請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88252完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曾惠斌 | zh_TW |
| dc.contributor.advisor | Hui-Ping Tserng | en |
| dc.contributor.author | 蔣恩維 | zh_TW |
| dc.contributor.author | En-Wei Chiang | en |
| dc.date.accessioned | 2023-08-09T16:13:18Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-09 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-21 | - |
| dc.identifier.citation | ABNT (2016).NBR 9452.
Ahlborn, T. M., C. G. Gilbertson, H. Aktan and U. Attanayake (2005). Condition Assessment and Methods of Abatement of Prestressed Concrete Box-Beam Deterioration, Michigan Department of Transportation. Carosena Meola , Giovanni M. Carlomagno (2010).Impact damage in GFRP:New insights with infrared thermography. C.A. Balaras , A.A. Arigiriou, (2002). Infrared thermography for building diagnostics. Chia-Chi Cheng, Tao-Ming Cheng, Chih Hung Chiang, (2008). Defect detection of concrete structures using both infrared thermography and elastic waves. Ch. Maierhofer , R. Arndt , M. Ro¨llig , C. Rieck , A. Walther , H. Scheel , B.Hillemeier (2006).Application of impulse-thermography for non-destructive assessment of concrete structures. D4788 – 88(1997): Standard Test Method for Detecting Delaminations in Bridge Decks Using Infrared Thermography. Electronice Components, (2023). https://www.tme.eu/cn/zh/details/lm80/ce-ju-yi/uni-t/. G.D. Chown, K.N. Burn, (1983).Thermographic identification of building enclosure and deficiencies, Canadian Building Digest, CBD-229, Institute for Research in Construction, National Research Council Canada. Glenn Washer, Richard Fenwick, Naveen Bolleni, and Jennifer Harper(2009).Effects of Environmental Variables on Infrared Imaging of Subsurface Features of Concrete Bridges. Glenn Washer, Naveen Bolleni, and Richard Fenwick (2010).Thermographic Imaging of Subsurface Deterioration in Concrete Bridges. GPO. (2015). “Electronic Code of Federal Regulations”, U.S. Government Publishing Officem, Subpart C, Title 23, 650.311, . Gucunski, N., Kee, S., La, H., Basily, B. and Maher, A. (2015), “Delamination and concrete quality assessment of concrete bridge decks using a fully autonomous RABIT platform”, Struct. Monit. Maint., 2(1), 19-34. H. Kaplan, Practical Applications of Infrared Thermal Sensing and Imaging Equipment, 2nd Edition, International Society for Optical Engineering (SPIE),Bellingham, WA, 1992, 160 pp. Ikhlas Abdel-Qader , Solange Yohali , Osama Abudayyeh, Sherif Yehia (2008).Segmentation of thermal images for non-destructive evaluation of bridge decks. Jenson, J.(2007). Remote sensing of the environment: an earth resource perspective,Pearson Education, Inc. J. H. A. Rocha, Y. V. Povoas (2017). Infrared thermography as a non-destructive test. for the inspection of reinforced concrete bridges : A review of the state of the art. J.R. Snell, Infrared inspection of motors, Think Thermally, Snell Infrared’s Newsletter, December 1997. Khatereh Vaghefi (2013). Infrared thermography enhancements for concrete bridge evaluation. Mendes, P., Moreira, M., Pimienta, P. (2012), Pontes de concreto armado: efeitos da.corrosão e da variação do módulo de elasticidade do concreto. IBRACON de Estruturas e Materiais. 5(3):389-401. Pines and Aktan. (2002). Status of structural health monitoring of long-span bridges in the United States. R. P. Madding, Emissivity Measurement and Temperature Correction Accuracy Considerations, in : Proceedings of the Thermosense XXI, International Society for Optical Engineering (SPIE), Orlando, FL, 1999, pp. 393-401. Sherif Yehia ; Osama Abudayyeh ; Saleh Nabulsi ; and Ikhlas Abdelqader (2007).Detection of Common Defects in Concrete Bridge Decks Using Nondestructive Evaluation Techniques. Takahide Sakagami , Shiro Kubo (2002).Applications of pulse heating thermography and lock-in thermography to quantitative nondestructive evaluations. Vaghefi, K., T. M. Ahlborn, D. K. Harris and C. N. Brooks (2013). "Combined Imaging Technologies for Concrete Bridge Deck Condition Assessment." ASCE Journal of Performance of Constructed Facilities, Accepted April 2013,http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29CF.1943-5509.0000465. Vaghefi, K., R. C. Oats, D. K. Harris, T. M. Ahlborn, C. N. Brooks, K. Endsley, C.Roussi, R. Shuchman, J. W. Burns and R. Dobson (2012). "Evaluation of Commercially Available Remote Sensors for Highway Bridge Condition Assessment." ASCE Journal of Bridge Engineering, 17(6), pp. 886-895. Washer, G., R. Fenwick and N. Bolleni (2009). Development of hand-held thermographic inspection technologies. Final Report, Missouri Department of Transportation. RI06-038/OR10.007. Washer, G. (2010). Thermal Imaging of Damage in Bridge Soffits. NDE/NDT for Highways and Bridges Structural Materials Technology NYC. X. Maldague, Non-destructive Evaluation of Materials by Infrared Thermography,Springer, London, 1993. Yahui Liu, Jian Yao, Xiaohu Lu, Renping Xie, Li Li(2019).Deepcrack : A deep hierarchical feature learning architecture for crack segmentation. 王映捷 (2021)。建立臺灣普通及摻料混凝土強度及彈性模數時間成長函數研究,國立臺灣大學學士論文。 王姿樺,高書屏,林志憲(2021)。應用深度學習技術輔助橋梁裂縫辨識。航測及遙測學刊。 交通部(2020)。公路橋梁檢測及補強規範。 林呈(2012)。橋梁水力災害學。臺北市:科技圖書。 林宥任(2014)。無線監測應用於橋梁管理之開發與實測。國立臺灣大學土木工程學研究所碩士論文。 林喻峰(2014)。應用紅外線熱像儀檢測混凝土內部裂縫深度之研究。科技部補助專題研究計畫成果報告(計畫編號:NSC102-2221-E-270-007-)。 高鵬雅(2020)。無人機搭載紅外線熱像儀於混凝土橋梁檢測。國立中興大學未出版之碩士論文。 陳宇欣(2005),用紅外線影像之視覺監控,國立交通大學資訊科學與工程碩士論文。 張顥瀚(2021)。應用深度學習與影像處理偵測混凝土表面裂縫。國立聯合大學電機工程學系研究所碩士論文。 張順欽 (2013)。添加遠紅外線粉末之多孔隙陶瓷開發與其植栽應用。 那致中(2010)。面陣列熱影像特性之研究,國立政治大學地政學系碩士論文。 臺灣大學(2011)。科學Online。 FLIR (2016)。使用者手冊FLIR EX系列說明書。 艾丁陞實業(2021)。https://etinstw.com/thermalclass-2minsguide/。 FLIR Tools官網(2023)。https://etinstw.com/flir-tools/。 良興購物網(2023)。https://www.eclife.com.tw/ups/moreinfo_159478.htm。 TECPEL官網(2023)。https://www.tecpel.com.tw/?model=DIT-300B。 唐和股份有限公司(2019)。https://www.donho.com.tw/news-detail/show-886766.htm。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88252 | - |
| dc.description.abstract | 橋梁老化產生各種損傷和缺陷,會影響橋梁結構安全,因此,定期巡檢、有效管理、及時維護和補強是確保橋梁使用安全和品質的重要措施。目前世界各國仍普遍採用目視檢測作為橋梁檢測最主要的方式,惟目視檢測仰賴檢測人員的訓練素質、經驗和主觀認定,易產生判斷不一之情形。
國內外多項研究以深度學習技術應用於橋梁檢測,作為偵測裂縫的非接觸式量測方式,惟迄今AI影像辨識技術尚有瓶頸待突破。而過去文獻指出紅外線熱像儀可有效偵測混凝土橋梁表面剝落,本研究旨在探討以較低規格之紅外線熱像儀檢測混凝土橋梁表面剝落及輔助AI影像辨識技術,應用於橋梁檢測是否具有可行性。 經實驗室研究與橋梁實拍結果顯示,本研究所採用之紅外線熱像儀(FLIR E5),最適當量測距離為1至2米,且可偵測出各式各樣形狀的剝落,但較不適合量測深度較淺及面積較小之缺陷尺寸;裂縫周圍有局部剝落時,有助於提高紅外線熱成像之偵測率,卻會降低AI影像辨識的偵測率;而AI影像辨識對於假缺陷之誤判率遠大於紅外線熱成像,因此利用較低規格之紅外線熱像儀檢測混凝土橋梁表面剝落及輔助AI影像辨識技術,應用於橋梁檢測具有可行性。 | zh_TW |
| dc.description.abstract | Regular inspections, effective management, and timely maintenance are critical issues to ensure bridge safety and quality. Currently, visual inspection remains the predominant method employed worldwide for bridge inspection. However, visual inspection heavily relies on the training, experience, and subjective judgment of inspectors, leading to inconsistent assessments.
Several studies have utilized deep learning to detect cracks during bridge inspections. Nevertheless, there is still a significant challenge to overcome AI image recognition. Previous literature has highlighted the effectiveness of thermal imaging cameras in detecting concrete bridge surface spalling. This study aims to investigate the feasibility of employing low-standard infrared thermal imaging cameras to detect concrete bridge surface spalling and support AI image recognition technology in bridge inspections. Based on laboratory research and on-site inspections of bridges, the FLIR E5 infrared thermal imaging camera has demonstrated the recommended measurement distance of 1 to 2 meters. While it may not be suitable for measuring shallow-depth and small-area defects, it excels in effectively detecting various shapes of spalling and supporting AI image recognition. Consequently, employing low-standard infrared thermal imaging cameras for the detection of concrete bridge surface spalling and integration with AI image recognition technology in bridge inspections appears to be a feasible approach. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-09T16:13:18Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-09T16:13:18Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii 目錄 iv 圖目錄 vii 表目錄 xi Chapter 1 緒論 1 1.1 研究背景及動機 1 1.2 研究目的 2 1.3 研究範圍與限制 2 1.4 研究架構與流程 2 1.4.1 研究架構 2 1.4.2 研究流程 3 Chapter 2 文獻回顧 5 2.1 橋梁檢測 5 2.1.1 橋梁常見缺陷形態 5 2.1.2 橋梁檢測形式 6 2.2 AI影像辨識混凝土缺陷 7 2.3 紅外線熱成像 9 2.3.1 紅外線基本原理 9 2.3.2 放射率 10 2.3.3 熱傳遞理論 11 2.3.4 紅外線熱像儀 13 2.3.5 熱解析度 14 2.3.6 熱靈敏度 15 2.3.7 溫度擴散現象 16 2.4 紅外線熱成像檢測 16 2.4.1 被動紅外線熱成像技術 17 2.4.2 主動紅外線熱成像技術 18 2.4.3 ASTM-D4788 19 2.4.4 過去之相關研究 19 2.5 小結 22 Chapter 3 設備介紹與實驗規劃 23 3.1 使用設備 23 3.2 軟體介紹 25 3.3 試體製作 28 3.4 小結 31 Chapter 4 利用紅外線熱像儀應用於橋梁表面缺陷之實驗與分析 32 4.1 第一階段實驗 – 剝落尺寸及量測距離 33 4.1.1 實驗方法 33 4.1.2 實驗一 – 探討剝落尺寸影響量測程度 37 4.1.3 實驗二 – 探討適當量測距離與剝落尺寸 42 4.1.4 缺陷尺寸誤差統計 48 4.1.5 小結 49 4.2 第二階段實驗 – 缺陷形狀與日照時間因子 50 4.2.1 實驗方法 50 4.2.2 實驗結果 51 4.2.3 小結 54 4.3 第三階段實驗 – 紅外線熱像儀與AI影像辨識 55 4.3.1 實驗方法 55 4.3.2 實驗結果 58 4.3.3 小結 64 Chapter 5 利用紅外線熱像儀應用於橋梁實拍 65 5.1 使用設備 65 5.2 橋梁選定 65 5.3 量測方法 66 5.4 實拍結果與分析 67 Chapter 6 結論與建議 71 6.1 結論 71 6.2 後續研究建議 72 參考資料 73 附錄A 78 附錄B 94 附錄C 110 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 混凝土橋梁 | zh_TW |
| dc.subject | AI影像辨識 | zh_TW |
| dc.subject | 混凝土缺陷 | zh_TW |
| dc.subject | 被動紅外線熱成像技術 | zh_TW |
| dc.subject | 橋梁檢測 | zh_TW |
| dc.subject | 紅外線熱成像 | zh_TW |
| dc.subject | AI Image Recognition | en |
| dc.subject | Concrete Defects | en |
| dc.subject | Infrared Thermography | en |
| dc.subject | Concrete Bridges | en |
| dc.subject | Passive Infrared Thermography technology | en |
| dc.subject | Bridge Inspection | en |
| dc.title | 利用紅外線熱成像強化混凝土橋梁表面剝落檢測成效之初步研究 | zh_TW |
| dc.title | Preliminary Study on Enhancing Detection of Concrete Bridge Surface Spalling by Infrared Thermography | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳柏翰;林利國;范素玲 | zh_TW |
| dc.contributor.oralexamcommittee | Po-Han Chen;Lee-Kuo Lin;Su-Lin Fan | en |
| dc.subject.keyword | 混凝土橋梁,紅外線熱成像,橋梁檢測,混凝土缺陷,被動紅外線熱成像技術,AI影像辨識, | zh_TW |
| dc.subject.keyword | Concrete Bridges,Infrared Thermography,Bridge Inspection,Concrete Defects,Passive Infrared Thermography technology,AI Image Recognition, | en |
| dc.relation.page | 129 | - |
| dc.identifier.doi | 10.6342/NTU202301884 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-07-24 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 13.79 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
