請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88280完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 駱尚廉 | zh_TW |
| dc.contributor.advisor | Shang-Lien Lo | en |
| dc.contributor.author | 傅啟翔 | zh_TW |
| dc.contributor.author | Chi-Hsiang Fu | en |
| dc.date.accessioned | 2023-08-09T16:20:47Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-09 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-18 | - |
| dc.identifier.citation | Acosta-Coley, I., & Olivero-Verbel, J. (2015). Microplastic resin pellets on an urban tropical beach in Colombia. Environmental Monitoring and Assessment, 187, 1-14.
Anbumani, S., & Kakkar, P. (2018). Ecotoxicological effects of microplastics on biota: a review. Environmental Science and Pollution Research, 25, 14373-14396. Andrady, A. L. (2017). The plastic in microplastics: A review. Marine pollution bulletin, 119(1), 12-22. Arráez, F. J., Arnal, M. L., & Müller, A. J. (2018). Thermal and UV degradation of polypropylene with pro‐oxidant. Abiotic characterization. Journal of Applied Polymer Science, 135(14), 46088. Auta, H. S., Emenike, C. U., Jayanthi, B., & Fauziah, S. H. (2018). Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment. Marine Pollution Bulletin, 127, 15-21. Ayawei, N., Ebelegi, A. N., & Wankasi, D. (2017). Modelling and interpretation of adsorption isotherms. Journal of chemistry, 2017. Barbeş, L., Rădulescu, C., & Stihi, C. (2014). ATR-FTIR spectrometry characterisation of polymeric materials. Romanian Reports in Physics, 66(3), 765-777. Battulga, B., Kawahigashi, M., & Oyuntsetseg, B. (2020). Behavior and distribution of polystyrene foams on the shore of Tuul River in Mongolia. Environmental Pollution, 260, 113979. Cai, H., Xu, E. G., Du, F., Li, R., Liu, J., & Shi, H. (2021). Analysis of environmental nanoplastics: Progress and challenges. Chemical Engineering Journal, 410, 128208. Cai, L., Wang, J., Peng, J., Wu, Z., & Tan, X. (2018). Observation of the degradation of three types of plastic pellets exposed to UV irradiation in three different environments. Science of the Total Environment, 628, 740-747. Charles, J. (2009). Qualitative analysis of high density polyethylene using FTIR spectroscopy. Asian Journal of Chemistry, 21(6), 4477. Chen, H., Karger-Kocsis, J., Wu, J., & Varga, J. (2002). Fracture toughness of α-and β-phase polypropylene homopolymers and random-and block-copolymers. Polymer, 43(24), 6505-6514. Collin, S., Baskar, A., Geevarghese, D. M., Ali, M. N. V. S., Bahubali, P., Choudhary, R., Lvov, V., Tovar, G. I., Senatov, F., & Koppala, S. (2022). Bioaccumulation of lead (Pb) and its effects in plants: A review. Journal of Hazardous Materials Letters, 100064. Corcoran, P. L. (2015). Benthic plastic debris in marine and fresh water environments. Environmental Science: Processes & Impacts, 17(8), 1363-1369. Deng, H., Li, R., Yan, B., Li, B., Chen, Q., Hu, H., Xu, Y., & Shi, H. (2021). PAEs and PBDEs in plastic fragments and wetland sediments in Yangtze estuary. Journal of hazardous materials, 409, 124937. Diffey, B. L. (2002). Sources and measurement of ultraviolet radiation. Methods, 28(1), 4-13. Duan, J., Bolan, N., Li, Y., Ding, S., Atugoda, T., Vithanage, M., Sarkar, B., Tsang, D. C., & Kirkham, M. (2021). Weathering of microplastics and interaction with other coexisting constituents in terrestrial and aquatic environments. Water Research, 196, 117011. Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical engineering journal, 156(1), 2-10. Fotopoulou, K. N., & Karapanagioti, H. K. (2019). Degradation of various plastics in the environment. Hazardous chemicals associated with plastics in the marine environment, 71-92. Fu, Q., Tan, X., Ye, S., Ma, L., Gu, Y., Zhang, P., Chen, Q., Yang, Y., & Tang, Y. (2021). Mechanism analysis of heavy metal lead captured by natural-aged microplastics. Chemosphere, 270, 128624. Gallagher, R. P., Lee, T. K., Bajdik, C. D., & Borugian, M. (2010). Ultraviolet radiation. Chronic diseases and injuries in Canada, 29. Gardette, M., Perthue, A., Gardette, J.-L., Janecska, T., Földes, E., Pukánszky, B., & Therias, S. (2013). Photo-and thermal-oxidation of polyethylene: comparison of mechanisms and influence of unsaturation content. Polymer Degradation and Stability, 98(11), 2383-2390. Gewert, B., Plassmann, M. M., & MacLeod, M. (2015). Pathways for degradation of plastic polymers floating in the marine environment. Environmental science: processes & impacts, 17(9), 1513-1521. Gijsman, P., Meijers, G., & Vitarelli, G. (1999). Comparison of the UV-degradation chemistry of polypropylene, polyethylene, polyamide 6 and polybutylene terephthalate. Polymer Degradation and Stability, 65(3), 433-441. Godoy, V., Blázquez, G., Calero, M., Quesada, L., & Martín-Lara, M. (2019). The potential of microplastics as carriers of metals. Environmental Pollution, 255, 113363. Gulmine, J., Janissek, P., Heise, H., & Akcelrud, L. (2002). Polyethylene characterization by FTIR. Polymer testing, 21(5), 557-563. Hübner, R., Astin, K. B., & Herbert, R. J. (2009). Comparison of sediment quality guidelines (SQGs) for the assessment of metal contamination in marine and estuarine environments. Journal of Environmental Monitoring, 11(4), 713-722. Hahladakis, J. N., Velis, C. A., Weber, R., Iacovidou, E., & Purnell, P. (2018). An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. Journal of hazardous materials, 344, 179-199. He, S., Jia, M., Xiang, Y., Song, B., Xiong, W., Cao, J., Peng, H., Yang, Y., Wang, W., & Yang, Z. (2022). Biofilm on microplastics in aqueous environment: Physicochemical properties and environmental implications. Journal of Hazardous Materials, 424, 127286. Ikeda, M., Zhang, Z.-W., Moon, C.-S., Imai, Y., Watanabe, T., Shimbo, S., Ma, W.-C., Lee, C.-C., & Guo, Y.-L. L. (1996). Background exposure of general population to cadmium and lead in Tainan city, Taiwan. Archives of environmental contamination and toxicology, 30, 121-126. Jahnke, A., Arp, H. P. H., Escher, B. I., Gewert, B., Gorokhova, E., Kühnel, D., Ogonowski, M., Potthoff, A., Rummel, C., & Schmitt-Jansen, M. (2017). Reducing uncertainty and confronting ignorance about the possible impacts of weathering plastic in the marine environment. Environmental Science & Technology Letters, 4(3), 85-90. Jordan, J. L., Casem, D. T., Bradley, J. M., Dwivedi, A. K., Brown, E. N., & Jordan, C. W. (2016). Mechanical properties of low density polyethylene. Journal of dynamic behavior of materials, 2, 411-420. Julienne, F., Delorme, N., & Lagarde, F. (2019). From macroplastics to microplastics: Role of water in the fragmentation of polyethylene. Chemosphere, 236, 124409. Kamal, M. R. (1966). Effect of variables in artificial weathering on the degradation of selected plastics. Polymer Engineering & Science, 6(4), 333-340. Kedzierski, M., d'Almeida, M., Magueresse, A., Le Grand, A., Duval, H., César, G., Sire, O., Bruzaud, S., & Le Tilly, V. (2018). Threat of plastic ageing in marine environment. Adsorption/desorption of micropollutants. Marine pollution bulletin, 127, 684-694. Kholodovych, V., & Welsh, W. J. (2007). Thermal-Oxidative stability and degradation of polymers. Physical properties of polymers handbook, 927-938. Kollias, N., Ruvolo Jr, E., & Sayre, R. M. (2011). The value of the ratio of UVA to UVB in sunlight. Photochemistry and photobiology, 87(6), 1474-1475. Kukkola, A., Krause, S., Lynch, I., Smith, G. H. S., & Nel, H. (2021). Nano and microplastic interactions with freshwater biota–Current knowledge, challenges and future solutions. Environment International, 152, 106504. Lacoste, J., & Carlsson, D. (1992). Gamma‐, photo‐, and thermally‐initiated oxidation of linear low density polyethylene: A quantitative comparison of oxidation products. Journal of Polymer Science Part A: Polymer Chemistry, 30(3), 493-500. Lanyi, F. J., Wenzke, N., Kaschta, J., & Schubert, D. W. (2020). On the determination of the enthalpy of fusion of α‐crystalline isotactic polypropylene using differential scanning calorimetry, x‐ray diffraction, and fourier‐transform infrared spectroscopy: an old story revisited. Advanced Engineering Materials, 22(9), 1900796. Lin, W.-H., Kuo, J., & Lo, S.-L. (2021). Effect of light irradiation on heavy metal adsorption onto microplastics. Chemosphere, 285, 131457. Liu, G., Zhu, Z., Yang, Y., Sun, Y., Yu, F., & Ma, J. (2019). Sorption behavior and mechanism of hydrophilic organic chemicals to virgin and aged microplastics in freshwater and seawater. Environmental Pollution, 246, 26-33. Liu, S., Huang, J., Zhang, W., Shi, L., Yi, K., Yu, H., Zhang, C., Li, S., & Li, J. (2022). Microplastics as a vehicle of heavy metals in aquatic environments: A review of adsorption factors, mechanisms, and biological effects. Journal of Environmental Management, 302, 113995. Lv, Y., Huang, Y., Yang, J., Kong, M., Yang, H., Zhao, J., & Li, G. (2015). Outdoor and accelerated laboratory weathering of polypropylene: A comparison and correlation study. Polymer Degradation and Stability, 112, 145-159. Maddah, H. A. (2016). Polypropylene as a promising plastic: A review. Am. J. Polym. Sci, 6(1), 1-11. Mao, R., Lang, M., Yu, X., Wu, R., Yang, X., & Guo, X. (2020). Aging mechanism of microplastics with UV irradiation and its effects on the adsorption of heavy metals. Journal of hazardous materials, 393, 122515. Mirabella, F. M., & Bafna, A. (2002). Determination of the crystallinity of polyethylene/α‐olefin copolymers by thermal analysis: Relationship of the heat of fusion of 100% polyethylene crystal and the density. Journal of Polymer Science Part B: Polymer Physics, 40(15), 1637-1643. Motulsky, H. J., & Ransnas, L. A. (1987). Fitting curves to data using nonlinear regression: a practical and nonmathematical review. The FASEB journal, 1(5), 365-374. Nightingale Jr, E. (1959). Phenomenological theory of ion solvation. Effective radii of hydrated ions. The Journal of Physical Chemistry, 63(9), 1381-1387. Obroucheva, N., Ivanov, V., Sobotik, M., Bergmann, H., Antipova, O., Bystrova, E., Seregin, I., & Shpigun, L. (2001). Lead effects on cereal roots in terms of cell growth, root architecture and metal accumulation. Recent Advances of Plant Root Structure and Function: Proceedings of the 5th International Symposium on Structure and Function of Roots. Stará Lensná, Slovakia, 30 August–4 September, 1998, Patel, R. M. (2016). Polyethylene. In Multilayer flexible packaging (pp. 17-34). Elsevier. Peacock, A. (2000). Handbook of polyethylene: structures: properties, and applications. CRC press. Rai, P. K., Sonne, C., Brown, R. J., Younis, S. A., & Kim, K.-H. (2022). Adsorption of environmental contaminants on micro-and nano-scale plastic polymers and the influence of weathering processes on their adsorptive attributes. Journal of hazardous materials, 427, 127903. RAȚIU, S. A., & Zgaverdea, A. C. (2019). The potential of using bio plastic materials in automotive applications. Materiale Plastice, 56(4), 901. Rjeb, A., Tajounte, L., El Idrissi, M. C., Letarte, S., Adnot, A., Roy, D., Claire, Y., Périchaud, A., & Kaloustian, J. (2000). IR spectroscopy study of polypropylene natural aging. Journal of Applied Polymer Science, 77(8), 1742-1748. https://doi.org/https://doi.org/10.1002/1097-4628(20000822)77:8<1742::AID-APP11>3.0.CO;2-T Ronca, S. (2017). Chapter 10 – Polyethylene. Simonin, J.-P. (2016). On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chemical Engineering Journal, 300, 254-263. Smith, B. (2017). The CO bond, Part I: Introduction and the infrared spectroscopy of alcohols. Spectroscopy, 32(1), 14–21-14–21. Smith, B. C. (2017). Alcohols—The Rest of the Story. Spectroscopy, 32(4), 19–23-19–23. Song, Y. K., Hong, S. H., Jang, M., Han, G. M., Jung, S. W., & Shim, W. J. (2017). Combined effects of UV exposure duration and mechanical abrasion on microplastic fragmentation by polymer type. Environmental science & technology, 51(8), 4368-4376. Sun, Y., Yuan, J., Zhou, T., Zhao, Y., Yu, F., & Ma, J. (2020). Laboratory simulation of microplastics weathering and its adsorption behaviors in an aqueous environment: a systematic review. Environmental pollution, 265, 114864. Tang, C.-C., Chen, H.-I., Brimblecombe, P., & Lee, C.-L. (2019). Morphology and chemical properties of polypropylene pellets degraded in simulated terrestrial and marine environments. Marine Pollution Bulletin, 149, 110626. Ter Halle, A., Ladirat, L., Gendre, X., Goudouneche, D., Pusineri, C., Routaboul, C., Tenailleau, C., Duployer, B., & Perez, E. (2016). Understanding the fragmentation pattern of marine plastic debris. Environmental science & technology, 50(11), 5668-5675. Ter Halle, A., Ladirat, L., Martignac, M., Mingotaud, A. F., Boyron, O., & Perez, E. (2017). To what extent are microplastics from the open ocean weathered? Environmental Pollution, 227, 167-174. Vanicek, K., Frei, T., Litynska, Z., & Schmalwieser, A. (2000). UV-Index for the Public. Publication of the European Communities, Brussels, Belgium. Varghese, A. M., Rangaraj, V. M., Luckachan, G., & Mittal, V. (2020). UV Aging Behavior of Functionalized Mullite Nanofiber-Reinforced Polypropylene. ACS Omega, 5(42), 27083-27093. https://doi.org/10.1021/acsomega.0c02437 Wang, F., Wong, C. S., Chen, D., Lu, X., Wang, F., & Zeng, E. Y. (2018). Interaction of toxic chemicals with microplastics: a critical review. Water research, 139, 208-219. Wang, L., Nabi, G., Yin, L., Wang, Y., Li, S., Hao, Z., & Li, D. (2021). Birds and plastic pollution: recent advances. Avian Research, 12, 1-9. Wang, M., Wu, P., Sengupta, S. S., Chadhary, B. I., Cogen, J. M., & Li, B. (2011). Investigation of water diffusion in low-density polyethylene by attenuated total reflectance Fourier transform infrared spectroscopy and two-dimensional correlation analysis. Industrial & engineering chemistry research, 50(10), 6447-6454. Wu, J., Xu, P., Chen, Q., Ma, D., Ge, W., Jiang, T., & Chai, C. (2020). Effects of polymer aging on sorption of 2, 2′, 4, 4′-tetrabromodiphenyl ether by polystyrene microplastics. Chemosphere, 253, 126706. Wu, S., Liu, H., Zhao, H., Wang, X., Chen, J., Xia, D., Xiao, C., Cheng, J., Zhao, Z., & He, Y. (2020). Environmental lead exposure aggravates the progression of Alzheimer's disease in mice by targeting on blood brain barrier. Toxicology Letters, 319, 138-147. Yang, R., Liu, Y., Yu, J., & Wang, K. (2006). Thermal oxidation products and kinetics of polyethylene composites. Polymer Degradation and Stability, 91(8), 1651-1657. Yang, X., & Ding, X. (2006). Prediction of outdoor weathering performance of polypropylene filaments by accelerated weathering tests. Geotextiles and Geomembranes, 24(2), 103-109. Yuan, J., Ma, J., Sun, Y., Zhou, T., Zhao, Y., & Yu, F. (2020). Microbial degradation and other environmental aspects of microplastics/plastics. Science of the Total Environment, 715, 136968. Zhou, Y., Xia, S., Zhang, J., Nguyen, B. T., & Zhang, Z. (2017). Insight into the influences of pH value on Pb (II) removal by the biopolymer extracted from activated sludge. Chemical Engineering Journal, 308, 1098-1104. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88280 | - |
| dc.description.abstract | 塑膠因成本低、易於加工及良好穩定性,被大量應用於食品包裝與容器產品上,然而當塑膠受到紫外線照射、熱氧化及生物活動等影響,會逐漸風化及降解,進而改變塑膠之物化性質並形成塑膠微粒。這些塑膠微粒可能成為環境污染物的載體,對環境及生態造成衝擊。
本研究探討「聚丙烯 (Polypropylene, PP)」、「低密度聚乙烯 (Low Density Polyethylene, LDPE)」及「高密度聚乙烯 (High Density Polyethylene, HDPE)」三種塑膠微粒的風化結果,實驗中以兩種風化方式比較,包含將塑膠微粒置於戶外,暴露於陽光下自然風化;同時將其置於長弧氙燈照射下加速風化。取樣分析兩種方式對三種塑膠微粒物化性質的影響,以瞭解自然風化與加速風化間的相關性與差異。 實驗結果顯示光氧化與熱氧化導致塑膠表面顏色改變、表面變為粗糙且出現破裂、表面形成官能基、平均粒徑變小、比表面積增加及表面電負性增強,因此形成風化塑膠微粒。三種塑膠微粒中,聚丙烯由於分子鏈存在較多支鏈,易在照射紫外線後發生斷鏈進而氧化,故平均羰基指數較高密度聚乙烯大。此外,加速風化時因溫度較自然風化時高,風化塑膠微粒之傅立葉轉換紅外線光譜的吸收峰值較大,並發生峰值偏移現象,這表明高溫可能促使不同於自然風化的化學反應發生。 本研究另外進行聚丙烯微粒吸附鉛的實驗,結果顯示聚丙烯表面會發生競爭吸附,因此吸附量隨pH值增加而增加,隨鹽度增加而減少。風化塑膠表面會促進鉛的吸附,在酸性環境中,風化聚丙烯微粒之吸附量比原始的增加156%。然而在高pH值時,鉛沉澱作用可能會干擾風化表面官能基的離子錯合,因此於鹼性環境中,風化聚丙烯微粒之吸附量反而降低。原始及風化聚丙烯微粒吸附鉛則較符合Langmuir等溫吸附模式。本研究探討塑膠在環境中的風化機制,並評估塑膠微粒對生態可能造成的危害。 | zh_TW |
| dc.description.abstract | Plastics are widely used in food packaging and container products due to their low cost, good processability, and stability. However, after experienced various weathering and degradation (e.g. UV irradiation, thermal effect, and biological activities), plastics may undergo characteristics changes and break down into microplastics. Microplastics can act as carriers of environmental pollutants, resulting in detrimental effects on the environment and ecosystems.
In this study, three types of microplastics were investigated, including polypropylene (PP), low density polyethylene (LDPE), and high density polyethylene (HDPE). The microplastics were exposed to sunlight outdoors and UV irradiation from a long arc xenon lamp, respectively. Samples were collected and analyzed to evaluate the correlation and differences between the natural weathering and the accelerated weathering. The results indicated that photo-oxidation and thermal-oxidation contributed to the weathering of plastics, leading to changes in surface color, increase in surface roughness, formation of surface functional groups, reduction in mean particle size, increase in specific surface area, and enhancement of surface electronegativity. Among the microplastics, PP was more susceptible to the UV irradiation than HDPE. This might be attributed to the presence of more branches in the molecular chain of PP, making it more prone to chain scission and oxidation. Therefore, the average carbonyl index of PP was higher than that of HDPE. Additionally, due to the higher temperatures during the accelerated weathering than those during the natural weathering, the Fourier-transform infrared spectra of the weathered microplastics exhibited higher peak intensities and peak shifting of adsorption bands. The results indicated that heat might have induced chemical reactions different from those occurred during the natural weathering. Adsorption capacities of Pb on PP microplastics under different conditions were also investigated. The results showed that competitive adsorption of coexisting ions could occur on microplastics. Therefore, the adsorption capacities increased with an increase in pH, but decreased with an increase in salinity. Weathering could promote the adsorption of Pb on microplastics. Under acidic conditions, the adsorption capacities of the weathered PP microplastics increased by 156%, compared to those of the pristine ones. However, lead precipitation would probably interfere the complexation of Pb with the functional groups under alkaline conditions. Therefore, the adsorption capacities of the weathered PP microplastics decreased. Additionally, both pristine and the weathered PP microplastics exhibited a better fit to the Langmuir isotherm than to the Freundlich isotherm. In summary, weathering of plastics and the ecological risks of microplastics were investigated in this study. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-09T16:20:47Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-09T16:20:47Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 I
致謝 II 摘要 III 目錄 VI 圖目錄 X 表目錄 XIII 第一章 緒論 1 1.1研究緣起 1 1.2研究目的 2 第二章 文獻回顧 3 2.1聚乙烯 3 2.1.1低密度聚乙烯 3 2.1.2高密度聚乙烯 6 2.2聚丙烯 7 2.3 鉛 9 2.3.1鉛的物化性質 9 2.3.2鉛的污染現況 10 2.4 紫外線 11 2.4.1紫外線輻射 11 2.4.2紫外線指數 12 2.5 塑膠風化及降解機制 13 2.5.1光降解及光氧化 13 2.5.2熱降解及熱氧化 16 2.5.3機械破壞 17 2.5.4微生物黏附及定殖 17 2.6 風化對塑膠的影響 19 2.6.1表面形貌及特性 19 2.6.2表面官能基 20 2.6.3結晶度 20 2.7 吸附 21 2.7.1吸附動力模式 21 2.7.2等溫吸附模式 22 2.7.3塑膠微粒吸附重金屬機制 23 第三章、材料與方法 25 3.1 實驗內容與架構 25 3.2 實驗藥品與設備 26 3.2.1 實驗藥品 26 3.2.2 實驗設備 27 3.3 實驗方法 38 3.3.1前處理 38 3.3.2 塑膠微粒自然風化及特性分析 38 3.3.3 塑膠微粒加速風化及特性分析 38 3.3.4 吸附實驗 39 3.4數據分析 39 3.5品質管制 41 第四章 結果與討論 43 4.1 塑膠微粒自然風化及特性分析 43 4.1.1 風化外觀 43 4.1.2 掃描式電子顯微鏡分析 45 4.1.3 傅立葉轉換紅外線光譜分析 48 4.1.4 示差掃描熱量分析 67 4.2 塑膠微粒加速風化及特性分析 67 4.2.1 風化外觀 67 4.2.2 掃描式電子顯微鏡分析 69 4.2.3 傅立葉轉換紅外線光譜分析 72 4.2.4 示差掃描熱量分析 87 4.2.5 平均粒徑分析 88 4.2.6 比表面積分析 88 4.2.7 界達電位分析 89 4.3 自然風化及加速風化結果比較 90 4.4 動力吸附模式 95 4.4.1 pH值對鉛吸附之影響 95 4.4.2 鹽度對鉛吸附之影響 99 4.5 等溫吸附模式 102 第五章 結論與建議 104 5.1 結論 104 5.2 建議 105 參考資料 106 附錄 116 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 塑膠微粒 | zh_TW |
| dc.subject | 降解 | zh_TW |
| dc.subject | 風化 | zh_TW |
| dc.subject | 吸附 | zh_TW |
| dc.subject | 重金屬 | zh_TW |
| dc.subject | weathering | en |
| dc.subject | degradation | en |
| dc.subject | adsorption | en |
| dc.subject | microplastics | en |
| dc.subject | heavy metal | en |
| dc.title | 自然風化及加速風化下塑膠微粒的特性變化及重金屬吸附 | zh_TW |
| dc.title | Characteristics Changes and Heavy Metal Adsorption of Microplastics under Natural and Accelerated Weathering | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 郭繼汾;李育輯 | zh_TW |
| dc.contributor.oralexamcommittee | Jeff Kuo;Yu-Chi Lee | en |
| dc.subject.keyword | 塑膠微粒,風化,降解,吸附,重金屬, | zh_TW |
| dc.subject.keyword | microplastics,weathering,degradation,adsorption,heavy metal, | en |
| dc.relation.page | 119 | - |
| dc.identifier.doi | 10.6342/NTU202301678 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-07-19 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 環境工程學研究所 | - |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 7.29 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
