請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88250完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張俊哲 | zh_TW |
| dc.contributor.advisor | Chun-che Chang | en |
| dc.contributor.author | 蔡沐慈 | zh_TW |
| dc.contributor.author | Mu-tzu Tsai | en |
| dc.date.accessioned | 2023-08-09T16:12:44Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-09 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2023-07-07 | - |
| dc.identifier.citation | Bermingham, J. and Wilkinson, T. L. (2009). Embryo nutrition in parthenogenetic viviparous aphids. Physiological Entomology 34, 103-109.
Bieri, M., Baumgartner, J., Bianchi, G., Delucchi, V. and Arx, R. v. (1983). Development and fecundity of pea aphid (Acyrthosiphon pisum Harris) as affected by constant temperatures and by pea varieties. Mitteilungen der Schweizerischen Entomologischen Gesellschaft 56, 163-171. Blackman, R. L. and Eastop, V. F. (2000). Aphids on the world's crops: an identification and information guide: John Wiley & Sons Ltd. Campbell, A., Frazer, B., Gilbert, N., Gutierrez, A. and Mackauer, M. (1974). Temperature requirements of some aphids and their parasites. Journal of applied ecology, 431-438. Chang, C.-c., Dearden, P. and Akam, M. (2002). Germ line development in the grasshopper Schistocerca gregaria: vasa as a marker. Developmental Biology 252, 100-118. Chang, C.-c., Lee, W.-c., Cook, C. E., Lin, G.-w. and Chang, T. (2004). Germ-plasm specification and germline development in the parthenogenetic pea aphid Acyrthosiphon pisum: Vasa and Nanos as markers. International Journal of Developmental Biology 50, 413-421. Chang, C.-c., Lin, G.-w., Cook, C. E., Horng, S.-b., Lee, H.-j. and Huang, T.-y. (2007). Apvasa marks germ-cell migration in the parthenogenetic pea aphid Acyrthosiphon pisum (Hemiptera: Aphidoidea). Development genes and evolution 217, 275-287. Chang, C.-c., Huang, T.-y., Shih, C.-l., Lin, G.-w., Chang, T.-p., Chiu, H. and Chang, W.-c. (2008). Whole‐mount identification of gene transcripts in aphids: protocols and evaluation of probe accessibility. Archives of Insect Biochemistry and Physiology: Published in Collaboration with the Entomological Society of America 68, 186-196. Chen, C.-y., Lai, C.-y. and Kuo, M.-h. (2009). Temperature effect on the growth of Buchnera endosymbiont in Aphis craccivora (Hemiptera: Aphididae). Symbiosis 49, 53-59. Chung, C. y., Cook, C. E., Lin, G. w., Huang, T. Y. and Chang, C.-c. (2014). Reliable protocols for whole‐mount fluorescent in situ hybridization (FISH) in the pea aphid Acyrthosiphon pisum: A comprehensive survey and analysis. Insect science 21, 265-277. Consortium, I. A. G. (2010). Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS biology 8, e1000313. David, J., Araripe, L., Chakir, M., Legout, H., Lemos, B., Petavy, G., Rohmer, C., Joly, D. and Moreteau, B. (2005). Male sterility at extreme temperatures: a significant but neglected phenomenon for understanding Drosophila climatic adaptations. Journal of evolutionary biology 18, 838-846. Dixon, K. E. (1994). Evolutionary aspects of primordial germ-cell formation. Germline Dev 182, 92-110. Douglas, A. (1992). Requirement of pea aphids (Acyrthosiphon pisum) for their symbiotic bacteria. Entomologia experimentalis et applicata 65, 195-198. Douglas, A. (1996). Reproductive failure and the free amino acid pools in pea aphids (Acyrthosiphon pisum) lacking symbiotic bacteria. Journal of Insect Physiology 42, 247-255. Eastop, V. F. (1971). Keys for the identification of Acyrthosiphon (Hemiptera: Aphididae). Bulletin of the British Museum (Natural History), B. Entomology 26, 1-115. Ewen-Campen, B., Donoughe, S., Clarke, D. N. and Extavour, C. G. (2013). Germ cell specification requires zygotic mechanisms rather than germ plasm in a basally branching insect. Current Biology 23, 835-842. Fang, M.-N. (1994). Insect pests on pea and their control. Bull Taichung District Agric Improv Station 45, 27-43. Fukatsu, T., Tsuchida, T., Nikoh, N. and Koga, R. (2001). Spiroplasma symbiont of the pea aphid, Acyrthosiphon pisum (Insecta: Homoptera). Applied and Environmental Microbiology 67, 1284-1291. Gandara, A. C. P. and Drummond-Barbosa, D. (2022). Warm and cold temperatures have distinct germline stem cell lineage effects during Drosophila oogenesis. Development 149, dev200149. Gruidl, M., Smith, P., Kuznicki, K., McCrone, J., Kirchner, J., Roussell, D., Strome, S. and Bennett, K. (1996). Multiple potential germ-line helicases are components of the germ-line-specific P granules of Caenorhabditis elegans. Proceedings of the National Academy of Sciences 93, 13837-13842. Gruntenko, N., Bownes, M., Terashima, J., Sukhanova, M. Z. and Raushenbach, I. Y. (2003). Heat stress affects oogenesis differently in wild‐type Drosophila virilis and a mutant with altered juvenile hormone and 20‐hydroxyecdysone levels. Insect molecular biology 12, 393-404. Hay, B., Ackerman, L., Barbel, S., Jan, L. Y. and Jan, Y. N. (1988). Identification of a component of Drosophila polar granules. Development 103, 625-640. Hutchison, W. D. and Hogg, D. B. (1984). Demographic statistics for the pea aphid (Homoptera: Aphididae) in Wisconsin and a comparison with other populations. Environmental Entomology 13, 1173-1181. Jaubert-Possamai, S., Le Trionnaire, G., Bonhomme, J., Christophides, G. K., Rispe, C. and Tagu, D. (2007). Gene knockdown by RNAi in the pea aphid Acyrthosiphon pisum. BMC biotechnology 7, 1-8. Jean, P. and Jean‐Christophe, S. (2010). The pea aphid complex as a model of ecological speciation. Ecological Entomology 35, 119-130. Juhn, J. and James, A. (2006). oskar gene expression in the vector mosquitoes, Anopheles gambiae and Aedes aegypti. Insect molecular biology 15, 363-372. Kirfel, P., Skaljac, M., Grotmann, J., Kessel, T., Seip, M., Michaelis, K. and Vilcinskas, A. (2020). Inhibition of histone acetylation and deacetylation enzymes affects longevity, development, and fecundity in the pea aphid (Acyrthosiphon pisum). Archives of insect biochemistry and physiology 103, e21614. Koga, R., Tsuchida, T. and Fukatsu, T. (2003). Changing partners in an obligate symbiosis: a facultative endosymbiont can compensate for loss of the essential endosymbiont Buchnera in an aphid. Proceedings of the Royal Society of London. Series B: Biological Sciences 270, 2543-2550. Koramutla, M. K., Aminedi, R. and Bhattacharya, R. (2016). Comprehensive evaluation of candidate reference genes for qRT-PCR studies of gene expression in mustard aphid, Lipaphis erysimi (Kalt). Scientific reports 6, 1-10. Lamb, R., MacKay, P. and Gerber, G. (1987). Are development and growth of pea aphids, Acyrthosiphon pisum, in North America adapted to local temperatures? Oecologia 72, 170-177. Lamb, R. and Pointing, P. (1972). Sexual morph determination in the aphid, Acyrthosiphon pisum. Journal of Insect Physiology 18, 2029-2042. Lasko, P. F. (1992). Molecular movements in oocyte patterning and pole cell differentiation. BioEssays 14, 507-512. Lin, G.-w. (2012). Developmental plasticity of germline development in the pea aphid Acyrthosiphon pisum: implicated by vasa expressions. Lin, G.-w. and Chang, C.-c. (2016). Identification of critical conditions for immunostaining in the pea aphid embryos: increasing tissue permeability and decreasing background staining. JoVE (Journal of Visualized Experiments), e53883. Linder, P., Lasko, P. F., Ashburner, M., Leroy, P., Nielsen, P. J., Nishi, K., Schnier, J. and Slonimski, P. P. (1989). Birth of the DEAD box. Nature 337, 121-122. Livak, K. J. and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. methods 25, 402-408. Lu, W. N. and Kuo, M. H. (2008). Life table and heat tolerance of Acyrthosiphon pisum (Hemiptera: Aphididae) in subtropical Taiwan. Entomological Science 11, 273-279. Lynch, J. A. and Desplan, C. (2010). Novel modes of localization and function of nanos in the wasp Nasonia. Development 137, 3813-3821. Lynch, J. A., Özüak, O., Khila, A., Abouheif, E., Desplan, C. and Roth, S. (2011). The phylogenetic origin of oskar coincided with the origin of maternally provisioned germ plasm and pole cells at the base of the Holometabola. PLoS genetics 7, e1002029. MacKay, P. (1987). Production of sexual and asexual morphs and changes in reproductive sequence associated with photoperiod in the pea aphid, Acyrthosiphon pisum (Harris). Canadian Journal of Zoology 65, 2602-2606. MacKay, P. A., Lamb, R. J. and Smith, M. A. (1993). Variability in life history traits of the aphid, Acyrthosiphon pisum (Harris), from sexual and asexual populations. Oecologia 94, 330-338. Matsuda, N., Kanbe, T., Akimoto, S.-i. and Numata, H. (2017). Transgenerational seasonal timer for suppression of sexual morph production in the pea aphid, Acyrthosiphon pisum. Journal of Insect Physiology 101, 1-6. Miura, T., Braendle, C., Shingleton, A., Sisk, G., Kambhampati, S. and Stern, D. L. (2003). A comparison of parthenogenetic and sexual embryogenesis of the pea aphid Acyrthosiphon pisum (Hemiptera: Aphidoidea). Journal of Experimental Zoology Part B: Molecular and Developmental Evolution 295, 59-81. Morgan, D., Walters, K. and Aegerter, J. (2001). Effect of temperature and cultivar on pea aphid, Acyrthosiphon pisum (Hemiptera: Aphididae) life history. Bulletin of entomological research 91, 47-52. Ogawa, K. and Miura, T. (2014). Aphid polyphenisms: trans-generational developmental regulation through viviparity. Frontiers in physiology 5, 1. Parven, N., Yao, I., Kanbe, T. and Akimoto, S. i. (2021). Heat shock alters pea aphid–Buchnera interactions: negative allometry of gene densities. Entomologia Experimentalis et Applicata 169, 462-471. Raz, E. (2000). The function and regulation of vasa-like genes in germ-cell development. Genome biology 1, 1-6. Saffman, E. and Lasko, P. (1999). Germline development in vertebrates and invertebrates. Cellular and Molecular Life Sciences CMLS 55, 1141-1163. Sales, K., Vasudeva, R., Dickinson, M. E., Godwin, J. L., Lumley, A. J., Michalczyk, Ł., Hebberecht, L., Thomas, P., Franco, A. and Gage, M. J. (2018). Experimental heatwaves compromise sperm function and cause transgenerational damage in a model insect. Nature Communications 9, 1-11. Schüpbach, T. and Wieschaus, E. (1986). Maternal-effect mutations altering the anterior-posterior pattern of the Drosophila embryo. Roux's archives of developmental biology 195, 302-317. Siddiqui, W., Barlow, C. and Randolph, P. (1973). Effects of some constant and alternating temperatures on population growth of the pea aphid, Acyrthosiphon pisum (Homoptera: Aphididae). The Canadian Entomologist 105, 145-156. Simonet, P., Gaget, K., Parisot, N., Duport, G., Rey, M., Febvay, G., Charles, H., Callaerts, P., Colella, S. and Calevro, F. (2016). Disruption of phenylalanine hydroxylase reduces adult lifespan and fecundity, and impairs embryonic development in parthenogenetic pea aphids. Scientific reports 6, 1-12. Strome, S. and Updike, D. (2015). Specifying and protecting germ cell fate. Nature reviews Molecular cell biology 16, 406-416. Tanaka, S. S., Toyooka, Y., Akasu, R., Katoh-Fukui, Y., Nakahara, Y., Suzuki, R., Yokoyama, M. and Noce, T. (2000). The mouse homolog of Drosophila Vasa is required for the development of male germ cells. Genes & development 14, 841-853. Vellichirammal, N. N., Gupta, P., Hall, T. A. and Brisson, J. A. (2017). Ecdysone signaling underlies the pea aphid transgenerational wing polyphenism. Proceedings of the National Academy of Sciences 114, 1419-1423. Walsh, B. S., Parratt, S. R., Hoffmann, A. A., Atkinson, D., Snook, R. R., Bretman, A. and Price, T. A. (2019). The impact of climate change on fertility. Trends in Ecology & Evolution 34, 249-259. Weismann, A. (1893). The germ-plasm: a theory of heredity: Scribner's. Will, T., Schmidtberg, H., Skaljac, M. and Vilcinskas, A. (2017). Heat shock protein 83 plays pleiotropic roles in embryogenesis, longevity, and fecundity of the pea aphid Acyrthosiphon pisum. Development genes and evolution 227, 1-9. Wilson, A. C., Ashton, P. D., Calevro, F., Charles, H., Colella, S., Febvay, G., Jander, G., Kushlan, P. F., Macdonald, S. J. and Schwartz, J. F. (2010). Genomic insight into the amino acid relations of the pea aphid, Acyrthosiphon pisum, with its symbiotic bacterium Buchnera aphidicola. Insect molecular biology 19, 249-258. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88250 | - |
| dc.description.abstract | 溫度為環境改變的關鍵,也是調控昆蟲生理反應重要的決定因子。然而,目前對於高溫熱壓力如何調控昆蟲胚胎發育,甚或是孤雌生殖昆蟲之胚胎發育,相關之研究仍付之闕如。因此本論文將分析探討一種在基因體學與發育生物學中新興的模式物種:孤雌胎生豌豆蚜 (Acyrthosiphon pisum) 之胚胎發育是如何受到高溫熱壓力所調控,本研究中,我以 30°C 作為高溫刺激之溫度,與適合豌豆蚜生存之溫度 20°C 作為控制組以比較。過去研究中發現 30°C 中飼養之豌豆蚜雖可發育至成蟲,卻無法產下子代,可能之肇因為卵巢中因高溫壓力影響而導致胚胎發育不全,抑或是即使能正常發育卻無法被產下。本研究結果顯示,30°C 飼養下發育至成蟲第一天的豌豆蚜,其體內胚胎皆未發育成熟;而在 20°C 則可發現發育正常的成熟胚胎,因此推測胚胎之發育不全可能是造成成蟲無法生育之原因。實驗過程中,我首次發現若將豌豆蚜之飼養空間放大至六倍以上,約有 55 % 之成蟲即可產下子代,是與過去研究不同之處。儘管子代皆於出生後一天內死亡,卻說明較大之飼養空間可以誘導豌豆蚜在高溫逆境中生育,但仍無法使子代正常存活。除了生存率與發育型態,我也進一步比較了生殖基因 Apvas1在 20°C 及 30°C 中之表現量差異,體內及體外實驗之結果皆顯示在 30°C 中,成蟲卵巢內多數胚胎之 Apvas1 表現量顯著減少,推測主因為高溫抑制 Apvas1 的表現。同時,我也發現豌豆蚜體內之主要內共生菌 Buchnera aphidicola 在高溫下含量顯著減少,推測其可能為造成豌豆蚜生育下降之原因。綜合上述可以得知高溫熱壓力抑制了豌豆蚜之生育力,抑制 Apvas1 基因之表現以及內共生菌之含量,而關於這三者彼此是否有所關聯,則仍需後續研究來作進一步釐清。 | zh_TW |
| dc.description.abstract | Temperature is a critical factor to environmental changes and is known to regulate physiological conditions in insects. To Date, however, how heat stress regulates embryogenesis is not well known and how asexual embryogenesis responds to the heat stress is even worse known. In this thesis, I aim to analyze how embryogenesis of the parthenogenetic and viviparous pea aphid Acyrthosiphon pisum, a rising insect model for developmental and genomic studies, is affected by the high temperature at 30°C. Embryonic development at 20°C, a common temperature for pea aphids in the wild, serves as a control for comparison. Previous studies showed that pea-aphid nymphs cultured at 30°C can mature into adults but all of them were sterile. This suggests that embryos derived from the heat-shocked aphids were either not fully developed or labor of the fully-developed embryos was blocked. Experimental results showed that sterile adults bore embryos whose development was incomplete on the first day when the mother aphids became adults. By contrast, adult aphids cultured at 20°C were already pregnant with mature embryos, suggesting that incomplete development of embryos may be a cause of sterility. When the space was expanded six times, about 55% of aphid adults were able to give birth, however, all of the nymphs deceased within a day. This implies that enlarged space induces fecundity of pea aphids at 30°C but it cannot save the life of new born offsprings. Moreover, I also compared the expression of Apvas1 mRNA, a germline marker of pea aphids, in embryos developing at 20°C and 30°C respectively. In vitro and in vivo results showed that Apvas1 expression became significantly weaker in embryos of aphid adults cultured at 30°C, suggesting that the heat stress suppresses Apvas1 expression. Meanwhile, that numbers of the primary endosymbiont Buchnera aphidicola reduced was also identified. Taken together, the heat stress suppresses the fecundity of adults, expression of Apvas1, and number of endosymbionts. Whether these three changes are correlated and, if so, how they are regulated with each other require further investigation. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-09T16:12:44Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-09T16:12:44Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii 表目錄 vii 圖目錄 viii 附錄 ix 第一章 前言 1 (一) 豌豆蚜之獨特性及其重要性 1 (二) 高溫熱壓力對於昆蟲之影響 2 (三) 高溫熱壓力對於豌豆蚜之影響 2 (四) 生殖細胞發育 3 1. 生殖細胞之特化 4 2. 生殖細胞發育之基因:以 vasa 為例 4 3. 豌豆蚜生殖細胞之特化 5 (五) 豌豆蚜的內共生菌與生殖細胞發育之關聯 6 (六) 以 vasa 基因探討高溫壓力對豌豆蚜生殖發育之影響 6 第二章 材料與方法 8 (一) 豌豆蚜飼養 8 (二) 高溫壓力及空間大小對於豌豆蚜發育及生殖之影響 8 (三) 豌豆蚜卵巢之收集與固定作用 9 (四) 豌豆蚜微卵管、蛋腔數目之計算及成蟲體長和蛋腔長度之測量 9 (五) 成蟲體長和蛋腔長度之測量 9 (六) 豌豆蚜基因之選殖 (Cloning) 9 1. 核糖核酸之萃取 (RNA extraction) 與反轉錄作用 (reverse transcription) 10 2. 專一性引子 (primer) 之設計 10 3. 反轉錄聚合酶連鎖反應 (reverse transcription-polymerase chain reaction, RT-PCR) 和目標核酸產物之膠體回收 (gel extraction) 10 4. 接合反應 (ligation)、轉形作用 (Transformation) 及定序 (sequencing) 11 (七) RNA 探針 ( probe) 之合成與純化 11 (八) 原位雜合實驗 (in situ hybridization) 12 (九) 胚胎之封片 (mounting) 及影像之拍攝、處理 13 (十) 基因體 DNA (genomic DNA) 之萃取 13 (十一) 即時定量聚合酶連鎖反應 (quantitative polymerase chain reaction, qPCR) 13 (十二) 數據之統計與分析 14 第三章 結果 15 (一) 高溫壓力及空間大小對豌豆蚜發育時間影響之比較 15 (二) 高溫壓力及空間大小對豌豆蚜成蟲體長影響之比較 15 (三) 高溫壓力及空間大小對豌豆蚜成蟲壽命、生殖力以及子代影響之比較 15 (四) 高溫壓力對成蟲卵巢之微卵管數量、蛋腔數量以及蛋腔長度影響之比較 16 (五) 高溫壓力對胚胎之生殖細胞基因 Apvas1 表現量影響之比較 17 (六) 高溫壓力對成蟲卵巢之 Apvas1 基因和 ApEF1a 基因表現量影響之比較 18 (七) 高溫壓力對豌豆蚜成蟲體內所含之主要共生菌數量影響之比較 18 第四章 討論 19 (一) 高溫壓力對於豌豆蚜生長發育及生殖之影響 19 (二) 環境空間大小對於豌豆蚜之影響 19 (三) 高溫壓力造成不正常子代之產生 20 (四) 高溫使得豌豆蚜卵巢發育受阻 21 (五) Apvas1 表現量受高溫刺激而下降 22 1. 以原位技術雜合探討 Apvas1 表現差異 22 2. 以即時定量聚合酶連鎖反應探討 Apvas1 表現差異 23 (六) 共生菌與豌豆蚜生殖發育之影響 24 (七) 本研究之成果及未來可進行之實驗方向 25 參考文獻 27 附表 35 附圖 39 附錄 51 口試提問與建議 64 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 豌豆蚜 (Acyrthosiphon pisum) | zh_TW |
| dc.subject | 胚胎發育 | zh_TW |
| dc.subject | 高溫壓力 | zh_TW |
| dc.subject | Apvas1 | zh_TW |
| dc.subject | 內共生菌 | zh_TW |
| dc.subject | heat stress | en |
| dc.subject | embryogenesis | en |
| dc.subject | Apvas1 | en |
| dc.subject | Acyrthosiphon pisum | en |
| dc.subject | endosymbiont | en |
| dc.title | 高溫熱壓力及空間擴大對孤雌胎生豌豆蚜生殖細胞發育之影響 | zh_TW |
| dc.title | Germline development under heat stress and space expansion in the asexual viviparous pea aphid Acyrthosiphon pisum | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 李士傑;林明德;郭美華;蔡素宜 | zh_TW |
| dc.contributor.oralexamcommittee | Shyh-Jye Lee;Ming-der Lin;Mei-Hwa Kuo;Su-Yi Tsai | en |
| dc.subject.keyword | 豌豆蚜 (Acyrthosiphon pisum),高溫壓力,胚胎發育,Apvas1,內共生菌, | zh_TW |
| dc.subject.keyword | Acyrthosiphon pisum,heat stress,embryogenesis,Apvas1,endosymbiont, | en |
| dc.relation.page | 68 | - |
| dc.identifier.doi | 10.6342/NTU202301409 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-07-11 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 昆蟲學系 | - |
| 顯示於系所單位: | 昆蟲學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 4.16 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
