Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 氣候變遷與永續發展國際學位學程(含碩士班、博士班)
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88316
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林宗弘zh_TW
dc.contributor.advisorThung-Hong LINen
dc.contributor.author馬納西zh_TW
dc.contributor.authorManassé ELUSMAen
dc.date.accessioned2023-08-09T16:30:31Z-
dc.date.available2023-11-10-
dc.date.copyright2023-08-09-
dc.date.issued2023-
dc.date.submitted2023-07-27-
dc.identifier.citationAbatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., & Hegewisch, K. C. (2018). TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Scientific data, 5(1), 1-12.
Abegaz, D. M., & Wims, P. (2015). Extension agents' awareness of climate change in Ethiopia. The Journal of Agricultural Education and Extension, 21(5), 479-495.
Ackerman, F., Stanton, E. A., & Bueno, R. (2009). The Caribbean and climate change–the costs of inaction.
Adams, R. M., Hurd, B. H., Lenhart, S., & Leary, N. (1998). Effects of global climate change on agriculture: an interpretative review. Climate research, 11(1), 19-30.
Adger, W. N. (2006). Vulnerability. Global environmental change, 16(3), 268-281.
Adger, W. N., & Kelly, P. M. (1999). Social vulnerability to climate change and the architecture of entitlements. Mitigation and adaptation strategies for global change, 4, 253-266.
Adhikari, T. B., & Basnyat, R. C. (1998). Effect of crop rotation and cultivar resistance on bacterial wilt of tomato in Nepal. Canadian Journal of Plant Pathology, 20(3), 283-287.
Adiku, S., Narh, S., Jones, J., Laryea, K., & Dowuona, G. (2008). Short-term effects of crop rotation, residue management, and soil water on carbon mineralization in a tropical cropping system. Plant and soil, 311, 29-38.
Ahmad, P. (2016). Water stress and crop plants: a sustainable approach. John Wiley & Sons.
Ahmed, S., & Fajber, E. (2009). Engendering adaptation to climate variability in Gujarat, India. Gender & Development, 17(1), 33-50.
Ajaz, A., Taghvaeian, S., Khand, K., Gowda, P. H., & Moorhead, J. E. (2019). Development and evaluation of an agricultural drought index by harnessing soil moisture and weather data. Water, 11(7), 1375.
Aksoy, M. A., & Isik-Dikmelik, A. (2008). Are low food prices pro-poor? Net food buyers and sellers in low-income countries.
Al-Abadi, A. M., Shahid, S., Ghalib, H.B., Handhal, A.M.,. (2017). A GIS-based integrated fuzzy
logic and analytic hierarchy process model for assessing water-harvesting zones in
Northeastern Maysan Governorate, Iraq. Arab. J. Sci. Eng. 42, 2487–2499.
Alam, M., Toriman, M., Siwar, C., Molla, R., & Talib, B. (2011). The impacts of agricultural supports for climate change adaptation: farm level assessment study on paddy farmers. Alam, MM, Mohd Ekhwan, T., Siwar, C., Molla, RI, and Talib, B, 178-182.
Alderman, H. (2010). Safety nets can help address the risks to nutrition from increasing climate variability. The Journal of Nutrition, 140(1), 148S-152S.
Alfthan, B., Skaalvik, J., Johnsen, K., Sevaldsen, P., Nellemann, C., Verma, R., & Hislop, L. (2011). Women at the frontline of climate change: Gender risks and hopes.
Alston, M. (2014). Gender mainstreaming and climate change. Women's Studies International Forum,
Amadou, M., Villamor, G., Attua, E., & Traoré, S. (2015). Comparing farmers’ perception of climate change and variability with historical climate data in the Upper East Region of Ghana. Ghana Journal of Geography, 7(1), 47-74.
Amarasinghe, U., Amarnath, G., Alahacoon, N., & Ghosh, S. (2020). How do floods and drought impact economic growth and human development at the sub-national level in India? Climate, 8(11), 123.
Ariani, M., Hervani, A., & Setyanto, P. (2018). Climate smart agriculture to increase productivity and reduce greenhouse gas emission–a preliminary study. IOP Conference Series: Earth and Environmental Science,
Assouline, N., & Dicko, T. F. (2019). Agricultural Financing in Haiti: Diagnosis and Recommendations.
Atiqul Haq, S. M. (2013). Nexus between perception, environment and fertility: A study on indigenous people in Bangladesh. Sustainable Development, 21(6), 372-384.
Bahta, Y. T., & Myeki, V. A. (2022). The Impact of Agricultural Drought on Smallholder Livestock Farmers: Empirical Evidence Insights from Northern Cape, South Africa. Agriculture, 12(4), 442.
Baik, J., Zohaib, M., Kim, U., Aadil, M., & Choi, M. (2019). Agricultural drought assessment based on multiple soil moisture products. Journal of Arid Environments, 167, 43-55.
Barrett, C. B., & Carter, M. R. (2000). Can't get ahead for falling behind: new directions for development policy to escape relief and poverty traps. Broadening Access and Strengthening Input Market Systems.
Barton-Dock, M., & Singh, R. (2015). Haiti: Toward a New Narrative–Systematic Country Diagnostic, 2015. Washington DC: the World Bank.
Bastakoti, R. C., Bharati, L., Bhattarai, U., & Wahid, S. M. (2017). Agriculture under changing climate conditions and adaptation options in the Koshi Basin. Climate and Development, 9(7), 634-648.
Bastakoti, R. C., Gupta, J., Babel, M. S., & van Dijk, M. P. (2014). Climate risks and adaptation strategies in the Lower Mekong River basin. Regional Environmental Change, 14(1), 207-219.
Baumhardt, R., Johnson, G., & Schwartz, R. (2012). Residue and long‐term tillage and crop rotation effects on simulated rain infiltration and sediment transport. Soil Science Society of America Journal, 76(4), 1370-1378.
Beharry, S. L., et al. (2019). A 35-year meteorological drought analysis in the Caribbean Region: case study of the small island state of Trinidad and Tobago. SN Applied Sciences 1.10, 1-16.
Belal, A.-A., El-Ramady, H. R., Mohamed, E. S., & Saleh, A. M. (2014). Drought risk assessment using remote sensing and GIS techniques. Arabian Journal of Geosciences, 7(1), 35-53.
Belal, A.-A., et al. (2014). Drought risk assessment using remote sensing and GIS techniques. Arabian Journal of Geosciences 7.1 pp.35-53.
Bender, J., & Weigel, H.-J. (2011). Changes in atmospheric chemistry and crop health: a review. Agronomy for Sustainable Development, 31, 81-89.
Béné, C., Headey, D., Haddad, L., & von Grebmer, K. (2016). Is resilience a useful concept in the context of food security and nutrition programmes? Some conceptual and practical considerations. Food security, 8, 123-138.
Berkes, F., & Jolly, D. (2002). Adapting to climate change: social-ecological resilience in a Canadian western Arctic community. Conservation ecology, 5(2).
Bezdicek, D. F., & Granatstein, D. (1989). Crop rotation efficiencies and biological diversity in farming systems. American Journal of Alternative Agriculture, 4(3-4), 111-119.
Birkholz, S., Muro, M., Jeffrey, P., & Smith, H. M. (2014). Rethinking the relationship between flood risk perception and flood management. Science of the total environment, 478, 12-20.
Boholm, A. (1998). Comparative studies of risk perception: a review of twenty years of research. Journal of risk research, 1(2), 135-163.
Bondarenko, M. (2020). Individual Countries 1km Population Density (2000-2020).
Brini, R. J. E. (2021). Renewable and non-renewable electricity consumption, economic growth and climate change: Evidence from a panel of selected African countries. 223, 120064.
Bryan, E., Ringler, C., Okoba, B., Roncoli, C., Silvestri, S., & Herrero, M. (2013). Adapting agriculture to climate change in Kenya: Household strategies and determinants. Journal of environmental management, 114, 26-35.
Bui, D. T., Lofman, O., Revhaug, I., & Dick, O. (2011). Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression. Natural hazards, 59(3), 1413-1444.
Burke, E. J., Brown, S. J., & Christidis, N. (2006). Modeling the recent evolution of global drought and projections for the twenty-first century with the Hadley Centre climate model. Journal of Hydrometeorology, 7(5), 1113-1125.
Cardona, O. D., Van Aalst, M. K., Birkmann, J., Fordham, M., Mc Gregor, G., Rosa, P., Pulwarty, R. S., Schipper, E. L. F., Sinh, B. T., & Décamps, H. (2012). Determinants of risk: exposure and vulnerability. In Managing the risks of extreme events and disasters to advance climate change adaptation: special report of the intergovernmental panel on climate change (pp. 65-108). Cambridge University Press.
Carroll, C., Halpin, M., Burger, P., Bell, K., Sallaway, M., & Yule, D. (1997). The effect of crop type, crop rotation, and tillage practice on runoff and soil loss on a Vertisol in central Queensland. Soil Research, 35(4), 925-940.
Cashman, A., Nurse, L., & John, C. (2010). Climate change in the Caribbean: the water management implications. The Journal of Environment & Development, 19(1), 42-67.
Cavallo, E., Galiani, S., Noy, I., & Pantano, J. (2013). Catastrophic natural disasters and economic growth. Review of Economics and Statistics, 95(5), 1549-1561.
Ceballos, A., Martınez-Fernández, J., Santos, F., & Alonso, P. (2002). Soil-water behaviour of sandy soils under semi-arid conditions in the Duero Basin (Spain). Journal of Arid Environments, 51(4), 501-519.
Chakraborty, A., & Sehgal, V. K. (2010). Assessment of agricultural drought using MODIS derived normalized difference water index.
Chakraborty, S., & Newton, A. C. (2011). Climate change, plant diseases and food security: an overview. Plant pathology, 60(1), 2-14.
Challinor, A. J., Ewert, F., Arnold, S., Simelton, E., & Fraser, E. (2009). Crops and climate change: progress, trends, and challenges in simulating impacts and informing adaptation. Journal of experimental botany, 60(10), 2775-2789.
Challinor, A. J., Watson, J., Lobell, D. B., Howden, S., Smith, D., & Chhetri, N. (2014). A meta-analysis of crop yield under climate change and adaptation. Nature climate change, 4(4), 287-291.
Cheng, C., Pan, J., & Wan, K. (2013). Research advances in the effects of rotation on cropland weeds. Chin. Agric. Sci. Bull, 29, 1-9.
Cheung, W. W., Lam, V. W., Sarmiento, J. L., Kearney, K., Watson, R., Zeller, D., & Pauly, D. (2010). Large‐scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Global Change Biology, 16(1), 24-35.
Chinasho, A., Bedadi, B., Lemma, T., Tana, T., Hordofa, T., & Elias, B. (2022). Farmers’ perceptions about irrigation roles in climate change adaptation and determinants of the choices to WUE-improving practices in southern Ethiopia. Air, Soil and Water Research, 15, 11786221221092454.
CNSA. (2013). Evaluation Previsionnelle de La Performance Des Recoltes de La Campagne Agricole de Printemps 2013.
CNSA. (2014). Evaluation Previsionnelle de La Performance Des Récoltes de La Campagne Agricole de Printemps 2014.
Codjoe, S. N. A., Atidoh, L. K., & Burkett, V. (2012). Gender and occupational perspectives on adaptation to climate extremes in the Afram Plains of Ghana. Climatic Change, 110(1), 431-454.
Cook, E. R., Seager, R., Cane, M. A., & Stahle, D. W. (2007). North American drought: Reconstructions, causes, and consequences. Earth-Science Reviews, 81(1-2), 93-134.
Crippa, M., Solazzo, E., Guizzardi, D., Monforti-Ferrario, F., Tubiello, F. N., & Leip, A. (2021). Food systems are responsible for a third of global anthropogenic GHG emissions. Nature Food, 2(3), 198-209.
Cutter, S. L., Barnes, L., Berry, M., Burton, C., Evans, E., Tate, E., & Webb, J. (2008). A place-based model for understanding community resilience to natural disasters. Global environmental change, 18(4), 598-606.
Cutter, S. L., Boruff, B. J., & Shirley, W. L. (2003). Social vulnerability to environmental hazards. Social science quarterly, 84(2), 242-261.
Cvetković, V. M., Roder, G., Öcal, A., Tarolli, P., & Dragićević, S. (2018). The role of gender in preparedness and response behaviors towards flood risk in Serbia. International journal of environmental research and public health, 15(12), 2761.
Dabrowska-Zielinska, K., Kogan, F., Ciolkosz, A., Gruszczynska, M., & Kowalik, W. (2002). Modelling of crop growth conditions and crop yield in Poland using AVHRR-based indices. International Journal of Remote Sensing, 23(6), 1109-1123.
Dahal, P., Shrestha, N. S., Shrestha, M. L., Krakauer, N. Y., Panthi, J., Pradhanang, S. M., Jha, A., & Lakhankar, T. (2016). Drought risk assessment in central Nepal: temporal and spatial analysis. Natural hazards, 80(3), 1913-1932.
Dahlman, R. L. L. (2023). Climate Change: Global Temperature. https://www.climate.gov/news-features/understanding-climate/climate-change-global-temperature?
Danso-Abbeam, G., Ojo, T. O., Baiyegunhi, L. J., & Ogundeji, A. A. (2021). Climate change adaptation strategies by smallholder farmers in Nigeria: does non-farm employment play any role? Heliyon, 7(6), e07162.
Davis, K. F., Gephart, J. A., Emery, K. A., Leach, A. M., Galloway, J. N., & D’Odorico, P. (2016). Meeting future food demand with current agricultural resources. Global environmental change, 39, 125-132.
Dayal, K., Deo, R., & Apan, A. A. (2017). Drought modelling based on artificial intelligence and neural network algorithms: a case study in Queensland, Australia. In Climate change adaptation in Pacific countries (pp. 177-198). Springer.
Dayal, K. S., Deo, R. C., & Apan, A. A. (2018a). Investigating drought duration-severity-intensity characteristics using the Standardized Precipitation-Evapotranspiration Index: case studies in drought-prone Southeast Queensland. Journal of Hydrologic Engineering, 23(1), 05017029.
Dayal, K. S., Deo, R. C., & Apan, A. A. (2018b). Spatio-temporal drought risk mapping approach and its application in the drought-prone region of south-east Queensland, Australia. Natural hazards, 93(2), 823-847.
Degani, E., Leigh, S. G., Barber, H. M., Jones, H. E., Lukac, M., Sutton, P., & Potts, S. G. (2019). Crop rotations in a climate change scenario: short-term effects of crop diversity on resilience and ecosystem service provision under drought. Agriculture, Ecosystems & Environment, 285, 106625.
Denton, F. (2002). Climate change vulnerability, impacts, and adaptation: Why does gender matter? Gender & Development, 10(2), 10-20.
Deressa, T. T., Hassan, R. M., Ringler, C., Alemu, T., & Yesuf, M. (2008). Analysis of the determinants of farmers' choice of adaptation methods and perceptions of climate change in the Nile Basin of Ethiopia [in Amharic].
Devereux, S. (2007). The impact of droughts and floods on food security and policy options to alleviate negative effects. Agricultural Economics, 37, 47-58.
Diamantopoulos, A., Schlegelmilch, B. B., Sinkovics, R. R., & Bohlen, G. M. (2003). Can socio-demographics still play a role in profiling green consumers? A review of the evidence and an empirical investigation. Journal of Business research, 56(6), 465-480.
Díaz, S. M., Settele, J., Brondízio, E., Ngo, H., Guèze, M., Agard, J., Arneth, A., Balvanera, P., Brauman, K., & Butchart, S. (2019). The global assessment report on biodiversity and ecosystem services: Summary for policy makers.
Dixon, J. (1999). A cultural economy model for studying food systems. Agriculture and Human values, 16, 151-160.
Djoudi, H., & Brockhaus, M. (2011). Is adaptation to climate change gender neutral? Lessons from communities dependent on livestock and forests in northern Mali. International Forestry Review, 13(2), 123-135.
Eakin, H. (2005). Institutional change, climate risk, and rural vulnerability: Cases from Central Mexico. World development, 33(11), 1923-1938.
Eakin, H., Wehbe, M., Ávila, C., Torres, G. S., & Bojórquez-Tapia, L. A. (2013). Social vulnerability of farmers in Mexico and Argentina. In Climate Change and Vulnerability and Adaptation (pp. 273-294). Routledge.
Easton, Z. M. (2021). Soil and soil water relationships.
Ehsan, S., Begum, R. A., Maulud, K. N. A., & Yaseen, Z. M. (2022). Households’ perceptions and socio-economic determinants of climate change awareness: Evidence from Selangor Coast Malaysia. Journal of environmental management, 316, 115261.
Eitzinger, A., Läderach, P., Carmona, S., Navarro, C., & Collet, L. (2013). Prediction of the impact of climate change on coffee and mango growing areas in Haiti. Centro Internacional de Agricultura Tropical (CIAT), Cali, Colombia.
Ericksen, P. J. (2008). What is the vulnerability of a food system to global environmental change? Ecology and Society, 13(2).
Esfahanian, E., Nejadhashemi, A. P., Abouali, M., Adhikari, U., Zhang, Z., Daneshvar, F., & Herman, M. R. (2017). Development and evaluation of a comprehensive drought index. Journal of environmental management, 185, 31-43.
FAO. (2008). Climate change and food security: a framework document. FAO Rome.
FAO. (2016). FAO. "Drought Characteristics and Management in the Caribbean.".
FAO. (2021a). 2021 The impact of disasters and crises on agriculture and food security. FAO.
FAO. (2021b). Haiti. Response Overview July 2021. https://www.fao.org/publications/card/en/c/CB5697EN/#:~:text=Haiti%20is%20one%20of%20the,the%20effects%20of%20necessary%20preventive
FAO. (2022). FAOSTAT HAITI https://www.fao.org/faostat/en/#country/93
FAO. (2023a). Contribution of Haiti's food system to GHG emissions
FAO. (2023b). Sustainable soil and land management for climate-smart agriculture in practice. https://shorturl.at/qR456
FAO, F. (2018). The future of food and agriculture: alternative pathways to 2050. Food and Agriculture Organization of the United Nations Rome.
FAO, F. a. A. O. o. t. U. N. (2005). Trade reforms and food security: Conceptualizing the linkages. FAO.
FAO, I., UNICEF, WFP and WHO. . (2020). The State of Food Security and Nutrition in the World 2020. Transforming food systems for affordable healthy diets. .
Feinstein, N., & Mach, K. (2020). Three roles for education in climate change adaptation. Climate policy, 20(3), 317-322.
Feizizadeh, B., Blaschke, T., & Rafiq, L. (2011). GIS-Based Landslide Susceptibility Mapping: A Case Study in Bostan Abad County, Iran. International conference Geoinformatics for Disaster Management,
Feng, P., Wang, B., Li Liu, D., & Yu, Q. (2019). Machine learning-based integration of remotely-sensed drought factors can improve the estimation of agricultural drought in South-Eastern Australia. Agricultural Systems, 173, 303-316.
FEWSNET. (2017). Market Fundamentals Workshop Proceedings.” Port-au-Prince, Haiti.
FEWSNET. (2018). Haiti: Staple Food Market Fundamentals, March 2018 (FEWS NET Haiti: Staple Food Market Fundamentals, Issue.
Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International journal of climatology, 37(12), 4302-4315.
Fierros-González, I., & Lopez-Feldman, A. (2021). Farmers’ perception of climate change: A review of the literature for Latin America. Frontiers in Environmental Science, 9, 672399.
Fischer, G., Nachtergaele, F., Prieler, S., Van Velthuizen, H., Verelst, L., & Wiberg, D. (2008). Global agro-ecological zones assessment for agriculture (GAEZ 2008). IIASA, Laxenburg, Austria and FAO, Rome, Italy, 10.
Flórez Gómez, L. Y., Pico Mendoza, J., Guerrero, C. D., & Carreño, A. E. (2023). Technology Transfer Model for Small-Scale Farms. Sustainability, 15(6), 5320.
Folke, C. (2006). Resilience: The emergence of a perspective for social–ecological systems analyses. Global environmental change, 16(3), 253-267.
Fraser, E. D., Mabee, W., & Figge, F. (2005). A framework for assessing the vulnerability of food systems to future shocks. Futures, 37(6), 465-479.
Freudenburg, W. R. (1993). Risk and recreancy: Weber, the division of labor, and the rationality of risk perceptions. Social forces, 71(4), 909-932.
Funk, C. C., & Brown, M. E. (2009). Declining global per capita agricultural production and warming oceans threaten food security. Food Security, 1, 271-289.
Gajanayake, A., Khan, T., & Zhang, G. (2020). Post-disaster reconstruction of road infrastructure: decision making processes in an Australian context. European journal of transport and infrastructure research, 20(1), 1-16.
Gallopín, G. C. (2006). Linkages between vulnerability, resilience, and adaptive capacity. Global environmental change, 16(3), 293-303.
Gandure, S., Walker, S., & Botha, J. (2013). Farmers' perceptions of adaptation to climate change and water stress in a South African rural community. Environmental Development, 5, 39-53.
Garnett, T. (2011). Where are the best opportunities for reducing greenhouse gas emissions in the food system (including the food chain)? Food policy, 36, S23-S32.
Gebremedhin, S., Getahun, A., Anteneh, W., Bruneel, S., & Goethals, P. (2018). A drivers-pressure-state-impact-responses framework to support the sustainability of fish and fisheries in Lake Tana, Ethiopia. Sustainability, 10(8), 2957.
Giordano, T. (2016). Une étude exhaustive et stratégique du secteur agricole/rural haïtien et des investissements publics requis pour son développement. Chapitre 13. Convention CO0075-15 BID/IDB,
Goldszal, A. F., & Pham, D. L. (2000). Volumetric segmentation. In Handbook of medical imaging (pp. 185-194).
Gopinath, G., Ambili, G., Gregory, S. J., & Anusha, C. (2015). Drought risk mapping of south-western state in the Indian peninsula–A web based application. Journal of environmental management, 161, 453-459.
Gore, C. (1993). Entitlement relations and ‘unruly’social practices: a comment on the work of Amartya Sen.
Greenbaum, A. (1995). Taking stock of two decades of research on the social bases of environmental concern. Environmental sociology: Theory and practice, 125-152.
Gu, D., Wang, Q., & Otieno, D. (2017). Canopy transpiration and stomatal responses to prolonged drought by a dominant desert species in Central Asia. Water, 9(6), 404.
Guo, H., Zhang, X., Lian, F., Gao, Y., Lin, D., & Wang, J. a. (2016). Drought risk assessment based on vulnerability surfaces: a case study of maize. Sustainability, 8(8), 813.
Guo, X., Fernando, W., & Entz, M. (2005). Effects of crop rotation and tillage on blackleg disease of canola. Canadian Journal of Plant Pathology, 27(1), 53-57.
Habiba, U., Shaw, R., & Takeuchi, Y. (2012). Farmer's perception and adaptation practices to cope with drought: Perspectives from Northwestern Bangladesh. International Journal of Disaster Risk Reduction, 1, 72-84.
Haddad, L., Hawkes, C., Webb, P., Thomas, S., Beddington, J., Waage, J., & Flynn, D. (2016). A new global research agenda for food. Nature, 540(7631), 30-32.
Haile, M. G., Wossen, T., Tesfaye, K., & von Braun, J. (2017). Impact of climate change, weather extremes, and price risk on global food supply. Economics of Disasters and Climate Change, 1, 55-75.
Han, L., Ding, J., Han, Q., Ding, R., Nie, J., Jia, Z., & Li, W. (2012). Effects of alfalfa-grain (oil) crop plowing rotation on soil moisture and crop yield in Loess Plateau. Transactions of the Chinese Society of Agricultural Engineering, 28(24), 129-137.
Han, L., Zhang, Q., Ma, P., Jia, J., & Wang, J. (2016). The spatial distribution characteristics of a comprehensive drought risk index in southwestern China and underlying causes. Theoretical and applied climatology, 124(3), 517-528.
Hansen, J. W., Marx, S. M., & Weber, E. U. (2004). The role of climate perceptions, expectations, and forecasts in farmer decision making: the Argentine Pampas and South Florida: Final Report of an IRI Seed Grant Project.
Hao, L., Zhang, X., & Liu, S. (2012). Risk assessment to China’s agricultural drought disaster in county unit. Natural hazards, 61(2), 785-801.
Hao, Z., AghaKouchak, A., Nakhjiri, N., & Farahmand, A. (2014). Global integrated drought monitoring and prediction system. Scientific data, 1(1), 1-10.
Haque, A. S., Kumar, L., & Bhullar, N. (2023). Gendered perceptions of climate change and agricultural adaptation practices: a systematic review. Climate and Development, 1-18.
Hassan, R. M., & Nhemachena, C. (2008). Determinants of African farmers’ strategies for adapting to climate change: Multinomial choice analysis. African Journal of Agricultural and Resource Economics, 2(311-2016-5521), 83-104.
Hategekimana, Y., Yu, L., Nie, Y., Zhu, J., Liu, F., & Guo, F. (2018). Integration of multi-parametric fuzzy analytic hierarchy process and GIS along the UNESCO World Heritage: a flood hazard index, Mombasa County, Kenya. Natural hazards, 92(2), 1137-1153.
Hatfield, J. L., & Prueger, J. H. (2015). Temperature extremes: Effect on plant growth and development. Weather and climate extremes, 10, 4-10.
Hayami, Y., & Ruttan, V. W. (1971). Agricultural development: an international perspective. Baltimore, Md/London: The Johns Hopkins Press.
Hendrix, C. S., & Salehyan, I. (2012). Climate change, rainfall, and social conflict in Africa. Journal of Peace Research, 49(1), 35-50.
Herrera, D. A., et al. (2020). Dynamical characteristics of drought in the Caribbean from observations and simulationS. Journal of Climate 33.24, 10773-10797.
Hertel, T., & Liu, J. (2016). Implications of Water Scarcity for Economic Growth (OECD Environment Working Papers).
Hertel, T. W., & Rosch, S. D. (2010). Climate change, agriculture, and poverty. Applied economic perspectives and policy, 32(3), 355-385.
HLPE, H. L. P. o. E. o. F. S. a. N. (2017). Nutrition and food systems. A report by the High Level Panel of Experts on Food Security and
Nutrition of the Committee on World Food Security, Rome. https://www.fao.org/3/i7846e/i7846e.pdf
Hodges, R. J., Buzby, J. C., & Bennett, B. (2011). Postharvest losses and waste in developed and less developed countries: opportunities to improve resource use. The Journal of Agricultural Science, 149(S1), 37-45.
HONG, J., KANG, J.-y., LIU, Y.-q., GAO, X.-z., & YI, X.-x. (2019). Effects of Continuous Cropping of Lettuce and Rotation of Lettuce-Spinach on Soil Bacterial Community Structure. Biotechnology Bulletin, 35(8), 17.
Hong, M., Lee, S.-H., Lee, S.-J., & Choi, J.-Y. (2021). Application of high-resolution meteorological data from NCAM-WRF to characterize agricultural drought in small-scale farmlands based on soil moisture deficit. Agricultural Water Management, 243, 106494.
Hoque, M. A.-A., Phinn, S., Roelfsema, C., & Childs, I. (2018). Assessing tropical cyclone risks using geospatial techniques. Applied geography, 98, 22-33.
Hoque, M. A.-A., Pradhan, B., & Ahmed, N. (2020). Assessing drought vulnerability using geospatial techniques in northwestern part of Bangladesh. Science of The Total Environment, 705, 135957.
Hoque, M. A.-A., Pradhan, B., Ahmed, N., & Sohel, M. S. I. (2021). Agricultural drought risk assessment of Northern New South Wales, Australia using geospatial techniques. Science of The Total Environment, 756, 143600.
Hoque, M. A. A., Phinn, S., Roelfsema, C., & Childs, I. (2018). Assessing tropical cyclone risks using geospatial techniques. Applied geography, 98,, 22-33.
Howden, S. M., Soussana, J.-F., Tubiello, F. N., Chhetri, N., Dunlop, M., & Meinke, H. (2007). Adapting agriculture to climate change. Proceedings of the National Academy of Sciences, 104(50), 19691-19696.
Howe, P. D., Markowitz, E. M., Lee, T. M., Ko, C.-Y., & Leiserowitz, A. (2013). Global perceptions of local temperature change. Nature climate change, 3(4), 352-356.
Hu, L. t., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural equation modeling: a multidisciplinary journal, 6(1), 1-55.
Huang, S., Huang, Q., Chang, J., Leng, G., & Xing, L. (2015). The response of agricultural drought to meteorological drought and the influencing factors: A case study in the Wei River Basin, China. Agricultural Water Management, 159, 45-54.
Hutchinson, S., Gomes, C., Alleyne, D., & Phillips, W. (2013). An assessment of the economic and social impacts of climate change on the agriculture sector in the Caribbean.
Huynh, P. T., & Resurreccion, B. P. (2014). Women's differentiated vulnerability and adaptations to climate-related agricultural water scarcity in rural Central Vietnam. Climate and Development, 6(3), 226-237.
Ingram, J. (2011). A food systems approach to researching food security and its interactions with global environmental change. Food security, 3, 417-431.
Ingram, J., & Brklacich, M. (2002). Global environmental change and food systems-GECAFS: a new interdisciplinary research project. Erde, 133(4), 427.
IPCC. (2023). Summary for Policymakers. In: Climate Change 2023: Synthesis Report. A Report of the Intergovernmental Panel on
Climate Change. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on
Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, 36 pages. (in press).
Islam, N., & Winkel, J. (2017). Climate change and social inequality.
Jacobs, J. E., & Simpkins, S. D. (2005). Leaks in the pipeline to math, science, and technology careers. Jossey-Bass San Francisco, CA.
Jain, V. K., Pandey, R., & Jain, M. K. (2015). Spatio-temporal assessment of vulnerability to drought. Natural Hazards, 76(1), 443-469.
Jamal, A. M., Antwi-Agyei, P., Baffour-Ata, F., Nkiaka, E., Antwi, K., & Gbordzor, A. (2021). Gendered perceptions and adaptation practices of smallholder cocoa farmers to climate variability in the Central Region of Ghana. Environmental Challenges, 5, 100293.
Jehanzaib, M., & Kim, T.-W. (2020). Exploring the influence of climate change-induced drought propagation on wetlands. Ecological Engineering, 149, 105799.
Jha, C. K., Gupta, V., Chattopadhyay, U., & Amarayil Sreeraman, B. (2018). Migration as adaptation strategy to cope with climate change: A study of farmers’ migration in rural India. International Journal of Climate Change Strategies and Management, 10(1), 121-141.
Jha, C. K., Gupta, V., Chattopadhyay, U., & Sreeraman, B. A. (2017). Migration as adaptation strategy to cope with climate change: A study of farmers’ migration in rural India. International Journal of Climate Change Strategies and Management.
Jiao, W., Tian, C., Chang, Q., Novick, K. A., & Wang, L. (2019). A new multi-sensor integrated index for drought monitoring. Agricultural and forest meteorology, 268, 74-85.
Jones, A. D., Ngure, F. M., Pelto, G., & Young, S. L. (2013). What are we assessing when we measure food security? A compendium and review of current metrics. Advances in nutrition, 4(5), 481-505.
Jun, K.-S., Chung, E.-S., Kim, Y.-G., & Kim, Y. (2013). A fuzzy multi-criteria approach to flood risk vulnerability in South Korea by considering climate change impacts. Expert Systems with Applications, 40(4), 1003-1013.
Karamouz, M., Zeynolabedin, A., & Olyaei, M. (2015). Mapping Regional Drought Vulnerability: A Case Study. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 40.
Karsenty, A., & Ongolo, S. (2012). Can “fragile states” decide to reduce their deforestation? The inappropriate use of the theory of incentives with respect to the REDD mechanism. Forest policy and economics, 18, 38-45.
Kearney, J. (2010). Food consumption trends and drivers. Philosophical transactions of the royal society B: biological sciences, 365(1554), 2793-2807.
Kelly, P. M., & Adger, W. N. (2000). Theory and practice in assessing vulnerability to climate change andFacilitating adaptation. Climatic change, 47(4), 325-352.
Kelman, I., Orlowska, J., Upadhyay, H., Stojanov, R., Webersik, C., Simonelli, A. C., Procházka, D., & Němec, D. (2019). Does climate change influence people’s migration decisions in Maldives? Climatic change, 153, 285-299.
Khan, M. S. A. (2008). Disaster preparedness for sustainable development in Bangladesh. Disaster Prevention and Management: An International Journal.
Khodadadi, M., Alewell, C., Mirzaei, M., Ehssan-Malahat, E., Asadzadeh, F., Strauss, P., & Meusburger, K. (2021). Deforestation effects on soil erosion rates and soil physicochemical properties in Iran: a case study of using fallout radionuclides in a Chernobyl contaminated area. Soil Discussions, 1-41.
Kim, T.-W., & Jehanzaib, M. (2020). Drought risk analysis, forecasting and assessment under climate change. In (Vol. 12, pp. 1862): MDPI.
Kogan, F. N. (1997). Global drought watch from space. Bulletin of the American Meteorological Society, 78(4), 621-636.
Kongsager, R. (2018). Linking climate change adaptation and mitigation: A review with evidence from the land-use sectors. Land, 7(4), 158.
Kumar, S., Mishra, A. K., Pramanik, S., Mamidanna, S., & Whitbread, A. (2020). Climate risk, vulnerability and resilience: Supporting livelihood of smallholders in semiarid India. Land Use Policy, 97, 104729.
Kutılek, M., & Nielsen, D. R. (1994). Soil hydrology. Catena-Verlag: Cremlingen.
Lachaud, M. A., Bravo‐Ureta, B. E., & Ludena, C. E. (2022). Economic effects of climate change on agricultural production and productivity in Latin America and the Caribbean (LAC). Agricultural Economics, 53(2), 321-332.
Lane Chad S., S. P. H., Matthew T. Kerr. (2014). Beyond the Mayan Lowlands: impacts of the Terminal Classic Drought in the Caribbean Antilles. Quaternary Science Reviews, Volume 86, 2014,, 89-98,.
Lau, L. J., & Yotopoulos, P. A. (1989). The meta-production function approach to technological change in world agriculture. Journal of development economics, 31(2), 241-269.
Lehner, B. (2019). HydroRIVERS Global river network delineation derived from HydroSHEDS data at 15 arc-second resolution Technical Documentation Version 1.0, 1–7. In.
Lewis, C. T. (2022). Climate Change and the Caribbean: Challenges and Vulnerabilities in Building Resilience to Tropical Cyclones. Climate, 10(11), 178.
Lewis, L., Onsongo, M., Njapau, H., Schurz-Rogers, H., Luber, G., Kieszak, S., Nyamongo, J., Backer, L., Dahiye, A. M., & Misore, A. (2005). Aflatoxin contamination of commercial maize products during an outbreak of acute aflatoxicosis in eastern and central Kenya. Environmental health perspectives, 113(12), 1763-1767.
Li, F., Li, H., Lu, W., Zhang, G., & Kim, J.-C. (2019). Meteorological drought monitoring in Northeastern China using multiple indices. Water, 11(1), 72.
Lin, J. Y. (1991). Education and innovation adoption in agriculture: evidence from hybrid rice in China. American Journal of Agricultural Economics, 73(3), 713-723.
Lindsey, R. (2022). Climate Change: Annual greenhouse gas index https://www.climate.gov/news-features/understanding-climate/climate-change-annual-greenhouse-gas-index
Liu, H. Q., & Huete, A. (1995). A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE transactions on geoscience and remote sensing, 33(2), 457-465.
Loayza, N. V., Olaberria, E., Rigolini, J., & Christiaensen, L. (2012). Natural disasters and growth: Going beyond the averages. World Development, 40(7), 1317-1336.
Lobell, D. B. (2014). Climate change adaptation in crop production: Beware of illusions. Global Food Security, 3(2), 72-76.
Lobell, D. B., Burke, M. B., Tebaldi, C., Mastrandrea, M. D., Falcon, W. P., & Naylor, R. L. (2008). Prioritizing climate change adaptation needs for food security in 2030. Science, 319(5863), 607-610.
Ludgate, N. (2016). Moser Gender Analysis Framework https://ingenaes.illinois.edu/wp-content/uploads/ING-Info-Sheet-2016_09-3-Moser-Triple-Role-Framework-Ludgate.pdf
Lutomia, C. K., Obare, G. A., Kariuki, I. M., & Muricho, G. S. (2019). Determinants of gender differences in household food security perceptions in the Western and Eastern regions of Kenya. Cogent food & agriculture, 5(1), 1694755.
Mandić, A. (2020). Structuring challenges of sustainable tourism development in protected natural areas with driving force–pressure–state–impact–response (DPSIR) framework. Environment Systems and Decisions, 40(4), 560-576.
Manyena, S. B. (2006). The concept of resilience revisited. Disasters, 30(4), 434-450.
Marchand, P., Carr, J. A., Dell’Angelo, J., Fader, M., Gephart, J. A., Kummu, M., Magliocca, N. R., Porkka, M., Puma, M. J., & Ratajczak, Z. (2016). Reserves and trade jointly determine exposure to food supply shocks. Environmental Research Letters, 11(9), 095009.
Marino, E., & Ribot, J. (2012). Special issue introduction: adding insult to injury: climate change and the inequities of climate intervention. In (Vol. 22, pp. 323-328): Elsevier.
MARNDR. (2014). “Resultats Des Enquetes Nationales de La Production Agricole. Année 2014.” Port-au-Prince, Haïti: Unite d’Etude et de Programmation. https://reliefweb.int/sites/reliefweb.int/files/resources/Haiti%20MFR_final_20180326%20%281%29.pdf
MARNDR. (2015). Situation de La Filière Riz 2014-2015.” Port-au-Prince, Haïti: MARNDR.
MARNDR. (2017). Agricultural Production Data 2014 - 2016.
Marshall, N. A. (2010). Understanding social resilience to climate variability in primary enterprises and industries. Global environmental change, 20(1), 36-43.
Martínez-Fernández, J., González-Zamora, A., Sánchez, N., Gumuzzio, A., & Herrero-Jiménez, C. (2016). Satellite soil moisture for agricultural drought monitoring: Assessment of the SMOS derived Soil Water Deficit Index. Remote Sensing of Environment, 177, 277-286.
Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., & Gomis, M. (2021). Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change, 2.
McCarthy, J. J., Canziani, O. F., Leary, N. A., Dokken, D. J., & White, K. S. (2001). Climate change 2001: impacts, adaptation, and vulnerability: contribution of Working Group II to the third assessment report of the Intergovernmental Panel on Climate Change (Vol. 2). Cambridge University Press.
McCright, A. M. (2010). The effects of gender on climate change knowledge and concern in the American public. Population and Environment, 32(1), 66-87.
ME, M. o. E. (2019). Politique nationale de luttes contre les changement climatiques en Haïti. https://shorturl.at/jnxDP
ME, M. o. t. E. (2022). Plan National d’Adaptation au Changement Climatique (PNA) HAÏTI / 2022 - 2030. https://shorturl.at/tQV03
Mehmood, M. S., Li, G., Khan, A. R., Siddiqui, B. N., Tareen, W. U. H., Kubra, A. T., & Ateeq-Ur-Rehman, M. (2021). An evaluation of farmers’ perception, awareness, and adaptation towards climate change: a study from Punjab province Pakistan. Ciência Rural, 52.
Meldrum, G., Mijatović, D., Rojas, W., Flores, J., Pinto, M., Mamani, G., Condori, E., Hilaquita, D., Gruberg, H., & Padulosi, S. (2018). Climate change and crop diversity: farmers’ perceptions and adaptation on the Bolivian Altiplano. Environment, Development and Sustainability, 20(2), 703-730.
Mimura, N., Nurse, L., McLean, R. F., Agard, J., Briguglio, L., Lefale, P., Payet, R., & Sem, G. (2007). Small islands. Climate change, 16, 687-716.
Mishra, A. K., & Singh, V. P. (2010). A review of drought concepts. Journal of hydrology, 391(1-2), 202-216.
Mohsenipour, M., Shahid, S., Chung, E.-s., & Wang, X.-j. (2018). Changing pattern of droughts during cropping seasons of Bangladesh. Water resources management, 32(5), 1555-1568.
Mullick, M. R. A., Tanim, A., & Islam, S. S. (2019). Coastal vulnerability analysis of Bangladesh coast using fuzzy logic based geospatial techniques. Ocean & Coastal Management, 174, 154-169.
Mullick, M. R. A., Tanim, A. H., & Islam, S. S. (2019). Coastal vulnerability analysis of Bangladesh coast using fuzzy logic based geospatial techniques. Ocean Coast Manage 174,
, 154–169.
Mustafa, G., Latif, I. A., Bashir, M. K., Shamsudin, M. N., & Daud, W. M. N. W. (2019). Determinants of farmers' awareness of climate change. Applied Environmental Education & Communication, 18(3), 219-233.
Myers, T. A., Maibach, E. W., Roser-Renouf, C., Akerlof, K., & Leiserowitz, A. A. (2013). The relationship between personal experience and belief in the reality of global warming. Nature climate change, 3(4), 343-347.
N’Dayegamiye, A., Nyiraneza, J., Grenier, M., Bipfubusa, M., & Drapeau, A. (2017). The benefits of crop rotation including cereals and green manures on potato yield and nitrogen nutrition and soil properties. Advances in Crop Science and Technology, 5(3), 279.
Nabikolo, D., Bashaasha, B., Mangheni, M., & Majaliwa, J. (2012). Determinants of climate change adaptation among male and female headed farm households in eastern Uganda. African Crop Science Journal, 20, 203-212.
Ncube, A., Mangwaya, P. T., & Ogundeji, A. A. (2018). Assessing vulnerability and coping capacities of rural women to drought: A case study of Zvishavane district, Zimbabwe. International Journal of Disaster Risk Reduction, 28, 69-79.
Nelson, G. C., Rosegrant, M. W., Koo, J., Robertson, R., Sulser, T., Zhu, T., Ringler, C., Msangi, S., Palazzo, A., & Batka, M. (2009). Climate change: Impact on agriculture and costs of adaptation (Vol. 21). Intl Food Policy Res Inst.
Nelson, V. (2010). Climate change and gender: what role for agricultural research among smallholder farmers in Africa? CIAT Working Document.
Nguyen, A. T., Hens, L., Nguyen, A. T., & Hens, L. (2019). Human Ecology of Climate Change Hazards: Concepts, Literature Review, and Methodology. Human Ecology of Climate Change Hazards in Vietnam: Risks for Nature and Humans in Lowland and Upland Areas, 3-36.
Nightingale, A. (2009). Warming up the climate change debate: A challenge to policy based on adaptation. Journal of Forest and Livelihood, 8(1), 84-89.
O'Brien, K., Eriksen, S., Sygna, L., & Naess, L. O. (2006). Questioning complacency: climate change impacts, vulnerability, and adaptation in Norway. AMBIO: A Journal of the Human Environment, 35(2), 50-56.
O'Connor, R. E., Bard, R. J., & Fisher, A. (1999). Risk perceptions, general environmental beliefs, and willingness to address climate change. Risk analysis, 19(3), 461-471.
o’Brien, K., Leichenko, R., Kelkar, U., Venema, H., Aandahl, G., Tompkins, H., Javed, A., Bhadwal, S., Barg, S., & Nygaard, L. (2004). Mapping vulnerability to multiple stressors: climate change and globalization in India. Global environmental change, 14(4), 303-313.
Omotoso, A. B., Daud, S. A., Okojie, L., & Omotayo, A. O. (2022). Rural infrastructure and production efficiency of food crop farmers: implication for rural development in Nigeria. African Journal of Science, Technology, Innovation and Development, 14(1), 197-203.
Oppong-Kyeremeh, H., & Bannor, R. (2018). Off-farm job as climate change adaptation strategy for small scale rice producers in the Volta region of Ghana. Journal of Energy and Natural Resource Management, 1(2).
Osaghae, E. E. (2007). Fragile states. Development in Practice, 17(4-5), 691-699.
Othman, A. N., Naim, W. M., & Noraini, S. (2012). GIS based multi-criteria decision making for landslide hazard zonation. Procedia-Social and Behavioral Sciences, 35, 595-602.
Ouda, S., Zohry, A. E.-H., Noreldin, T., Zohry, A., & Ouda, S. (2018). Crop rotation defeats pests and weeds. Crop Rotation: An Approach to Secure Future Food, 77-88.
Owino, V., Kumwenda, C., Ekesa, B., Parker, M. E., Ewoldt, L., Roos, N., Lee, W. T., & Tome, D. (2022). The impact of climate change on food systems, diet quality, nutrition, and health outcomes: A narrative review. Frontiers in Climate, 4.
Pachauri, R., & Meyer, L. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.
Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., Church, J. A., Clarke, L., Dahe, Q., & Dasgupta, P. (2014). Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Ipcc.
Padli, J., Habibullah, M. S., & Baharom, A. H. (2018). The impact of human development on natural disaster fatalities and damage: Panel data evidence. Economic research-Ekonomska istraživanja, 31(1), 1557-1573.
Palchaudhuri, M., & Biswas, S. (2016). Application of AHP with GIS in drought risk assessment for Puruliya district, India. Natural hazards, 84(3), 1905-1920.
Pandey, S., Pandey, A., Nathawat, M., Kumar, M., & Mahanti, N. (2012). Drought hazard assessment using geoinformatics over parts of Chotanagpur plateau region, Jharkhand, India. Natural hazards, 63(2), 279-303.
Parfitt, J., Barthel, M., & Macnaughton, S. (2010). Food waste within food supply chains: quantification and potential for change to 2050. Philosophical transactions of the royal society B: biological sciences, 365(1554), 3065-3081.
Parker, L., Bourgoin, C., Martinez-Valle, A., & Läderach, P. (2019). Vulnerability of the agricultural sector to climate change: The development of a pan-tropical Climate Risk Vulnerability Assessment to inform sub-national decision making. PloS one, 14(3), e0213641.
Parry, M. L., Canziani, O., Palutikof, J., Van der Linden, P., & Hanson, C. (2007). Climate change 2007-impacts, adaptation and vulnerability: Working group II contribution to the fourth assessment report of the IPCC (Vol. 4). Cambridge University Press.
Paton, D., & Johnston, D. (2017). Disaster resilience: an integrated approach. Charles C Thomas Publisher.
Pei, W., Fu, Q., Liu, D., Li, T.-x., Cheng, K., & Cui, S. (2018). Spatiotemporal analysis of the agricultural drought risk in Heilongjiang Province, China. Theoretical and Applied Climatology, 133(1), 151-164.
Pei, W., Fu, Q., Liu, D., Li, T., Cheng, K., & Cui, S. (2019). A novel method for agricultural drought risk assessment. Water resources management, 33(6), 2033-2047.
Pelling, M. (2010). Adaptation to climate change: from resilience to transformation. Routledge.
Pelling, M., & Dill, K. (2010). Disaster politics: tipping points for change in the adaptation of sociopolitical regimes. Progress in human geography, 34(1), 21-37.
Pereira, L. S., Oweis, T., & Zairi, A. (2002). Irrigation management under water scarcity. Agricultural water management, 57(3), 175-206.
Perry, A. L., Low, P. J., Ellis, J. R., & Reynolds, J. D. (2005). Climate change and distribution shifts in marine fishes. Science, 308(5730), 1912-1915.
Pielke Sr, R. A., Adegoke, J. O., Chase, T. N., Marshall, C. H., Matsui, T., & Niyogi, D. (2007). A new paradigm for assessing the role of agriculture in the climate system and in climate change. Agricultural and Forest Meteorology, 142(2-4), 234-254.
Pingali, P., Alinovi, L., & Sutton, J. (2005). Food security in complex emergencies: enhancing food system resilience. Disasters, 29, S5-S24.
Pörtner, H.-O. (2008). Ecosystem effects of ocean acidification in times of ocean warming: a physiologist’s view. Marine Ecology Progress Series, 373, 203-217.
Pörtner, H.-O., Roberts, D. C., Adams, H., Adler, C., Aldunce, P., Ali, E., Begum, R. A., Betts, R., Kerr, R. B., & Biesbroek, R. (2022). Climate change 2022: Impacts, adaptation and vulnerability. IPCC Geneva, Switzerland:.
Pörtner, H. O., Roberts, D. C., Adams, H., Adler, C., Aldunce, P., Ali, E., Begum, R. A., Betts, R., Kerr, R. B., & Biesbroek, R. (2022). Climate change 2022: impacts, adaptation and vulnerability.
Rahmati, O., Falah, F., Dayal, K. S., Deo, R. C., Mohammadi, F., Biggs, T., Moghaddam, D. D., Naghibi, S. A., & Bui, D. T. (2020). Machine learning approaches for spatial modeling of agricultural droughts in the south-east region of Queensland Australia. Science of The Total Environment, 699, 134230.
Ramstetter, L., & Habersack, F. (2020). Do women make a difference? Analysing environmental attitudes and actions of Members of the European Parliament. Environmental Politics, 29(6), 1063-1084.
Raney, T., Anríquez, G., Croppenstedt, A., Gerosa, S., Lowder, S. K., Matuschke, I., & Skoet, J. (2011). The role of women in agriculture.
Raza, A., Razzaq, A., Mehmood, S. S., Zou, X., Zhang, X., Lv, Y., & Xu, J. (2019). Impact of climate change on crops adaptation and strategies to tackle its outcome: A review. Plants, 8(2), 34.
Rezaei, E. E., Webber, H., Gaiser, T., Naab, J., & Ewert, F. (2015). Heat stress in cereals: Mechanisms and modelling. European Journal of Agronomy, 64, 98-113.
Roco, L., Engler, A., Bravo-Ureta, B. E., & Jara-Rojas, R. (2015). Farmers’ perception of climate change in mediterranean Chile. Regional environmental change, 15, 867-879.
Rodrigues, J. M. G. (2015). Cultural services in aquatic ecosystems. Ecosystem Services and River Basin Ecohydrology, 35-56.
Rose, A. (2004). Defining and measuring economic resilience to disasters. Disaster Prevention and Management: An International Journal, 13(4), 307-314.
Sachs, J. D. (2015). The age of sustainable development. In The Age of Sustainable Development. Columbia University Press.
Sahana, M., & Patel, P. P. (2019). A comparison of frequency ratio and fuzzy logic models for flood susceptibility assessment of the lower Kosi River Basin in India. Environmental Earth Sciences, 78(10), 1-27.
Santini, M., Noce, S., Antonelli, M., & Caporaso, L. (2022). Complex drought patterns robustly explain global yield loss for major crops. Scientific reports, 12(1), 1-17.
Saran, A., Singh, S., Gupta, N., Walke, S. C., Rao, R., Simiyu, C., Malhotra, S., Mishra, A., Puskur, R., & Masset, E. (2022). PROTOCOL: Interventions promoting resilience through climate‐smart agricultural practices for women farmers: A systematic review. Campbell Systematic Reviews, 18(3), e1274.
Sarwar, G., Schmeisky, H., Hussain, N., Muhammad, S., Ibrahim, M., & Safdar, E. (2008). Improvement of soil physical and chemical properties with compost application in rice-wheat cropping system. Pakistan Journal of Botany, 40(1), 275-282.
Schellnhuber, H. J., Hare, B., Serdeczny, O., Schaeffer, M., Adams, S., Baarsch, F., Schwan, S., Coumou, D., Robinson, A., & Vieweg, M. (2013). Turn down the heat: climate extremes, regional impacts, and the case for resilience. Turn down the heat: climate extremes, regional impacts, and the case for resilience.
Schimel, D., Stillwell, M., & Woodmansee, R. (1985). Biogeochemistry of C, N, and P in a soil catena of the shortgrass steppe. Ecology, 66(1), 276-282.
Schipanski, M. E., MacDonald, G. K., Rosenzweig, S., Chappell, M. J., Bennett, E. M., Kerr, R. B., Blesh, J., Crews, T., Drinkwater, L., & Lundgren, J. G. (2016). Realizing resilient food systems. BioScience, 66(7), 600-610.
Schipper, E. L. F. (2020). Maladaptation: when adaptation to climate change goes very wrong. One Earth, 3(4), 409-414.
Schmidhuber, J., & Tubiello, F. N. (2007). Global food security under climate change. Proceedings of the National Academy of Sciences, 104(50), 19703-19708.
Schmidt, A., Eitzinger, A., Sonder, K., Sain, G., Rizo, L., Rodriguez, B., Hellin, J., Fisher, M., Läderach, P., & San Vicente, F. (2012). Tortillas on the roaster (ToR): central America maize-beans systems and the changing climate.
Schwinning, S., & Sala, O. E. (2004). Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia, 141(2), 211-220.
Sen, A. (1982). Poverty and famines: an essay on entitlement and deprivation. Oxford university press.
Shabnam, N. (2014). Natural disasters and economic growth: A review. International Journal of Disaster Risk Science, 5(2), 157-163.
Sharma, J., & Ravindranath, N. H. (2019). Applying IPCC 2014 framework for hazard-specific vulnerability assessment under climate change. Environmental Research Communications, 1(5), 051004.
Sheffield, J., Goteti, G., Wen, F., & Wood, E. F. (2004). A simulated soil moisture based drought analysis for the United States. Journal of Geophysical Research: Atmospheres, 109(D24).
Sheffield, J., & Wood, E. F. (2012). Drought: past problems and future scenarios. Routledge.
Shukla, P. R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H. O., Roberts, D., Zhai, P., Slade, R., Connors, S., & Van Diemen, R. (2019). IPCC, 2019: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems.
Siddiqui, F., Salam, R. A., Lassi, Z. S., & Das, J. K. (2020). The intertwined relationship between malnutrition and poverty. Frontiers in Public Health, 8, 453.
Silvestri, S., Bryan, E., Ringler, C., Herrero, M., & Okoba, B. (2012). Climate change perception and adaptation of agro-pastoral communities in Kenya. Regional Environmental Change, 12(4), 791-802.
Simpson, M. C. (2010). Quantification and Magnitudeof Losses and Damages Resulting from the Impacts of Climate Change: Modelling the Transformational Impacts and Costs of Sea Level Rise in the Caribbean (Key Points andSummary for Policy Makers Document). In Quantification and Magnitudeof Losses and Damages Resulting from the Impacts of Climate Change: Modelling the Transformational Impacts and Costs of Sea Level Rise in the Caribbean (Key Points andSummary for Policy Makers Document) (pp. 32-32).
Simpson, M. C., Scott, D., New, M., Sim, R., Smith, D., Harrison, M., Eakin, C. M., Warrick, R., Strong, A. E., & Kouwenhoven, P. (2012). An overview of modelling climate change impacts in the Caribbean region with contribution from the Pacific Islands.
Singh, R. J., & Barton-Dock, M. (2015). Haiti: Toward a new narrative. World Bank.
Slette, I. J., Post, A. K., Awad, M., Even, T., Punzalan, A., Williams, S., Smith, M. D., & Knapp, A. K. (2019). How ecologists define drought, and why we should do better. Global Change Biology, 25(10), 3193-3200.
Smit, B., & Pilifosova, O. (2003). Adaptation to climate change in the context of sustainable development and equity. Sustainable Development, 8(9), 9.
Smit, B., & Wandel, J. (2006). Adaptation, adaptive capacity and vulnerability. Global environmental change, 16(3), 282-292.
Smith Jr, W. J., Liu, Z., Safi, A. S., & Chief, K. (2014). Climate change perception, observation and policy support in rural Nevada: A comparative analysis of Native Americans, non-native ranchers and farmers and mainstream America. Environmental Science & Policy, 42, 101-122.
Sobal, J., Khan, L. K., & Bisogni, C. (1998). A conceptual model of the food and nutrition system. Social science & medicine, 47(7), 853-863.
Solh, M., & van Ginkel, M. (2014). Drought preparedness and drought mitigation in the developing world׳ s drylands. Weather and Climate Extremes, 3, 62-66.
Sruthi, S., & Aslam, M. M. (2015). Agricultural drought analysis using the NDVI and land surface temperature data; a case study of Raichur district. Aquatic Procedia, 4, 1258-1264.
Stathers, T., Lamboll, R., & Mvumi, B. M. (2013). Postharvest agriculture in changing climates: its importance to African smallholder farmers. Food Security, 5, 361-392.
Staub, C., Gilot, A., Pierre, M., Murray, G., & Koenig, R. (2020). Coping with climatic shocks: local perspectives from Haiti’s rural mountain regions. Population and Environment, 42, 146-158.
Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M. M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., & Midgley, P. M. (2014). Climate Change 2013: The physical science basis. contribution of working group I to the fifth assessment report of IPCC the intergovernmental panel on climate change.
Stone, J., & Rahimifard, S. (2018). Resilience in agri-food supply chains: a critical analysis of the literature and synthesis of a novel framework. Supply Chain Management: An International Journal.
Stone, R. C., & Potgieter, A. (2008). Drought risks and vulnerability in rainfed agriculture: example of a case study in Australia. Options Mediterraneennes, 29-40.
Stramma, L., Prince, E. D., Schmidtko, S., Luo, J., Hoolihan, J. P., Visbeck, M., Wallace, D. W., Brandt, P., & Körtzinger, A. (2012). Expansion of oxygen minimum zones may reduce available habitat for tropical pelagic fishes. Nature Climate Change, 2(1), 33-37.
Sultana, F. (2014). Gendering climate change: Geographical insights. The Professional Geographer, 66(3), 372-381.
Swart, R., Robinson, J., & Cohen, S. (2003). Climate change and sustainable development: expanding the options. Climate policy, 3(sup1), S19-S40.
Thomas, T., Jaiswal, R., Galkate, R., Nayak, P., & Ghosh, N. (2016). Drought indicators-based integrated assessment of drought vulnerability: a case study of Bundelkhand droughts in central India. Natural hazards, 81(3), 1627-1652.
Timmerman, P. (1981). Vulnerability, resilience and the collapse ofsociety. A ReviewofModels and Possible Climatic Appli-cations. Toronto, Canada. Institute for Environmental Studies, University of Toronto.
Toreti, A., Bassu, S., Asseng, S., Zampieri, M., Ceglar, A., & Royo, C. (2022). Climate service driven adaptation may alleviate the impacts of climate change in agriculture. Communications Biology, 5(1), 1235.
Truong An, D. (2020). Shifting crop planting calendar as a climate change adaptation solution for rice cultivation region in the Long Xuyen Quadrilateral of Vietnam. Chilean journal of agricultural research, 80(4), 468-477.
Tscherning, K., Helming, K., Krippner, B., Sieber, S., & y Paloma, S. G. (2012). Does research applying the DPSIR framework support decision making? Land Use Policy, 29(1), 102-110.
Turner, N. C. (2019). Imposing and maintaining soil water deficits in drought studies in pots. Plant and Soil, 439(1), 45-55.
Twigg, J. (2015). Disaster risk reduction.
Tzul, F., Evans, F., Frutos, R., & Hulse, J. (1997). The impact of climate change on maize, RK beans, and rice production in Belize. Agriculture Department and National Meteorological Service, Comite Regional de Recursos Hidraulicos, Comision Centroamericano del Ambiente y Desarollo, US Country Studies Program, Proyecto Centroamericano Sobre Cambio Climatico.
Uddin, M. N., Bokelmann, W., & Dunn, E. S. (2017). Determinants of farmers’ perception of climate change: a case study from the coastal region of Bangladesh. American Journal of Climate Change, 6(1), 151-165.
UN, U. N. (2015). Department of Economic and Social Affairs; Population Division. World Population Ageing 2015. In: United Nations New York City.
UNDRR, U. N. f. D. R. R. (2009). 2009 UNISDR terminology on disaster risk reduction. https://www.undrr.org/publication/2009-unisdr-terminology-disaster-risk-reduction
Vallée, L. (2007). Achieving food security through food system resilience: the case of Belize Carleton University].
Vansteenkiste, J. (2022). Gender in the World Food Economy: Inequitable Transformation of Haiti’s Food Economy. Frontiers in Communication, 7, 1.
Vermeulen, S. J., Campbell, B. M., & Ingram, J. S. (2012). Climate change and food systems. Annual review of environment and resources, 37, 195-222.
Vicente-Molina, M., Fernández-Sainz, A., & Izagirre-Olaizola, J. (2018). Does gender make a difference in pro-environmental behavior? The case of the Basque Country University students. Journal of Cleaner Production, 176, 89-98.
Vinke, K., Rottmann, S., Gornott, C., Zabre, P., Nayna Schwerdtle, P., & Sauerborn, R. (2022a). Is migration an effective adaptation to climate-related agricultural distress in sub-Saharan Africa? Population and Environment, 43(3), 319-345.
Vinke, K., Rottmann, S., Gornott, C., Zabre, P., Nayna Schwerdtle, P., & Sauerborn, R. (2022b). Is migration an effective adaptation to climate-related agricultural distress in sub-Saharan Africa? Population and Environment, 1-27.
Vogt, J. V., & Somma, F. (2013). Drought and drought mitigation in Europe (Vol. 14). Springer Science & Business Media.
Vos, R., Rice, B., & Minot, N. (2022). 2022 Global food report on food crises: Joint analysis for better decisions: Mid-year update.
Walker, B., & Salt, D. (2012). Resilience practice: building capacity to absorb disturbance and maintain function. Island press.
Wanders, N., & Wada, Y. (2015). Human and climate impacts on the 21st century hydrological drought. Journal of hydrology, 526, 208-220.
Wang, H., Zhang, X., Yu, X., Hou, H., Fang, Y., Ma, Y., & Zhang, G. (2021). Maize‐potato rotation maintains soil water balance and improves productivity. Agronomy Journal, 113(1), 645-656.
Waters, D. (2011). Supply chain risk management: vulnerability and resilience in logistics. Kogan Page Publishers.
WB, W. B. (2022). What You Need to Know About Food Security and Climate Change. https://www.worldbank.org/en/news/feature/2022/10/17/what-you-need-to-know-about-food-security-and-climate-change
Weber, E. U. (2010). What shapes perceptions of climate change? Wiley Interdisciplinary Reviews: Climate Change, 1(3), 332-342.
Weinstein, N. D. (1989). Optimistic biases about personal risks. Science, 246(4935), 1232-1233.
WFP, W., & UNICEF. (2022). The state of food security and nutrition in the world 2022.
WFP, W. F. P. (2016). El Niño, Drought Blamed As Severe Food Insecurity Doubles In 6 Months In Haiti. Retrieved A/22/2022 from https://www.wfp.org/news/el-nino-drought-blamed-severe-food-insecurity-doubles-6-months-haiti
Wight, V., Kaushal, N., Waldfogel, J., & Garfinkel, I. (2014). Understanding the link between poverty and food insecurity among children: does the definition of poverty matter? Journal of Children and Poverty, 20(1), 1-20.
Wijitkosum, S., & Sriburi, T. (2019). Fuzzy AHP integrated with GIS analyses for drought risk assessment: A case study from upper Phetchaburi River basin, Thailand. Water, 11(5), 939.
Wilhite, D. A. (2000). Drought as a natural hazard: concepts and definitions.
Women—Users, F. (1999). Preservers and Managers of Agrobiodiversity. FAO: Rome, Italy, 1-4.
WomenWatch, U. (2009). Women, gender equality and climate change. Retrieved: September, 6, 2016.
WorldPovertyClock. (2023). People living in extreme poverty in Haiti by world data lab. https://worldpoverty.io/map
Wright, P., Falloon, R., & Hedderley, D. (2015). Different vegetable crop rotations affect soil microbial communities and soilborne diseases of potato and onion: literature review and a long-term field evaluation. New Zealand Journal of Crop and Horticultural Science, 43(2), 85-110.
Yegbemey, R. N., Kabir, H., Awoye, O. H., Yabi, J. A., & Paraïso, A. A. (2014). Managing the agricultural calendar as coping mechanism to climate variability: A case study of maize farming in northern Benin, West Africa. Climate Risk Management, 3, 13-23.
Yohe, G., & Tol, R. S. (2002). Indicators for social and economic coping capacity—moving toward a working definition of adaptive capacity. Global environmental change, 12(1), 25-40.
Yong, W. T. L., Thien, V. Y., Rupert, R., Rodrigues, K. F. J. R., & Reviews, S. E. (2022). Seaweed: a potential climate change solution. 159, 112222.
Zampaligré, N., Dossa, L. H., & Schlecht, E. (2014a). Climate change and variability: perception and adaptation strategies of pastoralists and agro-pastoralists across different zones of Burkina Faso. Regional Environmental Change, 14(2), 769-783.
Zampaligré, N., Dossa, L. H., & Schlecht, E. (2014b). Climate change and variability: perception and adaptation strategies of pastoralists and agro-pastoralists across different zones of Burkina Faso. Regional environmental change, 14, 769-783.
Zeng, Z., Wu, W., Li, Z., Zhou, Y., Guo, Y., & Huang, H. (2019). Agricultural drought risk assessment in Southwest China. Water, 11(5), 1064.
Zhang, C., Shi, S., Kang, W., Zhao, S., Huang, Z., & Li, Y. (2020). Characters of soil enzyme activity and its relationship with chemical properties under different rotation pattern. Chin. J. Grassl, 42, 92-102.
Zhang, H., Mu, J. E., & McCarl, B. A. (2018). Adaptation to climate change via adjustment in land leasing: Evidence from dryland wheat farms in the US Pacific Northwest. Land Use Policy, 79, 424-432.
Zhang, L., Song, W., & Song, W. (2020). Assessment of agricultural drought risk in the lancang-mekong region, South East Asia. International Journal of Environmental Research and Public Health, 17(17), 6153.
Zhang, Q., Sun, P., Li, J., Xiao, M., & Singh, V. P. (2015). Assessment of drought vulnerability of the Tarim River basin, Xinjiang, China. Theoretical and applied climatology, 121(1), 337-347.
Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D. B., Huang, Y., Huang, M., Yao, Y., Bassu, S., & Ciais, P. (2017). Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of sciences, 114(35), 9326-9331.
Zhao, J., Zhang, D., Yang, Y., Pan, Y., Zhao, D., Zhu, J., Zhang, L., & Yang, Z. (2020). Dissecting the effect of continuous cropping of potato on soil bacterial communities as revealed by high-throughput sequencing. PLoS One, 15(5), e0233356.
Ziervogel, G., & Ericksen, P. J. (2010). Adapting to climate change to sustain food security. Wiley Interdisciplinary Reviews: Climate Change, 1(4), 525-540.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88316-
dc.description.abstractNonezh_TW
dc.description.abstractThe food system in Haiti faces challenges due to small-scale farming, inadequate infrastructure, and climate change impacts like droughts, floods, and hurricanes. These factors undeniably play a crucial role in the food system's inability to fulfill its primary objective of ensuring food security, particularly in rural regions where the majority of the population depends on agriculture for sustenance. Furthermore, these circumstances give rise to concerns regarding the ability of the food system to meet the projected high demand for food in the years 2030-2040 and 2050. Thus, this doctoral thesis focuses on the examination and analysis of the vulnerability and resilience of the food system, with a specific emphasis on food production, to climate-related disasters in Haiti. It also investigates not only the farmers' willingness to adapt to climate change but also their perceptions and the existing adaptive measures they have already implemented to mitigate the impacts of climate change. In order to fulfill this objective, a comprehensive analysis has been conducted on four specific food crops and cash crops that are predominantly consumed in Haiti.
The research focuses on communities situated in the Artibonite region of Haiti and aims to achieve three main objectives. Firstly, we evaluate and analyze the projected food demand for the years 2030 – 2050, using two scenarios: Business as Usual and Stratified Society. The findings of both scenarios reveal that the selected crop yields will remain low and fail to meet the increasing local food demand. In this case, we assessed the willingness of 488 farmers to adopt crop rotations as an adaptive strategy to enhance yields. The findings reveal that less than half of the surveyed population is inclined to implement this adaptation measure on their plots to cope with climate change impacts. This suggests a potential challenge in achieving higher crop yields and meeting the growing food demand in the years 2030-2040 and 2050. Crop rotations are considered a beneficial agricultural practice as they can help improve soil fertility, control pests and diseases, and enhance overall crop productivity. It is crucial to address these challenges and promote sustainable agricultural practices to ensure an adequate food supply in the coming decades.
As we have seen the selected crop yields are likely to remain low and climate change poses the greatest challenge to crop productivity, the second objective of this research is to evaluate the agricultural drought risk by incorporating all the relevant components of risk, namely vulnerability, hazard, exposure, and adaptive capacity, along with their respective influencing indicators. The assessment of drought risk is conducted in two stages, following the risk equation. Firstly, the risk equation is applied without considering the adaptive capacity, and secondly, the adaptive capacity is included as an additional component in the risk equation. The analysis of both approaches reveals that the first method yields a higher percentage (45.8%) of moderate to very-high drought risk compared to the second approach (30.7%). This indicates that approximately 30.7% of the land area exhibits a moderate to very high agricultural drought risk, posing a significant risk to both the existing food supply and the future productivity of the selected crops. This situation raises concerns regarding the ability to meet the escalating food demand in the coming years.
Enhancing crop productivity and addressing the rising food demand in the future necessitates the implementation of climate change adaptation measures. However, it is imperative to recognize that achieving this goal is contingent upon the active participation and involvement of farmers. Hence, the third objective of this research is to investigate the variations in climate change perceptions among farmers based on their socioeconomic status and gender. Additionally, this section of the research seeks to explore the existing adaptation strategies that have been implemented to foster resilience in the face of climate change. Data for this investigation were collected through surveys administered to 670 farmers residing in two distinct regions of Haiti that are drought-prone areas. By utilizing structural modeling equations, the results indicate that farmers with lower incomes had a higher level of climate change perception compared to their higher-income counterparts. Additionally, female farmers demonstrated a greater level of climate change perception compared to male farmers. The analysis of adaptation strategies revealed that low-income farmers primarily relied on off-farm activities, such as securing off-farm employment, leasing lands, and household migration, as methods of coping with the impacts of climate change. Conversely, female farmers primarily focused on on-farm activities to adapt to climate change, including modifying the farming calendar, altering crop varieties, and adjusting the irrigation system. So, addressing the climate change perceptions and adaptation strategies of farmers, particularly those with lower incomes and female farmers, is crucial for improving crop productivity and meeting future food demand. By providing targeted support, promoting climate-resilient farming techniques, and adopting gender-specific approaches, agriculture can become more resilient and sustainable in a changing climate.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-09T16:30:31Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-09T16:30:31Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsACKNOWLEDGEMENTS ii
ABSTRACT iii
ABBREVIATIONS vi
CONTENTS viii
LIST OF TABLES xi
LIST OF FIGURES xii


1. Chapter 1: Introduction - 1 -
1.1. Overview - 1 -
1.2. Research rational - 2 -
1.3. Research objectives - 10 -
1.4. Thesis structure and overview of chapters - 11 -
2. Chapter 2: Framework, Research Approach and Background - 15 -
2.1. The DPSIR framework - 15 -
2.1.1. The framework and its components - 16 -
2.2. Research approach: Theories and key concepts - 20 -
2.2.1. Food system effects on climate change - 25 -
2.2.2. Climate change effects on food systems - 30 -
2.2.3. Climate Change Impact on Postproduction Activities - 35 -
2.3. The Vulnerability and Resilience of the HAITI Food System to Climate Change - 39 -
2.3.1. Understanding climate vulnerability - 39 -
2.2.3. Understanding Resilience to climate change - 44 -
2.2.4. The geography of the HAITI food supply - 49 -
2.2.5. The geography of climate change in Haiti - 55 -
2.2.6. The vulnerability of the HAITI food system 62
2.3. Limitations and conclusions for data collection 69
3. Chapter 3 Meeting the food demand challenge for fourteen million Haitian people in 2050. 73
3.1. Introduction 73
3.2. Methodology 77
3.3. Results and Discussions 81
3.3.1. Crop yield projection under the BAU and SSS scenarios. 82
3.3.2. Farmers’ willingness to adapt to climate change. 90
3.4. Conclusion 95
4. Chapter 4. Agricultural Drought Risk Assessment in HAITI 99
4.1. Introduction 99
4.2. Materials and Methods 104
4.3. Study area and data 106
4.4. Data 107
4.5. Risk mapping 109
4.5.1. Vulnerability mapping 110
4.5.2. Hazard mapping 111
4.5.3. Exposure mapping 112
4.5.4. Parameters for adaptive capacity mapping 112
4.5.5. Assigning weight to the criterion 114
4.5.6. Risk assessment 120
4.6. Results 121
4.6.1. Vulnerability mapping 121
4.6.2. Hazard mapping 122
4.6.3. Exposure mapping 123
4.7.3. Adaptive capacity mapping 124
4.7.4. Risk mapping 124
4.8. Discussion and Conclusion 129
5. Chapter 5. Understanding farmers’ perception of climate change and adaptation practices in Haiti. 135
5.1. Introduction 135
5.1.1. Climate Change Perception and Coping Mechanisms of the Low-Income Group 138
5.1.2. Climate change through a gender lens 141
5.2. Data, Methods, and Research Site 146
5.2.1. Research site 146
5.2.2. Data collection and Method 147
5.2.3. Analytical strategy 150
5.3. RESULTS 151
5.3.1. Descriptive statistics 151
5.4. Discussion 156
5.4.1. Low – income farmers and climate change perception 156
5.4.2. Low – income farmers and climate change adaptation 158
5.4.3. Gender and climate change perception 160
5.4.4. Gender and climate change adaptation practices 162
5.5. Conclusion 164
6. Chapter 6 General conclusion and policy recommendations. 169
6.1. Increasing crop productivity 175
6.2. Encouraging farmers to practice crop rotation. 176
6.3. Building drought resilience to improve crop productivity. 178
6.4. Strengthening the resilience of smallholder farmers 180
7. References 183
8. Appendix 198
-
dc.language.isoen-
dc.subject食品系統zh_TW
dc.subject適應zh_TW
dc.subject農民zh_TW
dc.subject海地zh_TW
dc.subject彈力zh_TW
dc.subject漏洞zh_TW
dc.subject氣候變化zh_TW
dc.subjectFarmersen
dc.subjectVulnerabilityen
dc.subjectFood systemen
dc.subjectHaitien
dc.subjectAdaptationen
dc.subjectClimate changeen
dc.subjectResilienceen
dc.title糧食系統對氣候災害的脆弱性和抵禦能力:海地農民的應對和適應策略zh_TW
dc.titleFood System Vulnerability and Resilience to Climate Disasters : Farmers' Coping and Adaptation Strategies in Haiti.en
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree博士-
dc.contributor.coadvisor童慶斌zh_TW
dc.contributor.coadvisorChing-Pin TUNGen
dc.contributor.oralexamcommittee陳佳正;李維森;賴進松;劉力瑜;李香潔zh_TW
dc.contributor.oralexamcommitteeChia-Jeng CHEN;Wei-Sen LI;Jihn-Sung LAI;Li-yu D LIU;Hsiang-Chieh LEEen
dc.subject.keyword食品系統,漏洞,彈力,氣候變化,適應,農民,海地,zh_TW
dc.subject.keywordFood system,Vulnerability,Resilience,Climate change,Adaptation,Farmers,Haiti,en
dc.relation.page202-
dc.identifier.doi10.6342/NTU202302170-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-07-27-
dc.contributor.author-college理學院-
dc.contributor.author-dept氣候變遷與永續發展國際學位學程-
顯示於系所單位:氣候變遷與永續發展國際學位學程(含碩士班、博士班)

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf4.91 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved