial tissues of sea cucumber (Apostichopus japonicus) to light and differential expression of the light-related gene Pax6. Marine and Freshwater Behaviour and Physiology, 53(2), 73-85. McCree, K. J. (1971). The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agricultural Meteorology, 9, 191-216. Mercier, A., Battaglene, S. C., & Hamel, J.-F. (1999). Daily burrowing cycle and feeding activity of juvenile sea cucumbers Holothuria scabra in response to environmental factors. Journal of Experimental Marine Biology and Ecology, 239(1), 125-156. Millott, N., & Yoshida, M. (1956). Reactions to shading in the sea urchin, Psammechinus miliaris (Gmelin). Nature, 178(4545), 1300-1300. Montalenti, G. (1958). The Invertebrates, Vol 4, Echinodermata - Hyman,Lh. Scientia, 93(7), 196-197. <Go to ISI>://WOS:A1958CLH0500006 Palomar-Abesamis, N., Juinio-Meñez, M. A., & Slater, M. J. (2018). Effects of light and microhabitat on activity pattern and behaviour of wild and hatchery-reared juveniles of Stichopus cf. horrens. Journal of the Marine Biological Association of the United Kingdom, 98(7), 1703-1713. Pei, S., Dong, S., Wang, F., Tian, X., & Gao, Q. (2012). Effects of density on variation in individual growth and differentiation in endocrine response of Japanese sea cucumber (Apostichopus japonicus Selenka). Aquaculture, 356, 398-403. Purcell, S. W., Conand, C., Uthicke, S., & Byrne, M. (2016). Ecological roles of exploited sea cucumbers. In Oceanography and marine biology (pp. 375-394). CRC Press. Rieke, F., & Baylor, D. A. (1998). Single-photon detection by rod cells of the retina. Reviews of Modern Physics, 70(3), 1027. Sanvicente-Anorve, L., Solis-Marin, F. A., Solis-Weiss, V., & Lemus-Santana, E. (2017). Population density and spatial arrangement of two holothurian species in a coral reef system: is clumping behaviour an anti-predatory strategy. Cahiers de Biologie Marine, 58(11), 307-315. Schachtner, J., Bayer, P., & von Wangelin, A. J. (2016). A flow reactor setup for photochemistry of biphasic gas/liquid reactions. Beilstein Journal of Organic Chemistry, 12(1), 1798-1811. Shany-Kdoshim, S., Polak, D., Houri-Haddad, Y., & Feuerstein, O. (2019). Killing mechanism of bacteria within multi-species biofilm by blue light. Journal of oral microbiology, 11(1), 1628577. Soltani, M., Parivar, K., Baharara, J., Kerachian, M. A., & Asili, J. (2014). Hemolytic and cytotoxic properties of saponin purified from Holothuria leucospilota sea cucumber. Reports of biochemistry & molecular biology, 3(1), 43. Sun, J., Zheng, J., Wang, Y., Yang, S., & Yang, J. (2022). The exogenous autophagy inducement alleviated the sea cucumber (Stichopus japonicus) autolysis with exposure to stress stimuli of ultraviolet light. Journal of the Science of Food and Agriculture, 102(8), 3416-3424. Syahputra, G., Hariyatun, H., Firdaus, M., & Santoso, P. (2021). Extraction and Characterization of Collagen from Sand Sea Cucumber (Holothuria scabra). Jurnal Ilmu Pertanian Indonesia(00). Tan, J., Li, F., Sun, H., Gao, F., Yan, J., Gai, C., Chen, A., & Wang, Q. (2015). Mechanical stress induces neuroendocrine and immune responses of sea cucumber (Apostichopus japonicus). Journal of Ocean University of China, 14(2), 350-356. Tan, J., Sun, X., Gao, F., Sun, H., Chen, A., Gai, C., & Yan, J. (2016). Immune responses of the sea cucumber Apostichopus japonicus to stress in two different transport systems. Aquaculture Research, 47(7), 2114-2122. Ullrich-Lüter, E. M., Dupont, S., Arboleda, E., Hausen, H., & Arnone, M. I. (2011). Unique system of photoreceptors in sea urchin tube feet. Proceedings of the National Academy of Sciences, 108(20), 8367-8372. Xie, X., Yang, M., Sun, J., Zhang, T., Zhou, Z., Wang, Q., Zhang, L., & Yang, H. (2019). Quality evaluation of indoor‐and outdoor‐cultured sea cucumber (Apostichopus japonicus) seedlings: Insight from survival and immune performance in response to combined stress of hyperthermia and hyposalinity. Aquaculture Research, 50(12), 3673-3683. Yamaguchi, M., Masuda, R., & Yamashita, Y. (2018). Phototaxis, thigmotaxis, geotaxis, and response to turbulence of sea cucumber Apostichopus japonicus juveniles. Fisheries science, 84(1), 33-39. Yang, J.-F., Gao, R.-C., Wu, H.-T., Li, P.-F., Hu, X.-S., Zhou, D.-Y., Zhu, B.-W., & Su, Y.-C. (2015). Analysis of apoptosis in ultraviolet-induced sea cucumber (Stichopus japonicus) melting using terminal deoxynucleotidyl-transferase-mediated dUTP nick end-labeling assay and cleaved caspase-3 immunohistochemistry. Journal of agricultural and food chemistry, 63(43), 9601-9608. Yang, M., Li, X., Hu, F., Ning, Y., Tian, R., Ding, P., Chi, X., Huang, X., Zuo, R., & Chang, Y. (2022). Effects of handling stresses on fitness related behaviors of small sea cucumbers Apostichopus japonicus: New insights into seed production. Aquaculture, 546, 737321. Yeh, N., Yeh, P., Shih, N., Byadgi, O., & Cheng, T. C. (2014). Applications of light-emitting diodes in researches conducted in aquatic environment. Renewable and Sustainable Energy Reviews, 32, 611-618. Yu, Z., Luo, P., Liu, W., Huang, W., & Hu, C. (2018). Influence of water temperature on physiological performance of the sea cucumber Holothuria moebii. Aquaculture Research, 49(11), 3595-3600. Yu, Z., Qi, Z., Hu, C., Liu, W., & Huang, H. (2013). Effects of salinity on ingestion, oxygen consumption and ammonium excretion rates of the sea cucumber Holothuria leucospilota. Aquaculture Research, 44(11), 1760-1767. Zaenuri, M., Anggoro, S., & Kusumaningrum, H. P. S. (2016). Nutritional value of sea cucumber [Paracaudina australis (Semper, 1868)]. Aquatic Procedia, 7, 271-276. Zou, Y., Peng, Z., Wang, W., Liang, S., Song, C., Wang, L., Wu, Z., Wu, Q., Tan, X., & You, F. (2022). The stimulation effects of green light on the growth, testicular development and stress of olive flounder Paralichthys olivaceus. Aquaculture, 546, 737275. 趙世民. (1998). 臺灣礁岩海岸的海參. 臺中市:國立自然科學博物館. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88364 | - |
| dc.description.abstract | 海洋環境因子如光照、溫度、海流、棲地和鹽度等會影響海參行為及生理反應,進而造成其不同生長表現。在實驗室環境下,本研究利用不同可見光光譜對海參(Holothuria sp.)觀察其尋找遮蔽物、趨光性和明暗棲地環境之偏好選擇等行為反應,以及是否造成生理上之免疫緊迫,如耗氧率、體腔液細胞吞噬作用和呼吸樹組織損傷觀察。在研究中利用三組LED光源,分別為紅光(波長: 630 nm)、藍光(波長: 450 nm)和白光(波長: 400-750 nm)來進行行為實驗。在藍光和白光照射下,海參傾向尋找遮蔽物躲藏;三種光源在相同距離下,藍光引發海參最強的負趨光性,其次為白光,而紅光則沒有明顯的反應;在明暗棲地偏好選擇實驗中,藍光和白光光譜對大部分海參個體的偏好選擇行為產生了干擾;實驗透過測量不同光波長照明距離下的平均光通量密度(mean photon flux density)值,發現每組海參個體分別為遠離特定波長光源而產生負趨光行為後,直至在光通量密度接近57 μmol s-1 m-2的區域時才減緩其移動行為;反觀紅光組之個體幾乎無移動行為發生,但如果提升紅光組的光通量後,海參個體則明顯產生負趨光行為。所以不同光波長之光照對於海參的移動行為可能是由其光譜所含光子數目之多寡有關。在生理實驗當中,藍光組之海參相對紅光組表現出更高的氧氣消耗率;然而在體腔液細胞吞噬活性試驗中,藍光組和紅光組之間沒有顯著差異;呼吸樹組織切片結果顯示藍光組在實驗第1和2小時結締組織比控制組薄,但在第6小時回復,且呼吸樹組織在所有實驗組別中都無明顯破損。本篇研究結果表明,海參會躲避藍光和白光,而藍光和白光光譜引起的負趨光行為可能是由海參表皮上感光受器在一定的時間和面積中接收的光子數量刺激所致。同時,實驗在生理方面上並未發現短時間的藍光或紅光譜照射明顯對海參造成緊迫或呼吸樹的損傷。 | zh_TW |
| dc.description.abstract | Marine environmental factors such as light, temperature, water currents, habitat, and salinity can influence the behavior and physiological responses of sea cucumbers, consequently resulting in different growth performances. This study investigated the effects of different visible light spectra on the behavior and physiological responses of sea cucumbers (Holothuria sp.). The sea cucumbers were first divided into three groups (red LED: 630 nm wavelength; blue LED: 450 nm; white LED: 400-750 nm) to conduct a series of behavioral experiments. Under blue LED and white LED illumination, the sea cucumbers exhibited shelter-seeking behavior. The phototaxis experiment found that the blue LED light elicited the strongest negative phototaxis, followed by the white LED, while the red LED light elicited no obvious response. In the bottom zone preference experiment, blue LED and white LED illumination affected the bottom preference behaviors of some individuals. By measuring the mean photon flux density (MPFD) values at different illumination distances, the individuals in each group tended to stop moving at a similar MPFD value of 57 μmol s-1 m-2. However, when the photon flux of red LED was raised, individuals of the red LED group exhibited negative phototaxis. Next, we examined the physiological effects of red LED and blue LED illumination on sea cucumbers. Interestingly, the blue LED group exhibited higher oxygen consumption rates and thinner connective tissue in the respiratory tree during the early stage of the experiment. In contrast, no significant differences in coelomocyte phagocytosis were observed between the blue LED and red LED groups. Our findings suggested that the behaviors and physiological responses elicited by the blue or white LED light are likely caused by the number of photons in a specific time and area received by photoreceptors on the integument of sea cucumbers. Furthermore, neither long- nor short-wavelength spectra caused significant stress or damage to sea cucumbers in this study. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-09T16:44:09Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-09T16:44:09Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 中文摘要 ii
Abstract iii 目錄 v 表目錄 viii 圖目錄 ix 第一章 前言 1 1.1海參的環境角色 1 1.3光線對棘皮動物的行為之影響 2 1.4紫外光對海參的影響 3 1.5海參的分布與生態習性 4 1.6研究動機 4 第二章 材料方法 5 2.1實驗動物處理與採樣 5 2.2海參品種鑑定 6 2.3 LED燈具 6 2.4遮蔽行為 7 2.5趨光行為 7 2.6黑白底選擇行為 7 2.7不同波長光通量密度的刺激行為 8 2.7.1平均光通量密度 9 2.7.2位置分布機率 9 2.7.3移動速度 10 2.8不同光波長相同光通量密度下的海參趨光行為 10 2.9氧氣消耗率 11 2.10細胞吞噬活性試驗 11 2.11呼吸樹組織切片和H&E染色 12 2.12統計分析 13 笫三章 實驗結果 14 3.1海參品種鑑定 14 3.2不同光源對於海參遮蔽行為的影響 14 3.3不同光源對於海參趨光性的影響 14 3.4不同光源對於海參黑白底選擇的影響 15 3.5不同波長的光通量密度的刺激行為 15 3.5.1平均分布機率與平均光通量密度 15 3.5.2移動速度 16 3.6不同光波長相同光通量密度下的海參趨光性 17 3.7氧氣消耗率與細胞吞噬活性試驗 17 3.8呼吸樹組織切片 18 第四章 討論 19 4.1光譜對海參遮蔽和趨光行為的影響 19 4.2光譜對海參黑白底選擇行為的影響 20 4.3不同可見光光譜之光通量密度對海參趨光行為的影響 21 4.4光譜對海參生理的影響 22 第五章 結論 24 參考文獻 25 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 趨光性 | zh_TW |
| dc.subject | 遮蔽行為 | zh_TW |
| dc.subject | 光譜 | zh_TW |
| dc.subject | 光通量密度 | zh_TW |
| dc.subject | 海參 | zh_TW |
| dc.subject | phototaxis | en |
| dc.subject | photon flux density | en |
| dc.subject | sea cucumbers | en |
| dc.subject | sheltering behavior | en |
| dc.subject | light spectrum | en |
| dc.title | 不同波長可見光譜對海參行為及生理影響之探討 | zh_TW |
| dc.title | Effects of different visible light spectrums on the behavior and physiology of Holothuria sp. | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 劉莉蓮;陳德豪;曾登裕 | zh_TW |
| dc.contributor.oralexamcommittee | Li-Lian Liu;Te-Hao Chen;Deng-Yu Tseng | en |
| dc.subject.keyword | 海參,光通量密度,趨光性,光譜,遮蔽行為, | zh_TW |
| dc.subject.keyword | sea cucumbers,photon flux density,phototaxis,light spectrum,sheltering behavior, | en |
| dc.relation.page | 47 | - |
| dc.identifier.doi | 10.6342/NTU202302069 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-07-28 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 漁業科學研究所 | - |
| 顯示於系所單位: | 漁業科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 2.33 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
