請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88349完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 莊永裕 | zh_TW |
| dc.contributor.advisor | Yung-Yu Chuang | en |
| dc.contributor.author | 謝梓豪 | zh_TW |
| dc.contributor.author | Tzu-Hao Hsieh | en |
| dc.date.accessioned | 2023-08-09T16:40:08Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-09 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-25 | - |
| dc.identifier.citation | [1] V. Bychkovsky, S. Paris, E. Chan, and F. Durand. Learning photographic global tonal adjustment with a database of input / output image pairs. In The Twenty-Fourth IEEE Conference on Computer Vision and Pattern Recognition, 2011.
[2] Y. Chai, R. Giryes, and L. Wolf. Supervised and unsupervised learning of parameterized color enhancement. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pages 992–1000, 2020. [3] Y.-S. Chen, Y.-C. Wang, M.-H. Kao, and Y.-Y. Chuang. Deep photo enhancer: Unpaired learning for image enhancement from photographs with gans. In Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition (CVPR 2018), pages 6306–6314, June 2018. [4] M. Gharbi, J. Chen, J. T. Barron, S. W. Hasinoff, and F. Durand. Deep bilateral learning for real-time image enhancement. ACM Transactions on Graphics (TOG), 36(4):1–12, 2017. [5] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger, editors, Advances in Neural Information Processing Systems, volume 27. Curran Associates, Inc., 2014. [6] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville. Improved training of wasserstein gans. Advances in neural information processing systems, 30, 2017. [7] J. He, Y. Liu, Y. Qiao, and C. Dong. Conditional sequential modulation for efficient global image retouching. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XIII 16, pages 679–695. Springer, 2020. [8] S. J. Hwang, A. Kapoor, and S. B. Kang. Context-based automatic local image enhancement. In Computer Vision–ECCV 2012: 12th European Conference on Computer Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part I 12, pages 569–582. Springer Berlin Heidelberg, 2012. [9] Y. Jiang, X. Gong, D. Liu, Y. Cheng, C. Fang, X. Shen, J. Yang, P. Zhou, and Z. Wang. Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing, 30:2340–2349, 2021. [10] S. B. Kang, A. Kapoor, and D. Lischinski. Personalization of image enhancement. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 1799–1806. IEEE, 2010. [11] H.-U. Kim, Y. J. Koh, and C.-S. Kim. Global and local enhancement networks for paired and unpaired image enhancement. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXV 16, pages 339–354. Springer, 2020. [12] H.-U. Kim, Y. J. Koh, and C.-S. Kim. Pienet: Personalized image enhancement network. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXX 16, pages 374–390. Springer, 2020. [13] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014. [14] L. Liao, J. Xiao, Z. Wang, C.-W. Lin, and S. Satoh. Guidance and evaluation: Semantic-aware image inpainting for mixed scenes. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXVII 16, pages 683–700. Springer, 2020. [15] J. Park, J.-Y. Lee, D. Yoo, and I. S. Kweon. Distort-and-recover: Color enhancement using deep reinforcement learning. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 5928–5936, 2018. [16] T. Park, M.-Y. Liu, T.-C. Wang, and J.-Y. Zhu. Semantic image synthesis with spatially-adaptive normalization. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 2337–2346, 2019. [17] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Automatic differentiation in pytorch. 2017. [18] E. Reinhard, M. Adhikhmin, B. Gooch, and P. Shirley. Color transfer between images. IEEE Computer graphics and applications, 21(5):34–41, 2001. [19] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, pages 234–241. Springer, 2015. [20] M. Tomei, M. Cornia, L. Baraldi, and R. Cucchiara. Art2real: Unfolding the reality of artworks via semantically-aware image-to-image translation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 5849–5859, 2019. [21] R. Wang, Q. Zhang, C.-W. Fu, X. Shen, W.-S. Zheng, and J. Jia. Underexposed photo enhancement using deep illumination estimation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 6849–6857, 2019. [22] T. Wang, Y. Li, J. Peng, Y. Ma, X. Wang, F. Song, and Y. Yan. Real-time image enhancer via learnable spatial-aware 3d lookup tables. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pages 2471–2480, October 2021. [23] X. Wang, K. Yu, C. Dong, and C. C. Loy. Recovering realistic texture in image super-resolution by deep spatial feature transform. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 606–615, 2018. [24] E. Xie, W. Wang, Z. Yu, A. Anandkumar, J. M. Alvarez, and P. Luo. Segformer: Simple and efficient design for semantic segmentation with transformers. In Neural Information Processing Systems (NeurIPS), 2021. [25] S. W. Zamir, A. Arora, S. Khan, M. Hayat, F. S. Khan, M.-H. Yang, and L. Shao. Learning enriched features for real image restoration and enhancement. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXV 16, pages 492–511. Springer, 2020. [26] H. Zeng, J. Cai, L. Li, Z. Cao, and L. Zhang. Learning image-adaptive 3d lookup tables for high performance photo enhancement in real-time. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(04):2058–2073, 2022. [27] Y. Zhang, J. Zhang, and X. Guo. Kindling the darkness: A practical low-light image enhancer. In Proceedings of the 27th ACM international conference on multimedia, pages 1632–1640, 2019. [28] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Torralba. Scene parsing through ade20k dataset. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 633–641, 2017. [29] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE international conference on computer vision, pages 2223–2232, 2017. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88349 | - |
| dc.description.abstract | 近年來,隨著深度學習的快速發展,利用深度學習進行圖像美化工作獲得了很大的進展,特別是深度學習搭配 3D LUTs (3-dimensional lookup tabels) 的方法相當受到歡迎,因為其無論在性能還是時間方面都取得了很好的成果,但是此方法受限於 3D LUTs 採用的是全域美化方式,只能對圖像進行整體美化,無法依據不同類別執行不同美化方式,一定程度上限制了圖像美化的彈性。因此,本篇論文提出了一種兼具全域美化以及區域美化的方法,目的是希望能達成依據圖像語義資訊執行對應美化,本方法由兩個部分組成。第一,將語義分割模型產出的結果插入原模型中學習,用以輔助模型生成類別權重圖,並結合 3D LUTs 進行圖像美化。第二,加入了語義片段相似度損失函數,使得我們能更有效的學習不同類別的圖像所需具備的美化要素。綜合以上兩種方法,我們能夠做到針對物體類別進行圖像美化,實驗結果表明了我們的方法無論在視覺效果還是評量數據上都勝過了以往的方法。 | zh_TW |
| dc.description.abstract | In recent years, with the rapid advancement of deep learning, significant progress has been made in utilizing deep learning for image enhancement tasks. Particularly, the combination of deep learning and 3D LUTs (3-dimensional lookup tables) has become quite popular due to its remarkable achievements in both performance and time efficiency. However, this approach is constrained by the global enhancement method employed by 3D LUTs, which allows only overall image enhancement and cannot execute different enhancement techniques based on different image categories, restricting the flexibility of image enhancement.Therefore, this paper proposes a method that combines both global and local enhancement, aiming to achieve semantic-based enhancement. This method consists of two parts. Firstly, the segmentation map obtained from a semantic segmentation model are integrated into the original model for training, assisting in the generation of category maps that are combined with 3D LUTs to enhance the images. Secondly, a semantic patch distance loss function is introduced, enabling us to more effective learn the aesthetic elements specific to different image categories. By integrating these two methods, we are able to achieve specialized image enhancement tailored to object categories. The experimental results demonstrate that our approach outperforms other methods in terms of both visual quality and quantitative data. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-09T16:40:08Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-09T16:40:08Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements iii
摘要v Abstract vii Contents ix List of Figures xi List of Tables xiii Denotation xv Chapter 1 Introduction 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Chapter 2 Related Work 5 2.1 Local Enhancement Method . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Global Enhancement Method . . . . . . . . . . . . . . . . . . . . . 6 2.3 Combined Enhancement Method . . . . . . . . . . . . . . . . . . . . 7 Chapter 3 Methodology 9 3.1 3D LUTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2 Semantic-guided Category Map . . . . . . . . . . . . . . . . . . . . 11 3.3 Semantic Patch Distance Loss . . . . . . . . . . . . . . . . . . . . . 13 ix 3.4 Learning Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Chapter 4 Experiments 17 4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.3 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Chapter 5 Conclusion 25 References 27 | - |
| dc.language.iso | en | - |
| dc.subject | 圖像美化 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 三維查找表 | zh_TW |
| dc.subject | 電腦視覺 | zh_TW |
| dc.subject | 無監督學習 | zh_TW |
| dc.subject | 3D LUTs | en |
| dc.subject | Deep Learning | en |
| dc.subject | Computer Vision | en |
| dc.subject | Image Enhancement | en |
| dc.subject | Unpaired Learning | en |
| dc.title | 基於語義引導之非監督式深度學習圖像美化 | zh_TW |
| dc.title | Semantic-guided 3D Lookup Tables for Image Enhancement with Unpaired Learning | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 葉正聖;吳賦哲 | zh_TW |
| dc.contributor.oralexamcommittee | Jeng-Sheng Yeh;Fu-Che Wu | en |
| dc.subject.keyword | 圖像美化,三維查找表,深度學習,電腦視覺,無監督學習, | zh_TW |
| dc.subject.keyword | Image Enhancement,3D LUTs,Deep Learning,Computer Vision,Unpaired Learning, | en |
| dc.relation.page | 31 | - |
| dc.identifier.doi | 10.6342/NTU202301095 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-07-26 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 資訊網路與多媒體研究所 | - |
| 顯示於系所單位: | 資訊網路與多媒體研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 11.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
