Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 基因體與系統生物學學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88359
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor薛雁冰zh_TW
dc.contributor.advisorYen-Ping Hsuehen
dc.contributor.author阮聖茜zh_TW
dc.contributor.authorSheng-Chian Juanen
dc.date.accessioned2023-08-09T16:42:49Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-09-
dc.date.issued2023-
dc.date.submitted2023-07-25-
dc.identifier.citationAdlimoghaddam, A., Boeckstaens, M., Marini, A. M., Treberg, J. R., Brassinga, A. K., & Weihrauch, D. (2015). Ammonia excretion in Caenorhabditis elegans: mechanism and evidence of ammonia transport of the Rhesus protein CeRhr-1. J Exp Biol, 218(Pt 5), 675-683. doi:10.1242/jeb.111856
Andrade, S. L., & Einsle, O. (2007). The Amt/Mep/Rh family of ammonium transport proteins. Mol Membr Biol, 24(5-6), 357-365. doi:10.1080/09687680701388423
Biswas, K., & Morschhäuser, J. (2005). The Mep2p ammonium permease controls nitrogen starvation‐induced filamentous growth in Candida albicans. Molecular microbiology, 56(3), 649-669.
Boeckstaens, M., Llinares, E., Van Vooren, P., & Marini, A. M. (2014). The TORC1 effector kinase Npr1 fine tunes the inherent activity of the Mep2 ammonium transport protein. Nature communications, 5(1), 3101.
Chutrakul, C., Panchanawaporn, S., Vorapreeda, T., Jeennor, S., Anantayanon, J., & Laoteng, K. (2022). The Exploring Functional Role of Ammonium Transporters of Aspergillus oryzae in Nitrogen Metabolism: Challenges towards Cell Biomass Production. International Journal of Molecular Sciences, 23(14), 7567.
Degenkolb, T., & Vilcinskas, A. (2016). Metabolites from nematophagous fungi and nematicidal natural products from fungi as an alternative for biological control. Part I: metabolites from nematophagous ascomycetes. Applied Microbiology and Biotechnology, 100(9), 3799-3812. doi:10.1007/s00253-015-7233-6
Drechsler, C. (1952). Widespread distribution of Delacroixia coronata and other saprophytic Entomophthoraceae in plant detritus. Science, 115(2995), 575-576.
Ganz, P., Ijato, T., Porras-Murrilo, R., Stührwohldt, N., Ludewig, U., & Neuhäuser, B. (2020). A twin histidine motif is the core structure for high-affinity substrate selection in plant ammonium transporters. J Biol Chem, 295(10), 3362-3370. doi:10.1074/jbc.RA119.010891
Hsueh, Y.-P., Gronquist, M. R., Schwarz, E. M., Nath, R. D., Lee, C.-H., Gharib, S., . . . Sternberg, P. W. (2017). Nematophagous fungus Arthrobotrys oligospora mimics olfactory cues of sex and food to lure its nematode prey. eLife, 6, e20023. doi:10.7554/eLife.20023
Hsueh, Y.-P., Mahanti, P., Schroeder, Frank C., & Sternberg, Paul W. (2013). Nematode-Trapping Fungi Eavesdrop on Nematode Pheromones. Current Biology, 23(1), 83-86. doi:https://doi.org/10.1016/j.cub.2012.11.035
Hugot, J.-P., Baujard, P., & Morand, S. (2001). Biodiversity in helminths and nematodes as a field of study: an overview. Nematology, 3(3), 199-208.
Javelle, A., Lupo, D., Zheng, L., Li, X.-D., Winkler, F. K., & Merrick, M. (2006). An unusual twin-his arrangement in the pore of ammonia channels is essential for substrate conductance. Journal of Biological Chemistry, 281(51), 39492-39498.
Kassam, R., Yadav, J., Chawla, G., Kundu, A., Hada, A., Jaiswal, N., . . . Rao, U. (2021). Identification, Characterization, and Evaluation of Nematophagous Fungal Species of Arthrobotrys and Tolypocladium for the Management of Meloidogyne incognita. Front Microbiol, 12, 790223. doi:10.3389/fmicb.2021.790223
Kuo, C.-Y., Chen, S.-A., & Hsueh, Y.-P. (2020). The high osmolarity glycerol (HOG) pathway functions in osmosensing, trap morphogenesis and conidiation of the nematode-trapping fungus Arthrobotrys oligospora. Journal of Fungi, 6(4), 191.
Lee, C.-H., Lee, Y.-Y., Chang, Y.-C., Pon, W.-L., Lee, S.-P., Wali, N., . . . Hsueh, Y.-P. (2023). A carnivorous mushroom paralyzes and kills nematodes via a volatile ketone. Science Advances, 9(3), eade4809.
Lorenz, M. C., & Heitman, J. (1997). Yeast pseudohyphal growth is regulated by GPA2, a G protein α homolog. The EMBO journal, 16(23), 7008-7018.
Lorenz, M. C., & Heitman, J. (1998). The MEP2 ammonium permease regulates pseudohyphal differentiation in Saccharomyces cerevisiae. The EMBO journal, 17(5), 1236-1247.
Monahan, B. J., Unkles, S. E., Tsing, I. T., Kinghorn, J. R., Hynes, M. J., & Davis, M. A. (2002). Mutation and functional analysis of the Aspergillus nidulans ammonium permease MeaA and evidence for interaction with itself and MepA. Fungal Genet Biol, 36(1), 35-46. doi:10.1016/s1087-1845(02)00004-x
Nair, A., & Sarma, S. J. (2021). The impact of carbon and nitrogen catabolite repression in microorganisms. Microbiological Research, 251, 126831. doi:https://doi.org/10.1016/j.micres.2021.126831
Neuhäuser, B. (2020). Distinct transport mechanism in Candida albicans methylammonium permeases. Mycological Progress, 19(10), 1143-1149.
Nicol, J., Turner, S., Coyne, D. L., Nijs, L. d., Hockland, S., & Maafi, Z. T. (2011). Current nematode threats to world agriculture. Genomics and molecular genetics of plant-nematode interactions, 21-43.
Niu, X.-M., & Zhang, K.-Q. (2011). Arthrobotrys oligospora: a model organism for understanding the interaction between fungi and nematodes. Mycology, 2(2), 59-78.
Omasits, U., Ahrens, C. H., Müller, S., & Wollscheid, B. (2014). Protter: interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics, 30(6), 884-886.
Paul, J. A., Wallen, R. M., Zhao, C., Shi, T., & Perlin, M. H. (2018). Coordinate regulation of Ustilago maydis ammonium transporters and genes involved in mating and pathogenicity. Fungal Biol, 122(7), 639-650. doi:10.1016/j.funbio.2018.03.011
Ries, L. N. A., Beattie, S., Cramer, R. A., & Goldman, G. H. (2018). Overview of carbon and nitrogen catabolite metabolism in the virulence of human pathogenic fungi. Molecular microbiology, 107(3), 277-297.
Saikawa, M., Oguchi, M., & Ruiz, R. F. C. (1997). Electron microscopy of two nematode-destroying fungi, Meristacrum asterospermum and Zygnemomyces echinulatus (Meristacraceae, Entomophthorales). Canadian Journal of Botany, 75(5), 762-768.
Teichert, S., Rutherford, J. C., Wottawa, M., Heitman, J., & Tudzynski, B. (2008). Impact of ammonium permeases mepA, mepB, and mepC on nitrogen-regulated secondary metabolism in Fusarium fujikuroi. Eukaryot Cell, 7(2), 187-201. doi:10.1128/EC.00351-07
Van Den Berg, B., Chembath, A., Jefferies, D., Basle, A., Khalid, S., & Rutherford, J. C. (2016). Structural basis for Mep2 ammonium transceptor activation by phosphorylation. Nature communications, 7(1), 1-11.
van den Hoogen, J., Geisen, S., Routh, D., Ferris, H., Traunspurger, W., Wardle, D. A., . . . Crowther, T. W. (2019). Soil nematode abundance and functional group composition at a global scale. Nature, 572(7768), 194-198. doi:10.1038/s41586-019-1418-6
Williamson, G., Tamburrino, G., Bizior, A., Boeckstaens, M., Dias Mirandela, G., Bage, M. G., . . . Javelle, A. (2020). A two-lane mechanism for selective biological ammonium transport. eLife, 9, e57183. doi:10.7554/eLife.57183
Wirén, N. v., & Merrick, M. (2004). Regulation and function of ammonium carriers in bacteria, fungi, and plants. Molecular mechanisms controlling transmembrane transport, 95-120.
Yang, C.-T., Vidal-Diez de Ulzurrun, G., Gonçalves, A. P., Lin, H.-C., Chang, C.-W., Huang, T.-Y., . . . Schroeder, F. C. (2020). Natural diversity in the predatory behavior facilitates the establishment of a robust model strain for nematode-trapping fungi. Proceedings of the National Academy of Sciences, 117(12), 6762-6770.
Zasada, I. A., Avendano, F., Li, Y. C., Logan, T., Melakeberhan, H., Koenning, S. R., & Tylka, G. L. (2008). Potential of an alkaline-stabilized biosolid to manage nematodes: case studies on soybean cyst and root-knot nematodes. Plant Disease, 92(1), 4-13.
Zopf, W. (1888). Zur Kenntniss der Infections-Krankheiten niederer Thiere und Pflanzen (Vol. 52): E. Blochmann.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88359-
dc.description.abstract線蟲捕捉菌為一群在養份缺乏的環境下特化出捕捉構造來捕捉線蟲為食的真菌,其中,在台灣廣泛分佈的寡孢節叢真菌Arthrobotrys oligospora以立體的黏著網來捕捉線蟲,也逐漸成為研究食性交互作用的模型之一。銨離子是微生物主要的氮元素來源之一,然而銨也會抑制A. oligospora的黏著網形成。銨轉運蛋白家族(Amt/Mep/Rh family)在各個物種之間相當保守,擁有相似的蛋白質序列及結構。為了瞭解銨是如何運輸以及影響黏著網的形成,我們在A. oligospora找到三個銨轉運蛋白並依據序列相似度分別命名為MEP1、MEP2以及MEP,並推測MEP2與MEP3有較高的銨親和性,而MEP1則為銨低親和性的轉運蛋白。在time-course RNA-seq的結果中,MEP基因在A. oligospora捕食線蟲的前期提高表現量,於後期降低表現量,此外,MEP基因也受到銨離子的抑制,表示MEP基因可能具有感知環境及運輸銨離子的功能。為了暸解其功能,我們將MEP基因剔除並發現突變株對於線蟲的敏感性降低而形成較少的黏著網;相反的,相較於野生型,突變株在添加銨離子的環境下依然能形成黏著網。而突變株在形態與線蟲捕捉功能上則與野生型無異。當將A. oligospora的MEP基因表現於Saccharomyces cerevisiae的mep2與mep1mep2mep3突變株,可以分別在低銨離子濃度環境下恢復假菌絲的形成與菌落生長。以上實驗結果表示A. oligospora的Mep銨轉運蛋白在捕捉線蟲的過程中扮演感知以及運送銨離子的功能。此外,我們發現mep1突變株的產孢過程有延遲,推測MEP1基因除了捕捉網的形成以外對於產孢過程也具有正向的影響。zh_TW
dc.description.abstractNematode-trapping fungi develop various devices to trap and consume nematodes as a food source under nutrient-limiting conditions. Arthrobotrys oligospora is the most abundant species in Taiwan that produces adhesive networks to catch nematodes and it has become a model organism for investigating predator-prey interactions. Ammonium is a major nitrogen source for microbes, and it suppresses trap formation by A. oligospora. The Ammonium transporter (Amt)/Methylammonium permease (Mep)/Rhesus protein (Rh) family is conserved across all organisms, sharing similar sequences and structures. To investigate how ammonium is transported and affects trap formation by A. oligospora, we identified three potential ammonium transporters in this fungus, i.e., MEP1, MEP2, and MEP3. Phylogenetic analysis revealed that MEP2 and MEP3 are both high-affinity transporters, whereas MEP1 is a low-affinity transporter. Based on time-course RNA-sequencing data, the three MEP genes are upregulated when nematodes are sensed, and they are downregulated upon prey capture, indicating that they may play a role in sensing prey presence. Additionally, their expression is suppressed by nitrogen treatment, unlike the case for carbon application, supporting the importance of intracellular nitrogen levels in sensing starvation. To investigate their functions, we deleted the MEP genes individually and found that trap formation in response to nematodes was impaired in the mep mutants, though trap morphology and adhesiveness were not affected. However, ammonium treatment rescued trap formation by the mep1 and mep1mep2 mutants. Heterologous gene expression in Saccharomyces cerevisiae mep2 and mep1mep2mep3 mutants complemented pseudohyphal and growth defects under low ammonium conditions, respectively. Additionally, absence of mep1 resulted in delayed conidiation. Together, these results suggest that the Mep transporters are involved in ammonium sensing and transportation in A. oligospora, with Mep1 potentially playing a positive role in the conidiation process.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-09T16:42:49Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-09T16:42:49Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝...i
中文摘要...ii
英文摘要...iv
Introduction...1
Materials and Methods...6
Strains and media...6
Generation of the DNA cassette for gene deletion and complementation...7
Protoplast preparation...8
Transformation of A. oligospora...8
Gene deletion confirmation...9
Total genomic DNA extraction and purification...10
Southern blot...11
Trap number quantification...11
Caenorhabditis elegans survival rate assay...12
Capture rate assay...13
Imaging of trap structures...13
Quantification of conidia...13
Plasmid construction for heterologous gene expression...14
Yeast transformation by electroporation...15
Functional analysis of Mep1, Mep2, and Mep3 in S. cerevisiae...15
Results...17
The A. oligospora genome encodes three ammonium transporters, MEP1, MEP2, and MEP3...17
Time course RNA-seq analysis of A. oligospora in response to C. elegans presence reveals a potential role for Mep transporters in predator-prey interactions...19
mep mutants exhibit diminished sensitivity to nematode presence...21
mep mutants display normal trap morphology and function...23
mep1 and mep1mep2 mutants are less sensitive to ammonium...24
Mep1 may play a positive role in the conidiation proces...26
Functional conservation between AoMep and ScMep transporters..27
Discussion...30
References...34
Supplementary table and figures...52
-
dc.language.isoen-
dc.subjectArthrobotrys oligosporazh_TW
dc.subject銨轉運蛋白zh_TW
dc.subject線蟲捕捉菌zh_TW
dc.subject寡孢節叢真菌zh_TW
dc.subjectAmmonium transporteren
dc.subjectArthrobotrys oligosporaen
dc.subjectNematode-trapping fungien
dc.title銨轉運蛋白於寡孢節叢真菌之功能探討zh_TW
dc.titleThe Roles of Ammonium Transporters in the Nematode-Trapping Fungus Arthrobotrys oligosporaen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee呂俊毅;蔡宜芳;林晉玄zh_TW
dc.contributor.oralexamcommitteeJun-Yi Leu;Yi-Fang Tsay;Ching-Hsuan Linen
dc.subject.keyword銨轉運蛋白,寡孢節叢真菌,Arthrobotrys oligospora,線蟲捕捉菌,zh_TW
dc.subject.keywordAmmonium transporter,Arthrobotrys oligospora,Nematode-trapping fungi,en
dc.relation.page60-
dc.identifier.doi10.6342/NTU202301993-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-07-27-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept基因體與系統生物學學位學程-
dc.date.embargo-lift2028-07-24-
顯示於系所單位:基因體與系統生物學學位學程

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
12.3 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved