請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88303完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 廖洺漢 | zh_TW |
| dc.contributor.advisor | Ming-Han Liao | en |
| dc.contributor.author | 林泓毅 | zh_TW |
| dc.contributor.author | Hong-Yi Lin | en |
| dc.date.accessioned | 2023-08-09T16:27:02Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-09 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-26 | - |
| dc.identifier.citation | G. E. Moore, ''Cramming more components onto integrated circuits,'' IEEE solid-state circuits society newsletter, vol. 11, no. 3, pp. 33-35, 2006.
''Intel Newsroom 2022.'' https://www.intel.com.tw/content/www/tw/zh/newsroom/home.html A. Chaudhry and M. J. Kumar, ''Controlling short-channel effects in deep-submicron SOI MOSFETs for improved reliability: a review,'' IEEE Transactions on Device and Materials Reliability, vol. 4, no. 1, pp. 99-109, 2004. M. Ahmad and S. R. P. Silva, ''Low temperature growth of carbon nanotubes–A review,'' Carbon, vol. 158, pp. 24-44, 2020. P. Kim, L. Shi, A. Majumdar, and P. L. McEuen, ''Thermal transport measurements of individual multiwalled nanotubes,'' Physical review letters, vol. 87, no. 21, pp. 215502, 2001. B. Wei, R. Vajtai, and P. Ajayan, ''Reliability and current carrying capacity of carbon nanotubes,'' Applied physics letters, vol. 79, no. 8, pp. 1172-1174, 2001. S. Achra, X. Wu, V. Trepalin, T. Nuytten, J. Ludwig, S. Brems, V. Afanas’ev, C. Huyghebaert, B. Sorée, and M. Heyns, ''Characterization of interface interactions between graphene and ruthenium,'' 2020 IEEE International Interconnect Technology Conference (IITC), 2020. R. Devi and S. S. Gill, ''A squared bossed diaphragm piezoresistive pressure sensor based on CNTs for low pressure range with enhanced sensitivity,'' Microsystem technologies, vol. 27, pp. 3225-3233, 2021. S. Thomas, C. Sarathchandran, S. Ilangovan, and J. C. Moreno-Pirajan, ''Handbook of Carbon-Based Nanomaterials, Elsevier, 2021. H. He, L. A. Pham-Huy, P. Dramou, D. Xiao, P. Zuo, and C. Pham-Huy, ''Carbon nanotubes: applications in pharmacy and medicine,'' BioMed research international, vol. 2013, 2013. Y.-J. Lee, D. Limbrick, and S. K. Lim, ''Power benefit study for ultra-high density transistor-level monolithic 3D ICs,'' Proceedings of the 50th Annual Design Automation Conference, Austin, Texas, 2013. A. Todri-Sanial, J. Dijon, and A. Maffucci, ''Carbon Nanotubes for Interconnects, Springer, 2017. A.-C. Hsieh and T. Hwang, ''TSV redundancy: Architecture and design issues in 3-D IC,'' IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 20, no. 4, pp. 711-722, 2011. J. H. Lau, ''Evolution and outlook of TSV and 3D IC/Si integration,'' 2010 12th Electronics Packaging Technology Conference, 2010. H. Cai, Y. Guo, B. Liu, M. Zhou, J. Chen, X. Liu, and J. Yang, ''Proposal of analog in-memory computing with magnified tunnel magnetoresistance ratio and universal STT-MRAM cell,'' IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 69, no. 4, pp. 1519-1531, 2022. W. Steinhögl, G. Schindler, G. Steinlesberger, M. Traving, and M. Engelhardt, ''Comprehensive study of the resistivity of copper wires with lateral dimensions of 100 nm and smaller,'' Journal of Applied Physics, vol. 97, no. 2, pp. 023706, 2005. F. X. Che, ''Dynamic stress modeling on wafer thinning process and reliability analysis for TSV wafer,'' IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 4, no. 9, pp. 1432-1440, 2014. S. Chandrakar, D. Gupta, and M. K. Majumder, ''Performance analysis of Cu/CNT-based TSV: impact on crosstalk and power,'' Journal of Computational Electronics, vol. 21, no. 6, pp. 1262-1274, 2022. M. A. Ahmed and M. Chrzanowska-Jeske, ''Delay and power optimization with TSV-aware 3D floorplanning,'' Fifteenth International Symposium on Quality Electronic Design, 2014. S. Chen, Z. Wang, Y. En, Y. Huang, F. Qin, and T. An, ''The experimental analysis and the mechanical model for the debonding failure of TSV-Cu/Si interface,'' Microelectronics Reliability, vol. 91, pp. 52-66, 2018. A. Maffucci, A. Todri Sanial, and J. Dijon, ''Carbon Nanotubes for Interconnects: Process, Design and Applications,'' Carbon Nanotubes for Interconnects: Process, Design and Applications, 2016. K. E. Spear, ''Principles and applications of chemical vapor deposition (CVD),'' Pure and Applied Chemistry, vol. 54, no. 7, pp. 1297-1311, 1982. N. Arora and N. Sharma, ''Arc discharge synthesis of carbon nanotubes: Comprehensive review,'' Diamond and related materials, vol. 50, pp. 135-150, 2014. W. Shepherd, ''Vapor phase deposition and etching of silicon,'' Journal of The Electrochemical Society, vol. 112, no. 10, pp. 988, 1965. J. Rouquerol, ''Critical examination of several problems typically found in the kinetic study of thermal decomposition under vacuum,'' Journal of thermal analysis, vol. 5, pp. 203-216, 1973. K. A. Shah and B. A. Tali, ''Synthesis of carbon nanotubes by catalytic chemical vapour deposition: A review on carbon sources, catalysts and substrates,'' Materials Science in Semiconductor Processing, vol. 41, pp. 67-82, 2016. ''Plasma Enhanced Chemical Vapor Deposition Systems, MKS Instruments, 2023. N. Shang, Y. Tan, V. Stolojan, P. Papakonstantinou, and S. Silva, ''High-rate low-temperature growth of vertically aligned carbon nanotubes,'' Nanotechnology, vol. 21, no. 50, pp. 505604, 2010. Y. S. Zhang, H. L. Zhu, D. Yao, P. T. Williams, C. Wu, D. Xu, Q. Hu, G. Manos, L. Yu, and M. Zhao, ''Thermo-chemical conversion of carbonaceous wastes for CNT and hydrogen production: a review,'' Sustainable Energy & Fuels, vol. 5, no. 17, pp. 4173-4208, 2021. V. Jourdain and C. Bichara, ''Current understanding of the growth of carbon nanotubes in catalytic chemical vapour deposition,'' Carbon, vol. 58, pp. 2-39, 2013. S. Esconjauregui, C. M. Whelan, and K. Maex, ''The reasons why metals catalyze the nucleation and growth of carbon nanotubes and other carbon nanomorphologies,'' Carbon, vol. 47, no. 3, pp. 659-669, 2009. Y. Jung, J. Song, W. Huh, D. Cho, and Y. Jeong, ''Controlling the crystalline quality of carbon nanotubes with processing parameters from chemical vapor deposition synthesis,'' Chemical engineering journal, vol. 228, pp. 1050-1056, 2013. M. J. Bronikowski, ''CVD growth of carbon nanotube bundle arrays,'' Carbon, vol. 44, no. 13, pp. 2822-2832, 2006. F. Ding, P. Larsson, J. A. Larsson, R. Ahuja, H. Duan, A. Rosén, and K. Bolton, ''The importance of strong carbon− metal adhesion for catalytic nucleation of single-walled carbon nanotubes,'' Nano letters, vol. 8, no. 2, pp. 463-468, 2008. L.-H. Chen, J. AuBuchon, I.-C. Chen, C. Daraio, X.-R. Ye, A. Gapin, S. Jin, and C. M. Wang, ''Growth of aligned carbon nanotubes on carbon microfibers by dc plasma-enhanced chemical vapor deposition,'' Applied physics letters, vol. 88, no. 3, pp. 033103, 2006. C.-C. Chuang, W.-L. Liu, W.-J. Chen, and J.-H. Huang, ''The role of Ti interlayer in carbon nanotube growth,'' Surface and Coatings Technology, vol. 202, no. 10, pp. 2121-2125, 2008. H. Sugime, S. Esconjauregui, L. D’Arsié, J. Yang, A. W. Robertson, R. A. Oliver, S. Bhardwaj, C. Cepek, and J. Robertson, ''Low-temperature growth of carbon nanotube forests consisting of tubes with narrow inner spacing using Co/Al/Mo catalyst on conductive supports,'' ACS Applied Materials & Interfaces, vol. 7, no. 30, pp. 16819-16827, 2015. F. Banhart, ''Interactions between metals and carbon nanotubes: at the interface between old and new materials,'' Nanoscale, vol. 1, no. 2, pp. 201-213, 2009. S. Esconjauregui, R. Xie, M. Fouquet, R. Cartwright, D. Hardeman, J. Yang, and J. Robertson, ''Measurement of area density of vertically aligned carbon nanotube forests by the weight-gain method,'' Journal of Applied Physics, vol. 113, no. 14, pp. 144309, 2013. D. Lehninger, R. Olivo, T. Ali, M. Lederer, T. Kämpfe, C. Mart, K. Biedermann, K. Kühnel, L. Roy, and M. Kalkani, ''Back‐End‐of‐Line Compatible Low‐Temperature Furnace Anneal for Ferroelectric Hafnium Zirconium Oxide Formation,'' physica status solidi (a), vol. 217, no. 8, pp. 1900840, 2020. B. Rajendran, S. Jain, T. Kramer, and R. Pease, ''Thermal Simulation of laser Annealing for 3D Integration,'' Proceedings VMIC, 2003. H.-C. Cheng, L.-C. Tai, and Y.-C. Liu, ''Theoretical and Experimental Investigation of Warpage Evolution of Flip Chip Package on Packaging during Fabrication,'' Materials, vol. 14, no. 17, pp. 4816, 2021. H. Wang and J. J. Moore, ''Low temperature growth mechanisms of vertically aligned carbon nanofibers and nanotubes by radio frequency-plasma enhanced chemical vapor deposition,'' Carbon, vol. 50, no. 3, pp. 1235-1242, 2012. M. Wada, B. Ito, T. Saito, D. Nishide, T. Ishikura, A. Isobayashi, M. Katagiri, Y. Yamazaki, T. Matsumoto, and M. Kitamura, ''Selective carbon nanotube growth in via structure using novel arrangement of catalytic metal,'' IEEE International Interconnect Technology Conference, 2014. M. Ahmad, J. V. Anguita, V. Stolojan, T. Corless, J. S. Chen, J. D. Carey, and S. R. P. Silva, ''High quality carbon nanotubes on conductive substrates grown at low temperatures,'' Advanced Functional Materials, vol. 25, no. 28, pp. 4419-4429, 2015. S. Li, S. Raju, C. Zhou, and M. Chan, ''Carbon nanotube contact plug on silicide for CMOS compatible interconnect,'' IEEE Electron Device Letters, vol. 37, no. 6, pp. 793-796, 2016. S. Vollebregt, F. Tichelaar, H. Schellevis, C. Beenakker, and R. Ishihara, ''Carbon nanotube vertical interconnects fabricated at temperatures as low as 350℃,'' Carbon, vol. 71, pp. 249-256, 2014. R. M. Henderson and K. B. Clark, ''Architectural innovation: The reconfiguration of existing product technologies and the failure of established firms,'' Administrative science quarterly, vol., pp. 9-30, 1990. J. A. Thornton, ''Magnetron sputtering: basic physics and application to cylindrical magnetrons,'' Journal of Vacuum Science and Technology, vol. 15, no. 2, pp. 171-177, 1978. M. Mejía, G. Restrepo, J. Marín, R. Sanjines, C. Pulgarín, E. Mielczarski, J. Mielczarski, and J. Kiwi, ''Magnetron-sputtered Ag surfaces. New evidence for the nature of the Ag ions intervening in bacterial inactivation,'' ACS Applied Materials & Interfaces, vol. 2, no. 1, pp. 230-235, 2010. E. Mkawi, Y. Al-Hadeethi, E. Shalaan, and E. Bekyarova, ''Substrate temperature effect during the deposition of (Cu/Sn/Cu/Zn) stacked precursor CZTS thin film deposited by electron-beam evaporation,'' Journal of Materials Science: Materials in Electronics, vol. 29, pp. 20476-20484, 2018. M. A. Sutton, N. Li, D. Joy, A. P. Reynolds, and X. Li, ''Scanning electron microscopy for quantitative small and large deformation measurements part I: SEM imaging at magnifications from 200 to 10,000,'' Experimental mechanics, vol. 47, pp. 775-787, 2007. C. Tang and Z. Yang, Transmission electron microscopy (TEM), in Membrane characterization. 2017, Elsevier. p. 145-159. F. Wan, L. Du, W. Chen, P. Wang, J. Wang, and H. Shi, ''A novel method to directly analyze dissolved acetic acid in transformer oil without extraction using Raman spectroscopy,'' Energies, vol. 10, no. 7, pp. 967, 2017. Z. Su, J. P. Freedman, J. H. Leach, E. A. Preble, R. F. Davis, and J. A. Malen, ''The impact of film thickness and substrate surface roughness on the thermal resistance of aluminum nitride nucleation layers,'' Journal of Applied Physics, vol. 113, no. 21, pp. 213502, 2013. M. Chhowalla, K. Teo, C. Ducati, N. Rupesinghe, G. Amaratunga, A. Ferrari, D. Roy, J. Robertson, and a. W. Milne, ''Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition,'' Journal of applied physics, vol. 90, no. 10, pp. 5308-5317, 2001. Y.-J. FENG, Measurement of Thermal Conductivity in Advanced Nanotube Technology, Department of Mechanical Engineering, National Taiwan University., 2021. M. Asheghi, M. Touzelbaev, K. Goodson, Y. Leung, and S. Wong, ''Temperature-dependent thermal conductivity of single-crystal silicon layers in SOI substrates,'' vol., 1998. H. Sugime, S. Esconjauregui, J. Yang, L. D'Arsié, R. A. Oliver, S. Bhardwaj, C. Cepek, and J. Robertson, ''Low temperature growth of ultra-high mass density carbon nanotube forests on conductive supports,'' Applied Physics Letters, vol. 103, no. 7, pp. 073116, 2013. M. Katagiri, M. Wada, B. Ito, Y. Yamazaki, M. Suzuki, M. Kitamura, T. Saito, A. Isobayashi, A. Sakata, and N. Sakuma, ''Fabrication and characterization of planarized carbon nanotube via interconnects,'' Japanese Journal of Applied Physics, vol. 51, no. 5S, pp. 05ED02, 2012. O. Pitkänen, N. Halonen, A.-R. Leino, J. Mäklin, A. Dombovari, J. Lin, G. Toth, and K. Kordás, ''Low-temperature growth of carbon nanotubes on bi-and tri-metallic catalyst templates,'' Topics in catalysis, vol. 56, pp. 522-526, 2013. Y. Yamazaki, M. Katagiri, N. Sakuma, M. Suzuki, S. Sato, M. Nihei, M. Wada, N. Matsunaga, T. Sakai, and Y. Awano, ''Synthesis of a closely packed carbon nanotube forest by a multi-step growth method using plasma-based chemical vapor deposition,'' Applied physics express, vol. 3, no. 5, pp. 055002, 2010. H.-Y. Lin, N. Basu, S.-C. Chen, M.-H. Lee, and M.-H. Liao, ''The demonstration of low-temperature (350° C) grown carbon nano-tubes for the applications of through silicon via in 3D stacking and power-via,'' Applied Physics Letters, vol. 121, no. 23, pp. 232101, 2022. H.-Y. Lin, N. Basu, M.-H. Lee, S.-C. Chen, and M.-H. Liao, ''The Advantages of Double Catalytic Layers for Carbon Nanotube Growth at Low Temperatures (< 400° C) in 3D Stacking and Power Applications,'' Coatings, vol. 13, no. 5, pp. 965, 2023. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88303 | - |
| dc.description.abstract | 本論文以多層金屬催化層堆疊並於低溫環境下(<400°C)生長奈米碳管,奈米碳管生長方式透過熱化學氣相沉積法進行生長,並於低溫下透過不同參數反應氣體與表面多層金屬催化層反應製備出具良好機械性、電性以及熱傳導性的奈米碳管,製備完成後的奈米碳管透過電子掃描顯微鏡穿透式電子顯微鏡、拉曼光譜分析儀器以及兩點電探針方法分別量測其奈米碳管生長表面品質、電性以及熱傳導性質表現,藉此以證明在低溫環境下生長奈米碳管的可行性,並評估其未來加入三維晶片封裝的可行性。
本論文藉由Ti、Al、Co、Ni、Pd等金屬進行不同組合堆疊濺鍍在矽試片表面,其堆疊金屬層組成結構依序為接著層、阻障層以及催化金屬層,並細分結構為單層金屬催化層結構以及雙層金屬催化層結構,此製程上的改良,使生長出的奈米碳管具整齊性以及筆直度,成功定義奈米碳管叢陣於低溫下生長,驗證其未來作為三維半導體封裝可行性以及可靠性,期望未來整合奈米碳管矽穿孔之研究以實現奈米碳管所帶來的優勢,使其在三維電晶體架構與先進封裝技術的開發中具有潛力能夠在半導體元件或電子產品上發展CNT-based結構,在未來奈米碳管將成為具前瞻性的應用材料。 | zh_TW |
| dc.description.abstract | In this study, we report on the growth of Carbon Nano-tubes a multi-layer metal catalyst stack at low temperatures (<400°C) using the thermal chemical vapor deposition (T-CVD) method. The CNTs were prepared using various reaction gases and surface multi-layer metal catalysts under different parameters, resulting in CNTs with good mechanical, electrical, and thermal properties. The CNTs were characterized using transmission electron microscopy, Raman spectroscopy, and two-point probe method to evaluate their surface quality, electrical and thermal conductivity properties. This study demonstrates the feasibility of growing nanotubes at low temperatures and evaluates their potential for integration into three-dimensional chip packaging.
The metal catalyst stack composed of Ti, Al, Co, Ni, Pd, and other metals were sputtered onto silicon wafers, and the stack structure consisted of an adhesion layer, a barrier layer, and a catalytic metal layer. The catalyst layers were divided into single catalytic layer and double catalytic layer structures, which improved the uniformity and straightness of the resulting CNTs. The successful growth of CNT arrays at low temperatures demonstrates the potential and reliability of CNTs for use in three-dimensional semiconductor packaging. The integration of CNT-Silicon via holes in future studies is expected to realize the advantages of CNTs and to make them a promising material for CNT-based structures in the development of advanced packaging technology and semiconductor devices. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-09T16:27:02Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-09T16:27:02Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 ⅰ
PUBLICATION LIST ⅱ 中文摘要 ⅲ ABSTRACT ⅳ 目錄 ⅴ 圖目錄 ⅷ 表目錄 ⅺ 第一章 緒論 1 1.1 前言 1 1.2 研究背景與動機 4 1.3 論文架構 5 第二章 文獻回顧與理論基礎 6 2.1 3DIC元件 6 2.2 奈米碳管生長機制與方式 9 2.3 多層金屬層堆疊 12 2.4 低溫生長奈米碳管 15 第三章 實驗儀器設備與原理 21 3.1 曝光機 23 3.2 濺鍍機 25 3.3 低鍍率電子槍系統 26 3.4 真空高溫爐管 26 3.5 掃描式電子顯微鏡 27 3.6 穿透式電子顯微鏡 28 3.7 拉曼光譜分析儀 29 3.8 I-V電性量測系統 30 3.9 三倍頻熱傳導值量測 31 第四章 實驗流程與製程 32 4.1 實驗流程與設計 32 4.2 奈米碳管圖案化製程(Step (a)、Step(A)) 33 4.2.1 試片表面清潔 33 4.2.2 圖案化製程 34 4.3 單/雙層催化金屬層鍍膜 38 4.3.1 單層催化金屬層鍍膜製程(Step(b)~Step(d)) 39 4.3.2 雙層催化金屬層鍍膜製程(Step(B)~Step(E)) 44 4.4 單/雙層催化金屬層圖案化定義製程 45 4.4.1 單層催化金屬層圖案化定義 46 4.4.2 雙層催化金屬層圖案化定義 47 4.5 低溫生長奈米碳管製程 47 第五章 實驗結果與討論 51 5.1 表面品質分析 51 5.1.1 單層催化金屬層製程表面分析 51 5.1.2 雙層催化金屬層製程表面分析 53 5.1.3 單/雙層催化金屬層表面品質分析總結 55 5.2 熱傳導值量測 57 5.3 電性量測 60 5.4 低溫生長結果比較 62 第六章 總結與未來展望 66 6.1 低溫生長奈米碳管總結 66 6.1.1 奈米碳管表面生長品質探討 66 6.1.2 電性量測分析探討 67 6.1.3 熱傳導值分析探討 67 6.1.4 國際文獻比較探討 67 6.2 未來展望 68 6.2.1 薄膜催化層材料 68 6.2.2 催化金屬層堆疊結構設計 69 6.2.3 奈米碳管生長環境參數調整 69 6.2.4 CNT-TSV製程整合 69 參考文獻 71 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 導通電阻 | zh_TW |
| dc.subject | 熱導率 | zh_TW |
| dc.subject | 三維封裝 | zh_TW |
| dc.subject | 低溫生長 | zh_TW |
| dc.subject | 奈米碳管 | zh_TW |
| dc.subject | 拉曼光譜分析儀 | zh_TW |
| dc.subject | 多層金屬堆疊 | zh_TW |
| dc.subject | 熱化學氣相沉積 | zh_TW |
| dc.subject | Multi-layer metal stack | en |
| dc.subject | raman spectroscopy | en |
| dc.subject | thermal chemical vapor deposition | en |
| dc.subject | carbon-based interconnect | en |
| dc.subject | Carbon Nano-tubes | en |
| dc.subject | thermal conductivity | en |
| dc.subject | Three-dimensional packaging | en |
| dc.subject | low-temperature growth | en |
| dc.title | 低溫生長奈米碳管透過多層金屬堆疊應用於半導體三維封裝技術 | zh_TW |
| dc.title | Low-Temperature Growth of Carbon Nano-tubes (CNTs) Applied in Three-Dimensional Packaging Technology for Semiconductors through Multi-Layer Metal Stack | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 劉建豪;李敏鴻 | zh_TW |
| dc.contributor.oralexamcommittee | Chien-Hao Liu;Min-Hong Lee | en |
| dc.subject.keyword | 奈米碳管,低溫生長,三維封裝,熱導率,多層金屬堆疊,導通電阻,熱化學氣相沉積,拉曼光譜分析儀, | zh_TW |
| dc.subject.keyword | Carbon Nano-tubes,low-temperature growth,Three-dimensional packaging,thermal conductivity,Multi-layer metal stack,carbon-based interconnect,thermal chemical vapor deposition,raman spectroscopy, | en |
| dc.relation.page | 76 | - |
| dc.identifier.doi | 10.6342/NTU202301883 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-07-27 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 5.66 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
