Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88360
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐尚德zh_TW
dc.contributor.advisorShang-Te Danny Hsuen
dc.contributor.author蔡淯璽zh_TW
dc.contributor.authorYu-Xi Tsaien
dc.date.accessioned2023-08-09T16:43:05Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-09-
dc.date.issued2023-
dc.date.submitted2023-07-24-
dc.identifier.citation(1) Zhao, X.; Ding, Y.; Du, J.; Fan, Y. 2020 update on human coronaviruses: One health, one world. Med Nov Technol Devices 2020, 8, 100043. DOI: 10.1016/j.medntd.2020.100043.
(2) Sturman, L. S.; Holmes, K. V. The Molecular Biology of Coronaviruses. In Advances in Virus Research, Lauffer, M. A., Maramorosch, K. Eds.; Vol. 28; Academic Press, 1983; pp 35-112.
(3) Liu, D. X.; Liang, J. Q.; Fung, T. S. Human Coronavirus-229E, -OC43, -NL63, and -HKU1 (Coronaviridae). In Encyclopedia of Virology, 2021; pp 428-440.
(4) Jiang, S.; Hillyer, C.; Du, L. Neutralizing Antibodies against SARS-CoV-2 and Other Human Coronaviruses. (1471-4981 (Electronic)). From 2020 May.
(5) Millet, J. K.; Jaimes, J. A.; Whittaker, G. R. Molecular diversity of coronavirus host cell entry receptors. FEMS Microbiol Rev 2021, 45 (3). DOI: 10.1093/femsre/fuaa057.
(6) Gui, M.; Song, W.; Zhou, H.; Xu, J.; Chen, S.; Xiang, Y.; Wang, X. Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding. Cell Res 2017, 27 (1), 119-129. DOI: 10.1038/cr.2016.152.
(7) Pallesen, J.; Wang, N.; Corbett, K. S.; Wrapp, D.; Kirchdoerfer, R. N.; Turner, H. L.; Cottrell, C. A.; Becker, M. M.; Wang, L.; Shi, W.; et al. Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen. Proc Natl Acad Sci U S A 2017, 114 (35), E7348-E7357. DOI: 10.1073/pnas.1707304114.
(8) Yang, T.-J.; Yu, P.-Y.; Chang, Y.-C.; Chang, N.-E.; Tsai, Y.-X.; Liang, K.-H.; Draczkowski, P.; Lin, B.; Wang, Y.-S.; Chien, Y.-C.; et al. Structure-activity relationships of B.1.617 and other SARS-CoV-2 spike variants. bioRxiv 2021, 2021.2009.2012.459978. DOI: 10.1101/2021.09.12.459978.
(9) Kirchdoerfer, R. N.; Cottrell, C. A.; Wang, N.; Pallesen, J.; Yassine, H. M.; Turner, H. L.; Corbett, K. S.; Graham, B. S.; McLellan, J. S.; Ward, A. B. Pre-fusion structure of a human coronavirus spike protein. Nature 2016, 531 (7592), 118-121. DOI: 10.1038/nature17200.
(10) Zhang, K.; Li, S.; Pintilie, G.; Chmielewski, D.; Schmid, M. F.; Simmons, G.; Jin, J.; Chiu, W. A 3.4-A cryo-electron microscopy structure of the human coronavirus spike trimer computationally derived from vitrified NL63 virus particles. QRB Discov 2020, 1, e11. DOI: 10.1017/qrd.2020.16.
(11) Song, X.; Shi, Y.; Ding, W.; Niu, T.; Sun, L.; Tan, Y.; Chen, Y.; Shi, J.; Xiong, Q.; Huang, X.; et al. Cryo-EM analysis of the HCoV-229E spike glycoprotein reveals dynamic prefusion conformational changes. Nat Commun 2021, 12 (1), 141. DOI: 10.1038/s41467-020-20401-y.
(12) Wang, C.; Hesketh, E. L.; Shamorkina, T. M.; Li, W.; Franken, P. J.; Drabek, D.; van Haperen, R.; Townend, S.; van Kuppeveld, F. J. M.; Grosveld, F.; et al. Antigenic structure of the human coronavirus OC43 spike reveals exposed and occluded neutralizing epitopes. Nat Commun 2022, 13 (1), 2921. DOI: 10.1038/s41467-022-30658-0.
(13) Tang, T.; Bidon, M.; Jaimes, J. A.; Whittaker, G. R.; Daniel, S. Coronavirus membrane fusion mechanism offers a potential target for antiviral development. Antiviral Res 2020, 178, 104792. DOI: 10.1016/j.antiviral.2020.104792.
(14) Mina-Osorio, P. The moonlighting enzyme CD13: old and new functions to target. Trends in molecular medicine 2008, 14 (8), 361-371.
(15) Chen, L.; Lin, Y.-L.; Peng, G.; Li, F. Structural basis for multifunctional roles of mammalian aminopeptidase N. 2012, 109 (44), 17966-17971. DOI: doi:10.1073/pnas.1210123109.
(16) Wong, A. H.; Zhou, D.; Rini, J. M. The X-ray crystal structure of human aminopeptidase N reveals a novel dimer and the basis for peptide processing. The Journal of biological chemistry 2012, 287 (44), 36804-36813. DOI: 10.1074/jbc.M112.398842
(17) Lipscomb, W. N.; Sträter, N. Recent advances in zinc enzymology. Chemical Reviews 1996, 96 (7), 2375-2434.
(18) Lu, C.; Amin, M. A.; Fox, D. A. CD13/Aminopeptidase N Is a Potential Therapeutic Target for Inflammatory Disorders. J Immunol 2020, 204 (1), 3-11. DOI: 10.4049/jimmunol.1900868
(19) Breitling, J.; Aebi, M. N-linked protein glycosylation in the endoplasmic reticulum. Cold Spring Harb Perspect Biol 2013, 5 (8), a013359. DOI: 10.1101/cshperspect.a013359.
(20) Vembar, S. S.; Brodsky, J. L. One step at a time: endoplasmic reticulum-associated degradation. Nat Rev Mol Cell Biol 2008, 9 (12), 944-957. DOI: 10.1038/nrm2546.
(21) Gecht, M.; von Bülow, S.; Penet, C.; Hummer, G.; Hanus, C.; Sikora, M. GlycoSHIELD: a versatile pipeline to assess glycan impact on protein structures. bioRxiv 2022, 2021.2008.2004.455134. DOI: 10.1101/2021.08.04.455134.
(22) Yewdell, J. W. Antigenic drift: Understanding COVID-19. Immunity 2021, 54 (12), 2681-2687. DOI: 10.1016/j.immuni.2021.11.016
(23) Moeller, N. H.; Shi, K.; Demir, Ö.; Belica, C.; Banerjee, S.; Yin, L.; Durfee, C.; Amaro, R. E.; Aihara, H. Structure and dynamics of SARS-CoV-2 proofreading exoribonuclease ExoN. Proc. Natl. Acad. Sci. U. S. A. 2022, 119 (9), e2106379119.
(24) Sanjuán, R.; Nebot, M. R.; Chirico, N.; Mansky, L. M.; Belshaw, R. Viral mutation rates. Journal of virology 2010, 84 (19), 9733-9748.
(25) Jenkins, G. M.; Rambaut, A.; Pybus, O. G.; Holmes, E. C. Rates of molecular evolution in RNA viruses: a quantitative phylogenetic analysis. Journal of molecular evolution 2002, 54, 156-165.
(26) Drake, J. W.; Holland, J. J. Mutation rates among RNA viruses. Proc. Natl. Acad. Sci. U. S. A. 1999, 96 (24), 13910-13913.
(27) Chan, J. F.; To, K. K.; Tse, H.; Jin, D. Y.; Yuen, K. Y. Interspecies transmission and emergence of novel viruses: lessons from bats and birds. Trends Microbiol 2013, 21 (10), 544-555. DOI: 10.1016/j.tim.2013.05.005
(28) Yuan, M.; Huang, D.; Lee, C.-C. D.; Wu, N. C.; Jackson, A. M.; Zhu, X.; Liu, H.; Peng, L.; van Gils, M. J.; Sanders, R. W.; et al. Structural and functional ramifications of antigenic drift in recent SARS-CoV-2 variants. Science 2021, 373 (6556), 818-823. DOI: doi:10.1126/science.abh1139.
(29) Hamre, D.; Procknow, J. J. J. P. o. t. s. f. e. b.; medicine. A new virus isolated from the human respiratory tract. 1966, 121 (1), 190-193.
(30) Eguia, R. T.; Crawford, K. H. D.; Stevens-Ayers, T.; Kelnhofer-Millevolte, L.; Greninger, A. L.; Englund, J. A.; Boeckh, M. J.; Bloom, J. D. A human coronavirus evolves antigenically to escape antibody immunity. PLoS Pathog 2021, 17 (4), e1009453. DOI: 10.1371/journal.ppat.1009453
(31) Xiang, J.; Su, J.; Lan, Q.; Zhao, W.; Zhou, Y.; Xu, Y.; Niu, J.; Xia, S.; Qi, Q.; Sidhu, S.; et al. Antigenic mapping reveals sites of vulnerability on α-HCoV spike protein. Communications Biology 2022, 5 (1), 1179. DOI: 10.1038/s42003-022-04160-8.
(32) Marabotti, A.; Del Prete, E.; Scafuri, B.; Facchiano, A. Performance of Web tools for predicting changes in protein stability caused by mutations. BMC Bioinformatics 2021, 22 (7), 345. DOI: 10.1186/s12859-021-04238-w.
(33) Laimer, J.; Hofer, H.; Fritz, M.; Wegenkittl, S.; Lackner, P. MAESTRO - multi agent stability prediction upon point mutations. BMC Bioinformatics 2015, 16 (1), 116. DOI: 10.1186/s12859-015-0548-6.
(34) Savojardo, C.; Fariselli, P.; Martelli, P. L.; Casadio, R. INPS-MD: a web server to predict stability of protein variants from sequence and structure. Bioinformatics (Oxford, England) 2016, 32 (16), 2542-2544. DOI: 10.1093/bioinformatics/btw192 %J Bioinformatics (acccessed 11/23/2022).
(35) Fariselli, P.; Martelli, P. L.; Savojardo, C.; Casadio, R. INPS: predicting the impact of non-synonymous variations on protein stability from sequence. Bioinformatics (Oxford, England) 2015, 31 (17), 2816-2821. DOI: 10.1093/bioinformatics/btv291 %J Bioinformatics (acccessed 11/23/2022).
(36) Montanucci, L.; Capriotti, E.; Frank, Y.; Ben-Tal, N.; Fariselli, P. DDGun: an untrained method for the prediction of protein stability changes upon single and multiple point variations. BMC Bioinformatics 2019, 20 (14), 335. DOI: 10.1186/s12859-019-2923-1.
(37) Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F. T.; de Beer, T. A. P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 2018, 46 (W1), W296-w303. DOI: 10.1093/nar/gky427
(38) Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Meng, E. C.; Couch, G. S.; Croll, T. I.; Morris, J. H.; Ferrin, T. E. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Prot. Sci. 2021, 30 (1), 70-82. DOI: 10.1002/pro.3943
(39) Yang, T.-J.; Yu, P.-Y.; Chang, Y.-C.; Liang, K.-H.; Tso, H.-C.; Ho, M.-R.; Chen, W.-Y.; Lin, H.-T.; Wu, H.-C.; Hsu, S.-T. D. Effect of SARS-CoV-2 B.1.1.7 mutations on spike protein structure and function. Nat. Struc. Mol. Biol. 2021, 28 (9), 731-739. DOI: 10.1038/s41594-021-00652-z.
(40) Zheng, S. Q.; Palovcak, E.; Armache, J.-P.; Verba, K. A.; Cheng, Y.; Agard, D. A. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nature Methods 2017, 14 (4), 331-332. DOI: 10.1038/nmeth.4193.
(41) Punjani, A.; Rubinstein, J. L.; Fleet, D. J.; Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nature Methods 2017, 14 (3), 290-296. DOI: 10.1038/nmeth.4169.
(42) Punjani, A.; Zhang, H.; Fleet, D. J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nature Methods 2020, 17 (12), 1214-1221. DOI: 10.1038/s41592-020-00990-8.
(43) Liebschner, D.; Afonine, P. V.; Baker, M. L.; Bunkoczi, G.; Chen, V. B.; Croll, T. I.; Hintze, B.; Hung, L.-W.; Jain, S.; McCoy, A. J.; et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D 2019, 75 (10), 861-877. DOI: doi:10.1107/S2059798319011471.
(44) Li, Z.; Tomlinson, A. C. A.; Wong, A. H. M.; Zhou, D.; Desforges, M.; Talbot, P. J.; Benlekbir, S.; Rubinstein, J. L.; Rini, J. M. The human coronavirus HCoV-229E S-protein structure and receptor binding. eLife 2019, 8, e51230. DOI: 10.7554/eLife.51230.
(45) Emsley, P.; Cowtan, K. J. A. c. s. D. b. c. Coot: model-building tools for molecular graphics. 2004, 60 (12), 2126-2132.
(46) Croll, T. I. J. A. C. S. D. S. B. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. 2018, 74 (6), 519-530.
(47) Jo, S.; Kim, T.; Iyer, V. G.; Im, W. J. J. o. c. c. CHARMM‐GUI: a web‐based graphical user interface for CHARMM. 2008, 29 (11), 1859-1865.
(48) Kuo, C. W.; Yang, T. J.; Chien, Y. C.; Yu, P. Y.; Hsu, S. D.; Khoo, K. H. Distinct shifts in site-specific glycosylation pattern of SARS-CoV-2 spike proteins associated with arising mutations in the D614G and Alpha variants. Glycobiology 2022, 32 (1), 60-72. DOI: 10.1093/glycob/cwab102
(49) Gecht, M.; von Bülow, S.; Penet, C.; Hummer, G.; Hanus, C.; Sikora, M. GlycoSHIELD: a versatile pipeline to assess glycan impact on protein structures. BioRxiv 2021, 2021.2008. 2004.455134.
(50) Bekker, H.; Berendsen, H.; Dijkstra, E.; Achterop, S.; Vondrumen, R.; Vanderspoel, D.; Sijbers, A.; Keegstra, H.; Renardus, M. Gromacs-a parallel computer for molecular-dynamics simulations. In 4th international conference on computational physics (PC 92), 1993; World Scientific Publishing: pp 252-256.
(51) Grant, O. C.; Montgomery, D.; Ito, K.; Woods, R. J. Analysis of the SARS-CoV-2 spike protein glycan shield reveals implications for immune recognition. Scientific Reports 2020, 10 (1), 14991. DOI: 10.1038/s41598-020-71748-7.
(52) Jo, S.; Lim, J. B.; Klauda, J. B.; Im, W. CHARMM-GUI Membrane Builder for Mixed Bilayers and Its Application to Yeast Membranes. Biophysical Journal 2009, 97 (1), 50-58. DOI: 10.1016/j.bpj.2009.04.013 (acccessed 2023/05/06).
(53) Durrant, J. D.; Amaro, R. E. LipidWrapper: an algorithm for generating large-scale membrane models of arbitrary geometry. PLoS Comput Biol 2014, 10 (7), e1003720. DOI: 10.1371/journal.pcbi.1003720
(54) Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596 (7873), 583-589. DOI: 10.1038/s41586-021-03819-2.
(55) Nguyen, L.-T.; Schmidt, H. A.; von Haeseler, A.; Minh, B. Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Molecular Biology and Evolution 2014, 32 (1), 268-274. DOI: 10.1093/molbev/msu300 %J Molecular Biology and Evolution (acccessed 1/2/2023).
(56) Madeira, F.; Pearce, M.; Tivey, A. R. N.; Basutkar, P.; Lee, J.; Edbali, O.; Madhusoodanan, N.; Kolesnikov, A.; Lopez, R. Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic acids research 2022, gkac240. DOI: 10.1093/nar/gkac240 PubMed.
(57) Gouet, P.; Courcelle, E.; Stuart, D. I.; Métoz, F. ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics (Oxford, England) 1999, 15 (4), 305-308. DOI: 10.1093/bioinformatics/15.4.305 %J Bioinformatics (acccessed 11/28/2022).
(58) Zhao, Z.; Zhou, J.; Tian, M.; Huang, M.; Liu, S.; Xie, Y.; Han, P.; Bai, C.; Han, P.; Zheng, A.; et al. Omicron SARS-CoV-2 mutations stabilize spike up-RBD conformation and lead to a non-RBM-binding monoclonal antibody escape. Nat. Comm. 2022, 13 (1), 4958. DOI: 10.1038/s41467-022-32665-7.
(59) McCallum, M.; Czudnochowski, N.; Rosen, L. E.; Zepeda, S. K.; Bowen, J. E.; Walls, A. C.; Hauser, K.; Joshi, A.; Stewart, C.; Dillen, J. R.; et al. Structural basis of SARS-CoV-2 Omicron immune evasion and receptor engagement. 2022, 375 (6583), 864-868. DOI: doi:10.1126/science.abn8652.
(60) Dehouck, Y.; Grosfils, A.; Folch, B.; Gilis, D.; Bogaerts, P.; Rooman, M. Fast and accurate predictions of protein stability changes upon mutations using statistical potentials and neural networks: PoPMuSiC-2.0. Bioinformatics (Oxford, England) 2009, 25 (19), 2537-2543. DOI: 10.1093/bioinformatics/btp445 %J Bioinformatics (acccessed 11/25/2022).
(61) Rodrigues, C. H.; Pires, D. E.; Ascher, D. B. DynaMut: predicting the impact of mutations on protein conformation, flexibility and stability. Nucleic Acids Research 2018, 46 (W1), W350-W355. DOI: 10.1093/nar/gky300 %J Nucleic Acids Research (acccessed 11/23/2022).
(62) Laimer, J.; Hiebl-Flach, J.; Lengauer, D.; Lackner, P. MAESTROweb: a web server for structure-based protein stability prediction. Bioinformatics (Oxford, England) 2016, 32 (9), 1414-1416. DOI: 10.1093/bioinformatics/btv769 %J Bioinformatics (acccessed 11/23/2022).
(63) Khan, S.; Vihinen, M. J. H. m. Performance of protein stability predictors. 2010, 31 (6), 675-684.
(64) Raju, T. S.; Briggs, J. B.; Borge, S. M.; Jones, A. J. S. Species-specific variation in glycosylation of IgG: evidence for the species-specific sialylation and branch-specific galactosylation and importance for engineering recombinant glycoprotein therapeutics. Glycobiology 2000, 10 (5), 477-486. DOI: 10.1093/glycob/10.5.477 (acccessed 2/6/2023).
(65) Xu, C.; Ng, D. T. W. Glycosylation-directed quality control of protein folding. Nature Reviews Molecular Cell Biology 2015, 16 (12), 742-752. DOI: 10.1038/nrm4073.
(66) Tao, Y.; Strelkov, S. V.; Mesyanzhinov, V. V.; Rossmann, M. G. J. S. Structure of bacteriophage T4 fibritin: a segmented coiled coil and the role of the C-terminal domain. 1997, 5 (6), 789-798.
(67) Pallesen, J.; Wang, N.; Corbett, K. S.; Wrapp, D.; Kirchdoerfer, R. N.; Turner, H. L.; Cottrell, C. A.; Becker, M. M.; Wang, L.; Shi, W.; et al. Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen. 2017, 114 (35), E7348-E7357. DOI: doi:10.1073/pnas.1707304114.
(68) Kirchdoerfer, R. N.; Wang, N.; Pallesen, J.; Wrapp, D.; Turner, H. L.; Cottrell, C. A.; Corbett, K. S.; Graham, B. S.; McLellan, J. S.; Ward, A. B. Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis. Scientific Reports 2018, 8 (1), 15701. DOI: 10.1038/s41598-018-34171-7.
(69) Walls, A. C.; Tortorici, M. A.; Frenz, B.; Snijder, J.; Li, W.; Rey, F. A.; DiMaio, F.; Bosch, B.-J.; Veesler, D. Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy. Nat. Struc. Mol. Biol. 2016, 23 (10), 899-905. DOI: 10.1038/nsmb.3293.
(70) Watanabe, Y.; Allen, J. D.; Wrapp, D.; McLellan, J. S.; Crispin, M. Site-specific glycan analysis of the SARS-CoV-2 spike. Science 2020, 369 (6501), 330. DOI: 10.1126/science.abb9983.
(71) Watanabe, Y.; Berndsen, Z. T.; Raghwani, J.; Seabright, G. E.; Allen, J. D.; Pybus, O. G.; McLellan, J. S.; Wilson, I. A.; Bowden, T. A.; Ward, A. B. Vulnerabilities in coronavirus glycan shields despite extensive glycosylation. Nat. Comm. 2020, 11 (1), 2688.
(72) Zhang, Y.; Zhao, W.; Mao, Y.; Chen, Y.; Wang, S.; Zhong, Y.; Su, T.; Gong, M.; Du, D.; Lu, X. J. M.; et al. Site-specific N-glycosylation characterization of recombinant SARS-CoV-2 spike proteins. 2021, 100058.
(73) Behrens, A.-J.; Crispin, M. J. C. o. i. s. b. Structural principles controlling HIV envelope glycosylation. 2017, 44, 125-133.
(74) Watanabe, Y.; Berndsen, Z. T.; Raghwani, J.; Seabright, G. E.; Allen, J. D.; Pybus, O. G.; McLellan, J. S.; Wilson, I. A.; Bowden, T. A.; Ward, A. B.; et al. Vulnerabilities in coronavirus glycan shields despite extensive glycosylation. Nat Commun 2020, 11 (1), 2688. DOI: 10.1038/s41467-020-16567-0.
(75) Pritchard, L. K.; Spencer, D. I. R.; Royle, L.; Bonomelli, C.; Seabright, G. E.; Behrens, A.-J.; Kulp, D. W.; Menis, S.; Krumm, S. A.; Dunlop, D. C.; et al. Glycan clustering stabilizes the mannose patch of HIV-1 and preserves vulnerability to broadly neutralizing antibodies. Nat. Comm. 2015, 6 (1), 7479. DOI: 10.1038/ncomms8479.
(76) Roushan, A.; Wilson, G. M.; Kletter, D.; Sen, K. I.; Tang, W.; Kil, Y. J.; Carlson, E.; Bern, M. Peak Filtering, Peak Annotation, and Wildcard Search for Glycoproteomics. Mol Cell Proteomics 2021, 20, 100011. DOI: 10.1074/mcp.RA120.002260
(77) Fang, P.; Ji, Y.; Oellerich, T.; Urlaub, H.; Pan, K. T. Strategies for Proteome-Wide Quantification of Glycosylation Macro- and Micro-Heterogeneity. Int J Mol Sci 2022, 23 (3). DOI: 10.3390/ijms23031609
(78) Wrapp, D.; McLellan, J. S. The 3.1-Angstrom Cryo-electron Microscopy Structure of the Porcine Epidemic Diarrhea Virus Spike Protein in the Prefusion Conformation. J Virol 2019, 93 (23). DOI: 10.1128/jvi.00923-19
(79) Huang, C.-Y.; Draczkowski, P.; Wang, Y.-S.; Chang, C.-Y.; Chien, Y.-C.; Cheng, Y.-H.; Wu, Y.-M.; Wang, C.-H.; Chang, Y.-C.; Chang, Y.-C.; et al. In situ structure and dynamics of an alphacoronavirus spike protein by cryo-ET and cryo-EM. Nat. Comm. 2022, 13 (1), 4877. DOI: 10.1038/s41467-022-32588-3.
(80) Casalino, L.; Gaieb, Z.; Goldsmith, J. A.; Hjorth, C. K.; Dommer, A. C.; Harbison, A. M.; Fogarty, C. A.; Barros, E. P.; Taylor, B. C.; McLellan, J. S.; et al. Beyond Shielding: The Roles of Glycans in the SARS-CoV-2 Spike Protein. ACS Central Science 2020, 6 (10), 1722-1734. DOI: 10.1021/acscentsci.0c01056.
(81) Choi, Y. K.; Cao, Y.; Frank, M.; Woo, H.; Park, S.-J.; Yeom, M. S.; Croll, T. I.; Seok, C.; Im, W. Structure, Dynamics, Receptor Binding, and Antibody Binding of the Fully Glycosylated Full-Length SARS-CoV-2 Spike Protein in a Viral Membrane. Journal of Chemical Theory and Computation 2021, 17 (4), 2479-2487. DOI: 10.1021/acs.jctc.0c01144.
(82) Woo, H.; Park, S.-J.; Choi, Y. K.; Park, T.; Tanveer, M.; Cao, Y.; Kern, N. R.; Lee, J.; Yeom, M. S.; Croll, T. I.; et al. Developing a Fully Glycosylated Full-Length SARS-CoV-2 Spike Protein Model in a Viral Membrane. The Journal of Physical Chemistry B 2020, 124 (33), 7128-7137. DOI: 10.1021/acs.jpcb.0c04553.
(83) Gecht, M.; von Bülow, S.; Penet, C.; Hummer, G.; Hanus, C.; Sikora, M. J. b. GlycoSHIELD: a versatile pipeline to assess glycan impact on protein structures. 2021.
(84) Wong, A. H. M.; Tomlinson, A. C. A.; Zhou, D.; Satkunarajah, M.; Chen, K.; Sharon, C.; Desforges, M.; Talbot, P. J.; Rini, J. M. Receptor-binding loops in alphacoronavirus adaptation and evolution. Nat. Comm. 2017, 8 (1), 1735. DOI: 10.1038/s41467-017-01706-x.
(85) Echave, J.; Wilke, C. O. Biophysical Models of Protein Evolution: Understanding the Patterns of Evolutionary Sequence Divergence. Annual review of biophysics 2017, 46, 85-103. DOI: 10.1146/annurev-biophys-070816-033819
(86) Wang, Q.; Meng, F.; Xie, Y.; Wang, W.; Meng, Y.; Li, L.; Liu, T.; Qi, J.; Ni, X.; Zheng, S. In Silico Discovery of Small Molecule Modulators Targeting the Achilles’ Heel of SARS-CoV-2 Spike Protein. ACS Cen. Sci. 2023, 9 (2), 252-265.
(87) Lv, Z.; Deng, Y.-Q.; Ye, Q.; Cao, L.; Sun, C.-Y.; Fan, C.; Huang, W.; Sun, S.; Sun, Y.; Zhu, L. Structural basis for neutralization of SARS-CoV-2 and SARS-CoV by a potent therapeutic antibody. Science 2020, 369 (6510), 1505-1509.
(88) Wang, P.; Casner, R. G.; Nair, M. S.; Yu, J.; Guo, Y.; Wang, M.; Chan, J. F.-W.; Cerutti, G.; Iketani, S.; Liu, L. A monoclonal antibody that neutralizes SARS-CoV-2 variants, SARS-CoV, and other sarbecoviruses. Emerging Microbes & Infections 2022, 11 (1), 147-157.
(89) Adams, P. D.; Grosse-Kunstleve, R. W.; Hung, L.-W.; Ioerger, T. R.; McCoy, A. J.; Moriarty, N. W.; Read, R. J.; Sacchettini, J. C.; Sauter, N. K.; Terwilliger, T. C. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D 2002, 58 (11), 1948-1954. DOI: doi:10.1107/S0907444902016657.
(90) Fan, X.; Cao, D.; Kong, L.; Zhang, X. Cryo-EM analysis of the post-fusion structure of the SARS-CoV spike glycoprotein. Nat. Comm. 2020, 11 (1), 3618.
(91) Tai, L.; Zhu, G.; Yang, M.; Cao, L.; Xing, X.; Yin, G.; Chan, C.; Qin, C.; Rao, Z.; Wang, X. Nanometer-resolution in situ structure of the SARS-CoV-2 postfusion spike protein. Proc. Natl. Acad. Sci. U. S. A. 2021, 118 (48), e2112703118.
(92) Arruda, H. R. S.; Lima, T. M.; Alvim, R. G. F.; Victorio, F. B. A.; Abreu, D. P. B.; Marsili, F. F.; Cruz, K. D.; Marques, M. A.; Sosa-Acosta, P.; Quinones-Vega, M.; et al. Conformational stability of SARS-CoV-2 glycoprotein spike variants. iScience 2023, 26 (1), 105696. DOI: 10.1016/j.isci.2022.105696
(93) Bhardwaj, A.; Walker-Kopp, N.; Wilkens, S.; Cingolani, G. Foldon-guided self-assembly of ultra-stable protein fibers. Prot. Sci. 2008, 17 (9), 1475-1485. DOI: 10.1110/ps.036111.108
(94) Frank, S.; Kammerer, R. A.; Mechling, D.; Schulthess, T.; Landwehr, R.; Bann, J.; Guo, Y.; Lustig, A.; Bächinger, H. P.; Engel, J. Stabilization of short collagen-like triple helices by protein engineering. J Mol Biol 2001, 308 (5), 1081-1089. DOI: 10.1006/jmbi.2001.4644
(95) Güthe, S.; Kapinos, L.; Möglich, A.; Meier, S.; Grzesiek, S.; Kiefhaber, T. Very Fast Folding and Association of a Trimerization Domain from Bacteriophage T4 Fibritin. J. Mol. Biol. 2004, 337 (4), 905-915. DOI: https://doi.org/10.1016/j.jmb.2004.02.020.
(96) Behrens, A.-J.; Harvey, D. J.; Milne, E.; Cupo, A.; Kumar, A.; Zitzmann, N.; Struwe, W. B.; Moore, J. P.; Crispin, M. Molecular Architecture of the Cleavage-Dependent Mannose Patch on a Soluble HIV-1 Envelope Glycoprotein Trimer. 2017, 91 (2), e01894-01816. DOI: doi:10.1128/JVI.01894-16.
(97) Pritchard, Laura K.; Vasiljevic, S.; Ozorowski, G.; Seabright, Gemma E.; Cupo, A.; Ringe, R.; Kim, Helen J.; Sanders, Rogier W.; Doores, Katie J.; Burton, Dennis R.; et al. Structural Constraints Determine the Glycosylation of HIV-1 Envelope Trimers. Cell Reports 2015, 11 (10), 1604-1613. DOI: https://doi.org/10.1016/j.celrep.2015.05.017.
(98) Sanda, M.; Morrison, L.; Goldman, R. N- and O-Glycosylation of the SARS-CoV-2 Spike Protein. Analytical Chemistry 2021, 93 (4), 2003-2009. DOI: 10.1021/acs.analchem.0c03173.
(99) Punjani, A.; Fleet, D. J. 3D variability analysis: Resolving continuous flexibility and discrete heterogeneity from single particle cryo-EM. J. Struc. Biol. 2021, 213 (2), 107702. DOI: https://doi.org/10.1016/j.jsb.2021.107702.
(100) Punjani, A.; Fleet, D. J. 3DFlex: determining structure and motion of flexible proteins from cryo-EM. Nature Methods 2023, 20 (6), 860-870. DOI: 10.1038/s41592-023-01853-8.
(101) Walls, A. C.; Park, Y. J.; Tortorici, M. A.; Wall, A.; McGuire, A. T.; Veesler, D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 2020, 181 (2), 281-292.e286. DOI: 10.1016/j.cell.2020.02.058
(102) Xu, C.; Wang, Y.; Liu, C.; Zhang, C.; Han, W.; Hong, X.; Wang, Y.; Hong, Q.; Wang, S.; Zhao, Q.; et al. Conformational dynamics of SARS-CoV-2 trimeric spike glycoprotein in complex with receptor ACE2 revealed by cryo-EM. Sci Adv 2021, 7 (1). DOI: 10.1126/sciadv.abe5575
(103) Chmielewski, D.; Wilson, E.; Pintilie, G.; Zhao, P.; Chen, M.; Schmid, M.; Simmons, G.; Wells, L.; Jin, J.; Singharoy, A.; et al. Integrated analyses reveal a hinge glycan regulates coronavirus spike tilting and virus infectivity. Research square 2023. DOI: 10.21203/rs.3.rs-2553619/v1
(104) Yang, T.-J.; Chang, Y.-C.; Ko, T.-P.; Draczkowski, P.; Chien, Y.-C.; Chang, Y.-C.; Wu, K.-P.; Khoo, K.-H.; Chang, H.-W.; Hsu, S.-T. D. Cryo-EM analysis of a feline coronavirus spike protein reveals a unique structure and camouflaging glycans. Proc. Natl. Acad. Sci. U. S. A. 2020, 117 (3), 1438. DOI: 10.1073/pnas.1908898117.
(105) Doores, K. J. The HIV glycan shield as a target for broadly neutralizing antibodies. 2015, 282 (24), 4679-4691. DOI: https://doi.org/10.1111/febs.13530.
(106) Harvey, W. T.; Carabelli, A. M.; Jackson, B.; Gupta, R. K.; Thomson, E. C.; Harrison, E. M.; Ludden, C.; Reeve, R.; Rambaut, A.; Consortium, C.-G. U. SARS-CoV-2 variants, spike mutations and immune escape. Nature Reviews Microbiology 2021, 19 (7), 409-424.
(107) Conlan, M.; Tan, H.-X.; Esterbauer, R.; Kelly, A.; Kent, S. J.; Wheatley, A. K.; Lee, W. S. Monoclonal antibodies against human coronavirus NL63 spike. bioRxiv 2023, 2023.2003.2012.532265. DOI: 10.1101/2023.03.12.532265.
(108) Shi, J.; Shi, Y.; Xiu, R.; Wang, G.; Liang, R.; Jiao, Y.; Shen, Z.; Zhu, C.; Peng, G. Identification of a Novel Neutralizing Epitope on the N-Terminal Domain of the Human Coronavirus 229E Spike Protein. 2022, 96 (4), e01955-01921. DOI: doi:10.1128/jvi.01955-21.
(109) Pronker, M. F.; Creutznacher, R.; Drulyte, I.; Hulswit, R. J. G.; Li, Z.; Kuppeveld, F. J. M. v.; Snijder, J.; Lang, Y.; Bosch, B.-J.; Boons, G.-J.; et al. Sialoglycan binding triggers spike opening in a human coronavirus. bioRxiv 2023, 2023.2004.2020.536837. DOI: 10.1101/2023.04.20.536837.
(110) Zhan, W.; Tian, X.; Zhang, X.; Xing, S.; Song, W.; Liu, Q.; Hao, A.; Hu, Y.; Zhang, M.; Ying, T. Structural study of SARS-CoV-2 antibodies identifies a broad-spectrum antibody that neutralizes the omicron variant by disassembling the spike trimer. Journal of virology 2022, 96 (16), e00480-00422.
(111) Zhou, D.; Duyvesteyn, H. M.; Chen, C.-P.; Huang, C.-G.; Chen, T.-H.; Shih, S.-R.; Lin, Y.-C.; Cheng, C.-Y.; Cheng, S.-H.; Huang, Y.-C. Structural basis for the neutralization of SARS-CoV-2 by an antibody from a convalescent patient. Nature structural & molecular biology 2020, 27 (10), 950-958.
(112) Yuan, M.; Wu, N. C.; Zhu, X.; Lee, C.-C. D.; So, R. T.; Lv, H.; Mok, C. K.; Wilson, I. A. A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV. Science 2020, 368 (6491), 630-633.
(113) Piccoli, L.; Park, Y.-J.; Tortorici, M. A.; Czudnochowski, N.; Walls, A. C.; Beltramello, M.; Silacci-Fregni, C.; Pinto, D.; Rosen, L. E.; Bowen, J. E. Mapping neutralizing and immunodominant sites on the SARS-CoV-2 spike receptor-binding domain by structure-guided high-resolution serology. Cell 2020, 183 (4), 1024-1042. e1021.
(114) Asarnow, D.; Palovcak, E.; Cheng, Y. asarnow/pyem: UCSF pyem v0. 5. Zenodo. 2019.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88360-
dc.description.abstract新冠病毒(COVID-19)大流行已經導致全球超過600萬人死亡,促使人們進行大量研究以對抗嚴重急性呼吸綜合症冠狀病毒2型(SARS-CoV-2)。相比之下,已經發現了超過50年且只引起輕微症狀的最早識別的季節性冠狀病毒HCoV-229E在學界受到較少的關注。在本研究中,我們首先探討HCoV-229E之親緣關係。我們選擇了八個病毒株來依時間順序展示基因演化。結果顯示於HCoV-229E棘蛋白(S)的受體結合區域(RBD)和N端區域(NTD)存在許多突變。另外,在N-糖基化序列中有六個突變,表明糖基組成亦存在變異。接著,我們專注於其中兩個病毒株,即P100E 與Seattle,以分別代表“舊病毒株”和“新病毒株”。與P100E棘蛋白序列相比,Seattle病毒株棘蛋白中被觀察到了共72個點突變。通過模擬預測發現這些突變有可能對蛋白質結構產生破壞性影響,此猜想在對Seattle病毒株棘蛋白進行負染色的電子顯微鏡(NSEM)觀察時得到了確認,其中正常折疊的棘蛋白數量大幅減少。通過液相色譜-串聯質譜(LC-MS/MS)進行的N-糖基分析揭示了明顯的糖基組成差異,P100E在N62和N930位置表現出更多的高甘露糖型糖基,而Seattle株則含有四分之一以上的複雜型糖基。我們假設Seattle株棘蛋白的結構完整性受損,導致較多的複雜型醣基存在。為了驗證此假設,我們引入了GlycoSHIELD以定量分析醣基化的三維分子結構,進而提供與結構和演化相關的證據。另一方面,目前已知的229E S PDB結構僅有無法讓受體結合的RBD-all-down狀態。為了瞭解其宿主識別機制,我們選用相對穩定的P100E S進行cryo-EM分析,研究229E S與人類胺肽酶N (hAPN)形成之複合物。根據計算出的庫倫電位圖,該複合物由兩個採用了未曾報導過之RBD-up構型的229E棘蛋白與hAPN同源二聚體結合,後者為細胞表面常見的寡聚化狀態。為了更接近生理狀態,我們再次利用GlycoSHIELD結合所有醣基化分析結果和cryo-EM解析之複合物結構,構建一個完全醣基化的模型。該模型提供了有關HCoV-229E病毒入侵體內細胞的分子機制。本研究建立的分析流程提供了一種有效而全面的方法,用於探究抗原漂變、醣基化和分子結構之間的交互作用,並且能適用於其他蛋白質。此外,它亦可作為一系統性的分析策略,以預測蛋白質表面潛在的廣泛性中和抗體(bnAbs)抗原決定位。zh_TW
dc.description.abstractThe COVID-19 pandemic has resulted in over six million deaths worldwide, prompting extensive research efforts to combat SARS-CoV-2. In contrast, HCoV-229E, the earliest-identified seasonal coronavirus that has been present for over 50 years and only causes mild symptoms, receiving comparatively less attention from scientific studies. In this study, we initially examined the phylogeny of HCoV-229E and selected eight strains to demonstrate the genetic evolution chronologically. Significant mutations were identified, particularly in the receptor binding domain (RBD) and N-terminal domain (NTD) of the HCoV-229E spike protein (S). Moreover, six mutations were found in the N-glycosylation sequon, indicating variations in glycan profile. We then took P100E strain and Seattle strain to represent the "old strain" and the "new strain". A total of 72 point mutations were observed in the Seattle strain compared to the P100E sequence. In-silico ∆∆G prediction suggested destabilizing effects of the mutations, which were later confirmed by negative staining EM (NSEM) of the Seattle strain, where the number of well-folded S proteins decreased. N-glycan analysis via LC-MS/MS revealed marked differences in the glycan composition, with P100E showing a higher abundance of high-mannose type glycans at N62 and N930, while Seattle exhibited over ¼ of the complex glycans. We hypothesized that the structural integrity of the Seattle strain was compromised, leading to the presence of further processed glycans. To investigate this hypothesis, GlycoSHIELD was used to quantitatively analyze the glycosylated 3D molecular architectures, providing structurally and evolutionarily relevant results. In addition, all the current 229E S PDB structures only display the RBD-all-down state, which prevents the receptor binding. To uncover the molecular basis of its host recognition, we conducted cryo-electron microscopy (cryo-EM) analysis of P100E S in complex with human aminopeptidase N (hAPN), revealing a structure consisting of two 229E spikes adopting an unprecedented RBD-up conformation, bound to a hAPN homodimer. To emulate the physiological state, we utilized GlycoSHIELD again to combine all glycosylation profiles and the cryo-EM-solved complex structure, constructing a fully glycosylated model anchored on a lipid membrane. This model provides insights into HCoV-229E virus entry in vivo. The established workflow serves as an efficient and comprehensive approach to investigate the interplay between antigenic drift, glycosylation, and molecular structure, with potential application to other proteins. It also provides a systematic way to probe the possible targets for broadly neutralizing antibodies (bnAbs).en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-09T16:43:05Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-09T16:43:05Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsCONTENTS .................................... I
中文摘要 ................................ IV
ABSTRACT ................................ VI
LIST OF FIGURES ............................ VIII
LIST OF TABLES .............................. XI
ABBREVIATIONS.......................... XII
CHAPTER 1 INTRODUCTION 1
1.1  Human coronaviruses (HCoVs)................................................... 1
1.2  Structural characteristics of spike (S) protein............................... 3
1.3  Structural characteristics of human aminopeptidase N (hAPN)..................... 6
1.4  Protein N-linked glycosylation................... 8
1.5  Cryo-EM, mass spectrometry, and MD simulation for spike glycoproteins .... 9
1.6  Antigenic drift of CoVs ...........................................11
1.7  Specific aims .................................... 14

CHAPTER 2 MATERIALAND METHODS 15
2.1  Phylogenetic analysis and antigenic drift analysis ......................................... 15
2.2  Estimating HCoV-229E S protein stability via in silico ∆∆G prediction....... 15
2.3  Construct design ................................. 16
2.4  Protein expression and purification ............................ 17
2.5  Differential scanning fluorimeter (DSF) .............................. 17
2.6  Negative staining electron microscopy (NSEM) analysis.............................. 18
2.7  Biolayer interferometry (BLI) ........................................................................ 19
2.8  Cryo-EM grid preparation and Data collection .............................................. 19
2.9  Image processing and 3D reconstruction........................................................ 19
2.10  Model building and refinement ...................................................................... 21
2.11  In-gel proteolytic digestion of the proteins (Digestion protocol A) ............... 22
2.12  In-solution proteolytic digestion of the proteins (Digestion protocol B) ....... 23
2.13  Glycopeptide analysis by liquid chromatography-mass spectrometry ........... 24
2.14  Glycopeptide identification and quantification .............................................. 24
2.15  Representative Glycoforms selection of the proteins ..................................... 25
2.16  Atomic model of fully M5 glycosylated proteins by CHARMM-GUI.......... 26
2.17  Glycan shield modeling with GlycoSHIELD................................................. 28
2.18  Atomic model building of final HCoV-229E virus infection schematic by CHARMM-GUI, GlycoSHIELD, and AlphaFold2 .................. 29
2.19  Batch processing and calculation of RBD-up angle of currently available cryo-EM structures of SARS-CoV-2 S protein on Protein Data Bank (PDB) ……30

CHAPTER 3 RESULTS 34
3.1  Phylogenetic analysis of HCoV-229E variants............................................... 34
3.2  Antigenic drift and protein stability prediction .............................................. 38
3.3  Expression and validation of HCoV-229E S proteins and hAPN ectodomain 46
3.4  The workflow of N-glycopeptide analysis ..................................................... 57
3.5  Site specific N-glycopeptide analysis of HCoV-229E P100E strain S........... 60
3.6  Site specific N-glycopeptide analysis of HCoV-229E Seattle strain S and a comparative discussion on the glycosylation profiles of the two strains....... 68
3.7  Site specific N-glycopeptide analysis of human aminopeptidase N............... 80
3.8  The quantification and visualization of glycan shielding effects using MD-based GlycoSHIELD ........................... 87
3.9 Cryo-EM structure of HCoV-229E P100E S in complex with hAPN............ 99

CHAPTER 4 DISCUSSION 117
4.1  A look into the distinct DSF profile of HCoV-229E Seattle strain and its potential link to the general structural features of the spike proteins ...........117
4.2  The discrepancy in N-linked glycosylation profile of HCoV-229E strains is potentially pertinent to TAMP (trimer-associated mannose patch) that was first described in HIV-1 envelope protein (Env)..................124
4.3  The limitations of our glycopeptide analysis pipeline.................................. 125
4.4  The limitations of our cryo-EM analysis ...................................................... 127
4.5  The limitations of our GlycoSHIELD analysis ............................................ 129
4.6  HCoV-229E S epitope mapping and rational immunogen design................ 131
REFERENCES ..................... 136
APPENDIX ....................... 148
-
dc.language.isoen-
dc.title人類冠狀病毒229E的宿主識別與抗原漂變之分子基礎zh_TW
dc.titleMolecular basis of host recognition and antigenic drift of human coronavirus 229Een
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee邱繼輝;吳昆峯;張惠雯zh_TW
dc.contributor.oralexamcommitteeKay-Hooi Khoo;Kuen-Phon Wu;Hui-Wen Changen
dc.subject.keyword季節性冠狀病毒HCoV-229E,抗原漂變,N-連接醣基化,醣基化修飾之遮蔽效應,冷凍電子顯微鏡,Python程式設計,zh_TW
dc.subject.keywordSeasonal coronavirus HCoV-229E,Antigenic drift,N-linked glycosylation,glycan shielding,Cryo-EM,Python programming,en
dc.relation.page172-
dc.identifier.doi10.6342/NTU202301899-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-07-25-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生化科學研究所-
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf21.84 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved