Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88235Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 陳慧文 | zh_TW |
| dc.contributor.advisor | Hui-Wen Chen | en |
| dc.contributor.author | 甘曜銘 | zh_TW |
| dc.contributor.author | Yao-Ming Kan | en |
| dc.date.accessioned | 2023-08-09T16:08:23Z | - |
| dc.date.available | 2023-11-10 | - |
| dc.date.copyright | 2023-08-09 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-21 | - |
| dc.identifier.citation | 陳耀云, 2022. 四種不同型別冠狀病毒核殼蛋白的交叉抗原性探討. 國立臺灣大學, 台北市.
Addie, D., Belák, S., Boucraut-Baralon, C., Egberink, H., Frymus, T., Gruffydd-Jones, T., Hartmann, K., Hosie, M.J., Lloret, A., Lutz, H., Marsilio, F., Pennisi, M.G., Radford, A.D., Thiry, E., Truyen, U., Horzinek, M.C., 2009. Feline infectious peritonitis. ABCD guidelines on prevention and management. J Feline Med Surg 11, 594-604. Addie, D.D., Covell-Ritchie, J., Jarrett, O., Fosbery, M., 2020. Rapid Resolution of Non-Effusive Feline Infectious Peritonitis Uveitis with an Oral Adenosine Nucleoside Analogue and Feline Interferon Omega. Viruses 12. Addie, D.D., le Poder, S., Burr, P., Decaro, N., Graham, E., Hofmann-Lehmann, R., Jarrett, O., McDonald, M., Meli, M.L., 2015. Utility of feline coronavirus antibody tests. J Feline Med Surg 17, 152-162. Addie, D.D., Paltrinieri, S., Pedersen, N.C., 2004. Recommendations from workshops of the second international feline coronavirus/feline infectious peritonitis symposium. J Feline Med Surg 6, 125-130. Addie, D.D., Schaap, I.A.T., Nicolson, L., Jarrett, O., 2003. Persistence and transmission of natural type I feline coronavirus infection. J Gen Virol 84, 2735-2744. Adil, M.T., Rahman, R., Whitelaw, D., Jain, V., Al-Taan, O., Rashid, F., Munasinghe, A., Jambulingam, P., 2021. SARS-CoV-2 and the pandemic of COVID-19. Postgrad Med J 97, 110-116. Amer, A., Siti Suri, A., Abdul Rahman, O., Mohd, H.B., Faruku, B., Saeed, S., Tengku Azmi, T.I., 2012. Isolation and molecular characterization of type I and type II feline coronavirus in Malaysia. Virol J 9, 278. Bank-Wolf, B.R., Stallkamp, I., Wiese, S., Moritz, A., Tekes, G., Thiel, H.J., 2014. Mutations of 3c and spike protein genes correlate with the occurrence of feline infectious peritonitis. Vet Microbiol 173, 177-188. Bárcena, M., Oostergetel, G.T., Bartelink, W., Faas, F.G., Verkleij, A., Rottier, P.J., Koster, A.J., Bosch, B.J., 2009. Cryo-electron tomography of mouse hepatitis virus: Insights into the structure of the coronavirion. Proc Natl Acad Sci U S A 106, 582-587. Benetka, V., Kübber-Heiss, A., Kolodziejek, J., Nowotny, N., Hofmann-Parisot, M., Möstl, K., 2004. Prevalence of feline coronavirus types I and II in cats with histopathologically verified feline infectious peritonitis. Vet Microbiol 99, 31-42. Berti-Bock, G., Vial, F., Premuda, L., Rullière, R., 1979. [Exudates, transudates and the Rivalta reaction (1895). Current status and historical premises]. Minerva Med 70, 3573-3580. Bessière, P., Vergne, T., Battini, M., Brun, J., Averso, J., Joly, E., Guérin, J.L., Cadiergues, M.C., 2022. SARS-CoV-2 Infection in Companion Animals: Prospective Serological Survey and Risk Factor Analysis in France. Viruses 14. Cham, T.C., Chang, Y.C., Tsai, P.S., Wu, C.H., Chen, H.W., Jeng, C.R., Pang, V.F., Chang, H.W., 2017. Determination of the cell tropism of serotype 1 feline infectious peritonitis virus using the spike affinity histochemistry in paraffin-embedded tissues. Microbiol Immunol 61, 318-327. Chang, H.W., Egberink, H.F., Rottier, P.J., 2011. Sequence analysis of feline coronaviruses and the circulating virulent/avirulent theory. Emerg Infect Dis 17, 744-746. Ciliberti, M.G., Albenzio, M., De Palo, P., Santillo, A., Caroprese, M., 2020. Nexus Between Immune Responses and Oxidative Stress: The Role of Dietary Hydrolyzed Lignin in ex vivo Bovine Peripheral Blood Mononuclear Cell Response. Front Vet Sci 7, 9. Cornelissen, E., Dewerchin, H.L., Van Hamme, E., Nauwynck, H.J., 2009. Absence of antibody-dependent, complement-mediated lysis of feline infectious peritonitis virus-infected cells. Virus Res 144, 285-289. De Groot, R.J., Andeweg, A.C., Horzinek, M.C., Spaan, W.J., 1988. Sequence analysis of the 3'-end of the feline coronavirus FIPV 79-1146 genome: comparison with the genome of porcine coronavirus TGEV reveals large insertions. Virology 167, 370-376. de Haan, C.A., Haijema, B.J., Schellen, P., Wichgers Schreur, P., te Lintelo, E., Vennema, H., Rottier, P.J., 2008. Cleavage of group 1 coronavirus spike proteins: how furin cleavage is traded off against heparan sulfate binding upon cell culture adaptation. J Virol 82, 6078-6083. Decaro, N., Mari, V., Lanave, G., Lorusso, E., Lucente, M.S., Desario, C., Colaianni, M.L., Elia, G., Ferringo, F., Alfano, F., Buonavoglia, C., 2021. Mutation analysis of the spike protein in Italian feline infectious peritonitis virus and feline enteric coronavirus sequences. Res Vet Sci 135, 15-19. Desmarets, L.M., Vermeulen, B.L., Theuns, S., Conceição-Neto, N., Zeller, M., Roukaerts, I.D., Acar, D.D., Olyslaegers, D.A., Van Ranst, M., Matthijnssens, J., Nauwynck, H.J., 2016. Experimental feline enteric coronavirus infection reveals an aberrant infection pattern and shedding of mutants with impaired infectivity in enterocyte cultures. Sci Rep 6, 20022. Dileepan, M., Di, D., Huang, Q., Ahmed, S., Heinrich, D., Ly, H., Liang, Y., 2021. Seroprevalence of SARS-CoV-2 (COVID-19) exposure in pet cats and dogs in Minnesota, USA. Virulence 12, 1597-1609. Doenges, S.J., Weber, K., Dorsch, R., Fux, R., Hartmann, K., 2017. Comparison of real-time reverse transcriptase polymerase chain reaction of peripheral blood mononuclear cells, serum and cell-free body cavity effusion for the diagnosis of feline infectious peritonitis. J Feline Med Surg 19, 344-350. Dye, C., Siddell, S.G., 2005. Genomic RNA sequence of Feline coronavirus strain FIPV WSU-79/1146. J Gen Virol 86, 2249-2253. El-Tholoth, M., Hussein, M., Mohammed, D., Al-Rasheedi, M., Al-Qubaisi, H., Al-Blooshi, A., Al-Ahbabi, M., Al-Dhaheri, Z., Al-Blooshi, K., Al-Herbawi, M., Abo Elfadl, E.A., Seboussi, R., 2023. Serological Investigation on the Presence of Feline Coronavirus (FCoV) and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in Domestic Cats Living with COVID-19 Positive Owners in the UAE, 2022. Animals (Basel) 13. Fehr, A.R., Perlman, S., 2015. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol 1282, 1-23. Felten, S., Hartmann, K., 2019. Diagnosis of Feline Infectious Peritonitis: A Review of the Current Literature. Viruses 11. Felten, S., Matiasek, K., Gruendl, S., Sangl, L., Wess, G., Hartmann, K., 2017. Investigation into the utility of an immunocytochemical assay in body cavity effusions for diagnosis of feline infectious peritonitis. J Feline Med Surg 19, 410-418. Fischer, Y., Sauter-Louis, C., Hartmann, K., 2012. Diagnostic accuracy of the Rivalta test for feline infectious peritonitis. Vet Clin Pathol 41, 558-567. Foley, J.E., Poland, A., Carlson, J., Pedersen, N.C., 1997. Risk factors for feline infectious peritonitis among cats in multiple-cat environments with endemic feline enteric coronavirus. J Am Vet Med Assoc 210, 1313-1318. Foley, J.E., Rand, C., Leutenegger, C., 2003. Inflammation and changes in cytokine levels in neurological feline infectious peritonitis. J Feline Med Surg 5, 313-322. Gao, Y.Y., Liang, X.Y., Wang, Q., Zhang, S., Zhao, H., Wang, K., Hu, G.X., Liu, W.J., Gao, F.S., 2022. Mind the feline coronavirus: Comparison with SARS-CoV-2. Gene 825, 146443. Gao, Y.Y., Wang, Q., Liang, X.Y., Zhang, S., Bao, D., Zhao, H., Li, S.B., Wang, K., Hu, G.X., Gao, F.S., 2023. An updated review of feline coronavirus: mind the two biotypes. Virus Res 326, 199059. Giordano, A., Stranieri, A., Rossi, G., Paltrinieri, S., 2015. High diagnostic accuracy of the Sysmex XT-2000iV delta total nucleated cells on effusions for feline infectious peritonitis. Vet Clin Pathol 44, 295-302. Giori, L., Giordano, A., Giudice, C., Grieco, V., Paltrinieri, S., 2011. Performances of different diagnostic tests for feline infectious peritonitis in challenging clinical cases. J Small Anim Pract 52, 152-157. Haijema, B.J., Rottier, P., de Groot, R.J., 2007. Feline coronaviruses: a tale of two-faced types. Coronaviruses: molecular and cellular biology. Caister Academic Press, Norfolk, United Kingdom, 183-203. Haijema, B.J., Volders, H., Rottier, P.J., 2004. Live, attenuated coronavirus vaccines through the directed deletion of group-specific genes provide protection against feline infectious peritonitis. J Virol 78, 3863-3871. Halstead, S.B., 1988. Pathogenesis of dengue: challenges to molecular biology. Science 239, 476-481. Halstead, S.B., O'Rourke, E.J., 1977. Dengue viruses and mononuclear phagocytes. I. Infection enhancement by non-neutralizing antibody. J Exp Med 146, 201-217. Hayashi, T., Goto, N., Takahashi, R., Fujiwara, K., 1977. Systemic vascular lesions in feline infectious peritonitis. Nihon Juigaku Zasshi 39, 365-377. Hazuchova, K., Held, S., Neiger, R., 2017. Usefulness of acute phase proteins in differentiating between feline infectious peritonitis and other diseases in cats with body cavity effusions. J Feline Med Surg 19, 809-816. Herrewegh, A.A., de Groot, R.J., Cepica, A., Egberink, H.F., Horzinek, M.C., Rottier, P.J., 1995. Detection of feline coronavirus RNA in feces, tissues, and body fluids of naturally infected cats by reverse transcriptase PCR. J Clin Microbiol 33, 684-689. Herrewegh, A.A., Mähler, M., Hedrich, H.J., Haagmans, B.L., Egberink, H.F., Horzinek, M.C., Rottier, P.J., de Groot, R.J., 1997. Persistence and evolution of feline coronavirus in a closed cat-breeding colony. Virology 234, 349-363. Herrewegh, A.A., Smeenk, I., Horzinek, M.C., Rottier, P.J., de Groot, R.J., 1998. Feline coronavirus type II strains 79-1683 and 79-1146 originate from a double recombination between feline coronavirus type I and canine coronavirus. J Virol 72, 4508-4514. Hirschberger, J., Hartmann, K., Wilhelm, N., Frost, J., Lutz, H., Kraft, W., 1995. [Clinical symptoms and diagnosis of feline infectious peritonitis]. Tierarztl Prax 23, 92-99. Hofmann-Lehmann, R., Fehr, D., Grob, M., Elgizoli, M., Packer, C., Martenson, J.S., O'Brien, S.J., Lutz, H., 1996. Prevalence of antibodies to feline parvovirus, calicivirus, herpesvirus, coronavirus, and immunodeficiency virus and of feline leukemia virus antigen and the interrelationship of these viral infections in free-ranging lions in east Africa. Clin Diagn Lab Immunol 3, 554-562. Hohdatsu, T., Nakamura, M., Ishizuka, Y., Yamada, H., Koyama, H., 1991. A study on the mechanism of antibody-dependent enhancement of feline infectious peritonitis virus infection in feline macrophages by monoclonal antibodies. Arch Virol 120, 207-217. Hohdatsu, T., Okada, S., Ishizuka, Y., Yamada, H., Koyama, H., 1992. The prevalence of types I and II feline coronavirus infections in cats. J Vet Med Sci 54, 557-562. Hohdatsu, T., Yamada, M., Tominaga, R., Makino, K., Kida, K., Koyama, H., 1998. Antibody-dependent enhancement of feline infectious peritonitis virus infection in feline alveolar macrophages and human monocyte cell line U937 by serum of cats experimentally or naturally infected with feline coronavirus. J Vet Med Sci 60, 49-55. Hök, K., 1993. Morbidity, mortality and coronavirus antigen in previously coronavirus free kittens placed in two catteries with feline infectious peritonitis. Acta Vet Scand 34, 203-210. Horzinek, M.C., Lutz, H., Pedersen, N., 1982. Antigenic relationships among homologous structural polypeptides of porcine, feline, and canine coronaviruses. Infection and Immunity 37, 1148-1155. Hu, C.J., Chang, W.S., Fang, Z.S., Chen, Y.T., Wang, W.L., Tsai, H.H., Chueh, L.L., Takano, T., Hohdatsu, T., Chen, H.W., 2017. Nanoparticulate vacuolar ATPase blocker exhibits potent host-targeted antiviral activity against feline coronavirus. Sci Rep 7, 13043. Huisman, W., Martina, B.E., Rimmelzwaan, G.F., Gruters, R.A., Osterhaus, A.D., 2009. Vaccine-induced enhancement of viral infections. Vaccine 27, 505-512. Jaimes, J.A., Whittaker, G.R., 2018. Feline coronavirus: Insights into viral pathogenesis based on the spike protein structure and function. Virology 517, 108-121. Jeffery, U., Deitz, K., Hostetter, S., 2012. Positive predictive value of albumin: globulin ratio for feline infectious peritonitis in a mid-western referral hospital population. J Feline Med Surg 14, 903-905. Kannekens-Jager, M.M., de Rooij, M.M.T., de Groot, Y., Biesbroeck, E., de Jong, M.K., Pijnacker, T., Smit, L.A.M., Schuurman, N., Broekhuizen-Stins, M.J., Zhao, S., Duim, B., Langelaar, M.F.M., Stegeman, A., Kooistra, H.S., Radstake, C., Egberink, H.F., Wagenaar, J.A., Broens, E.M., 2022. SARS-CoV-2 infection in dogs and cats is associated with contact to COVID-19-positive household members. Transbound Emerg Dis 69, 4034-4040. Kennedy, M., Citino, S., McNabb, A.H., Moffatt, A.S., Gertz, K., Kania, S., 2002. Detection of feline coronavirus in captive Felidae in the USA. J Vet Diagn Invest 14, 520-522. Kipar, A., Bellmann, S., Kremendahl, J., Köhler, K., Reinacher, M., 1998. Cellular composition, coronavirus antigen expression and production of specific antibodies in lesions in feline infectious peritonitis. Vet Immunol Immunopathol 65, 243-257. Kipar, A., May, H., Menger, S., Weber, M., Leukert, W., Reinacher, M., 2005. Morphologic features and development of granulomatous vasculitis in feline infectious peritonitis. Vet Pathol 42, 321-330. Kipar, A., Meli, M.L., 2014. Feline infectious peritonitis: still an enigma? Vet Pathol 51, 505-526. Kiss, I., Kecskeméti, S., Tanyi, J., Klingeborn, B., Belák, S., 2000. Preliminary studies on feline coronavirus distribution in naturally and experimentally infected cats. Res Vet Sci 68, 237-242. Kiss, I., Poland, A.M., Pedersen, N.C., 2004. Disease outcome and cytokine responses in cats immunized with an avirulent feline infectious peritonitis virus (FIPV)-UCD1 and challenge-exposed with virulent FIPV-UCD8. J Feline Med Surg 6, 89-97. Kummrow, M., Meli, M.L., Haessig, M., Goenczi, E., Poland, A., Pedersen, N.C., Hofmann-Lehmann, R., Lutz, H., 2005. Feline coronavirus serotypes 1 and 2: seroprevalence and association with disease in Switzerland. Clin Diagn Lab Immunol 12, 1209-1215. Le Poder, S., 2011. Feline and canine coronaviruses: common genetic and pathobiological features. Adv Virol 2011, 609465. Lee, W.S., Wheatley, A.K., Kent, S.J., DeKosky, B.J., 2020. Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies. Nat Microbiol 5, 1185-1191. Leung, D.T., Tam, F.C., Ma, C.H., Chan, P.K., Cheung, J.L., Niu, H., Tam, J.S., Lim, P.L., 2004. Antibody response of patients with severe acute respiratory syndrome (SARS) targets the viral nucleocapsid. J Infect Dis 190, 379-386. Lin, C.-N., Su, B.-L., Wu, C.-W., Hsieh, L.-E., Chueh, L.-L., 2009a. Isolation and identification of a novel feline coronavirus from a kitten with naturally occurring feline infectious peritonitis in Taiwan. 臺灣獸醫學雜誌 35, 145-152. Lin, C.N., Chan, K.R., Ooi, E.E., Chiou, M.T., Hoang, M., Hsueh, P.R., Ooi, P.T., 2021. Animal Coronavirus Diseases: Parallels with COVID-19 in Humans. Viruses 13. Lin, C.N., Su, B.L., Wang, C.H., Hsieh, M.W., Chueh, T.J., Chueh, L.L., 2009b. Genetic diversity and correlation with feline infectious peritonitis of feline coronavirus type I and II: a 5-year study in Taiwan. Vet Microbiol 136, 233-239. Litster, A.L., Pogranichniy, R., Lin, T.L., 2013. Diagnostic utility of a direct immunofluorescence test to detect feline coronavirus antigen in macrophages in effusive feline infectious peritonitis. Vet J 198, 362-366. Longstaff, L., Porter, E., Crossley, V.J., Hayhow, S.E., Helps, C.R., Tasker, S., 2017. Feline coronavirus quantitative reverse transcriptase polymerase chain reaction on effusion samples in cats with and without feline infectious peritonitis. J Feline Med Surg 19, 240-245. Luo, Y.C., Liu, I.L., Chen, Y.T., Chen, H.W., 2020. Detection of Feline Coronavirus in Feline Effusions by Immunofluorescence Staining and Reverse Transcription Polymerase Chain Reaction. Pathogens 9. Mahdy, M.A.A., Younis, W., Ewaida, Z., 2020. An Overview of SARS-CoV-2 and Animal Infection. Front Vet Sci 7, 596391. Malbon, A.J., Fonfara, S., Meli, M.L., Hahn, S., Egberink, H., Kipar, A., 2019. Feline Infectious Peritonitis as a Systemic Inflammatory Disease: Contribution of Liver and Heart to the Pathogenesis. Viruses 11. Malbon, A.J., Michalopoulou, E., Meli, M.L., Barker, E.N., Tasker, S., Baptiste, K., Kipar, A., 2020. Colony Stimulating Factors in Early Feline Infectious Peritonitis Virus Infection of Monocytes and in End Stage Feline Infectious Peritonitis; A Combined In Vivo And In Vitro Approach. Pathogens 9. McBride, R., van Zyl, M., Fielding, B.C., 2014. The coronavirus nucleocapsid is a multifunctional protein. Viruses 6, 2991-3018. Nakayama, E.E., Kubota-Koketsu, R., Sasaki, T., Suzuki, K., Uno, K., Shimizu, J., Okamoto, T., Matsumoto, H., Matsuura, H., Hashimoto, S., Tanaka, T., Harada, H., Tomita, M., Kaneko, M., Yoshizaki, K., Shioda, T., 2022. Anti-nucleocapsid antibodies enhance the production of IL-6 induced by SARS-CoV-2 N protein. Sci Rep 12, 8108. Norris, J.M., Bosward, K.L., White, J.D., Baral, R.M., Catt, M.J., Malik, R., 2005. Clinicopathological findings associated with feline infectious peritonitis in Sydney, Australia: 42 cases (1990-2002). Aust Vet J 83, 666-673. O'Brien, A., Mettelman, R.C., Volk, A., André, N.M., Whittaker, G.R., Baker, S.C., 2018. Characterizing replication kinetics and plaque production of type I feline infectious peritonitis virus in three feline cell lines. Virology 525, 1-9. Oude Munnink, B.B., Sikkema, R.S., Nieuwenhuijse, D.F., Molenaar, R.J., Munger, E., Molenkamp, R., van der Spek, A., Tolsma, P., Rietveld, A., Brouwer, M., Bouwmeester-Vincken, N., Harders, F., Hakze-van der Honing, R., Wegdam-Blans, M.C.A., Bouwstra, R.J., GeurtsvanKessel, C., van der Eijk, A.A., Velkers, F.C., Smit, L.A.M., Stegeman, A., van der Poel, W.H.M., Koopmans, M.P.G., 2021. Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans. Science 371, 172-177. Ouyang, H., Liu, J., Yin, Y., Cao, S., Yan, R., Ren, Y., Zhou, D., Li, Q., Li, J., Liao, X., Ji, W., Du, B., Si, Y., Hu, C., 2022. Epidemiology and Comparative Analyses of the S Gene on Feline Coronavirus in Central China. Pathogens 11. Paltrinieri, S., Giordano, A., Tranquillo, V., Guazzetti, S., 2007. Critical assessment of the diagnostic value of feline alpha1-acid glycoprotein for feline infectious peritonitis using the likelihood ratios approach. J Vet Diagn Invest 19, 266-272. Paltrinieri, S., Parodi, M.C., Cammarata, G., 1999. In vivo diagnosis of feline infectious peritonitis by comparison of protein content, cytology, and direct immunofluorescence test on peritoneal and pleural effusions. J Vet Diagn Invest 11, 358-361. Parodi, M.C., Cammarata, G., Paltrinieri, S., Lavazza, A., Ape, F., 1993. Using direct immunofluorescence to detect coronaviruses in peritoneal in peritoneal and pleural effusions. Journal of Small Animal Practice 34, 609-613. Patterson, E.I., Elia, G., Grassi, A., Giordano, A., Desario, C., Medardo, M., Smith, S.L., Anderson, E.R., Prince, T., Patterson, G.T., Lorusso, E., Lucente, M.S., Lanave, G., Lauzi, S., Bonfanti, U., Stranieri, A., Martella, V., Basano, F.S., Barrs, V.R., Radford, A.D., Agrimi, U., Hughes, G.L., Paltrinieri, S., Decaro, N., 2020. Evidence of exposure to SARS-CoV-2 in cats and dogs from households in Italy. bioRxiv. Paul-Murphy, J., Work, T., Hunter, D., McFie, E., Fjelline, D., 1994. Serologic survey and serum biochemical reference ranges of the free-ranging mountain lion (Felis concolor) in California. J Wildl Dis 30, 205-215. Payne, S., 2017. Family coronaviridae. Viruses, 149. Pedersen, N.C., 1987. Virologic and immunologic aspects of feline infectious peritonitis virus infection. Adv Exp Med Biol 218, 529-550. Pedersen, N.C., 2009. A review of feline infectious peritonitis virus infection: 1963-2008. J Feline Med Surg 11, 225-258. Pedersen, N.C., 2014a. An update on feline infectious peritonitis: diagnostics and therapeutics. Vet J 201, 133-141. Pedersen, N.C., 2014b. An update on feline infectious peritonitis: virology and immunopathogenesis. Vet J 201, 123-132. Pedersen, N.C., Boyle, J.F., Floyd, K., Fudge, A., Barker, J., 1981. An enteric coronavirus infection of cats and its relationship to feline infectious peritonitis. Am J Vet Res 42, 368-377. Pedersen, N.C., Eckstrand, C., Liu, H., Leutenegger, C., Murphy, B., 2015. Levels of feline infectious peritonitis virus in blood, effusions, and various tissues and the role of lymphopenia in disease outcome following experimental infection. Vet Microbiol 175, 157-166. Perlman, S., Dandekar, A.A., 2005. Immunopathogenesis of coronavirus infections: implications for SARS. Nat Rev Immunol 5, 917-927. Perlman, S., Masters, P., Howley, P., Knipe, D., Whelan, S. 2020. Fields virology: emerging viruses (Wolters Kluwer Health/lippincott Williams & Wilkins Philadelphia, PA). Poland, A.M., Vennema, H., Foley, J.E., Pedersen, N.C., 1996. Two related strains of feline infectious peritonitis virus isolated from immunocompromised cats infected with a feline enteric coronavirus. J Clin Microbiol 34, 3180-3184. Regan, A.D., Cohen, R.D., Whittaker, G.R., 2009. Activation of p38 MAPK by feline infectious peritonitis virus regulates pro-inflammatory cytokine production in primary blood-derived feline mononuclear cells. Virology 384, 135-143. Regan, A.D., Ousterout, D.G., Whittaker, G.R., 2010. Feline lectin activity is critical for the cellular entry of feline infectious peritonitis virus. J Virol 84, 7917-7921. Regan, A.D., Whittaker, G.R., 2008. Utilization of DC-SIGN for entry of feline coronaviruses into host cells. J Virol 82, 11992-11996. Riemer, F., Kuehner, K.A., Ritz, S., Sauter-Louis, C., Hartmann, K., 2016. Clinical and laboratory features of cats with feline infectious peritonitis--a retrospective study of 231 confirmed cases (2000-2010). J Feline Med Surg 18, 348-356. Rissi, D.R., 2018. A retrospective study of the neuropathology and diagnosis of naturally occurring feline infectious peritonitis. J Vet Diagn Invest 30, 392-399. Rohrbach, B.W., Legendre, A.M., Baldwin, C.A., Lein, D.H., Reed, W.M., Wilson, R.B., 2001. Epidemiology of feline infectious peritonitis among cats examined at veterinary medical teaching hospitals. J Am Vet Med Assoc 218, 1111-1115. Satoh, R., Furukawa, T., Kotake, M., Takano, T., Motokawa, K., Gemma, T., Watanabe, R., Arai, S., Hohdatsu, T., 2011. Screening and identification of T helper 1 and linear immunodominant antibody-binding epitopes in the spike 2 domain and the nucleocapsid protein of feline infectious peritonitis virus. Vaccine 29, 1791-1800. Severance, E.G., Bossis, I., Dickerson, F.B., Stallings, C.R., Origoni, A.E., Sullens, A., Yolken, R.H., Viscidi, R.P., 2008. Development of a nucleocapsid-based human coronavirus immunoassay and estimates of individuals exposed to coronavirus in a U.S. metropolitan population. Clin Vaccine Immunol 15, 1805-1810. Shah, P., Canziani, G.A., Carter, E.P., Chaiken, I., 2021. The Case for S2: The Potential Benefits of the S2 Subunit of the SARS-CoV-2 Spike Protein as an Immunogen in Fighting the COVID-19 Pandemic. Front Immunol 12, 637651. Shi, J., Wen, Z., Zhong, G., Yang, H., Wang, C., Huang, B., Liu, R., He, X., Shuai, L., Sun, Z., Zhao, Y., Liu, P., Liang, L., Cui, P., Wang, J., Zhang, X., Guan, Y., Tan, W., Wu, G., Chen, H., Bu, Z., 2020. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2. Science 368, 1016-1020. Shiba, N., Maeda, K., Kato, H., Mochizuki, M., Iwata, H., 2007. Differentiation of feline coronavirus type I and II infections by virus neutralization test. Vet Microbiol 124, 348-352. Simons, F.A., Vennema, H., Rofina, J.E., Pol, J.M., Horzinek, M.C., Rottier, P.J., Egberink, H.F., 2005. A mRNA PCR for the diagnosis of feline infectious peritonitis. J Virol Methods 124, 111-116. Soma, T., Wada, M., Taharaguchi, S., Tajima, T., 2013. Detection of ascitic feline coronavirus RNA from cats with clinically suspected feline infectious peritonitis. J Vet Med Sci 75, 1389-1392. Stenske, K., 2005. Comparison of different tests to diagnose feline infectious peritonitis. J Vet Intern Med 19, 299. Stoddart, C.A., Scott, F.W., 1989. Intrinsic resistance of feline peritoneal macrophages to coronavirus infection correlates with in vivo virulence. J Virol 63, 436-440. Stout, A.E., André, N.M., Whittaker, G.R., 2021. FELINE CORONAVIRUS AND FELINE INFECTIOUS PERITONITIS IN NONDOMESTIC FELID SPECIES. J Zoo Wildl Med 52, 14-27. Stranieri, A., Giordano, A., Paltrinieri, S., Giudice, C., Cannito, V., Lauzi, S., 2018. Comparison of the performance of laboratory tests in the diagnosis of feline infectious peritonitis. J Vet Diagn Invest 30, 459-463. Stranieri, A., Lauzi, S., Giordano, A., Paltrinieri, S., 2017a. Reverse transcriptase loop-mediated isothermal amplification for the detection of feline coronavirus. J Virol Methods 243, 105-108. Stranieri, A., Paltrinieri, S., Giordano, A., 2017b. Diagnosing feline infectious peritonitis using the Sysmex XT-2000iV based on frozen supernatants from cavitary effusions. J Vet Diagn Invest 29, 321-324. Sykes, J.E., 2013. Canine and feline infectious diseases. Elsevier Health Sciences. Takano, T., Azuma, N., Satoh, M., Toda, A., Hashida, Y., Satoh, R., Hohdatsu, T., 2009. Neutrophil survival factors (TNF-alpha, GM-CSF, and G-CSF) produced by macrophages in cats infected with feline infectious peritonitis virus contribute to the pathogenesis of granulomatous lesions. Arch Virol 154, 775-781. Takano, T., Ishihara, Y., Matsuoka, M., Yokota, S., Matsuoka-Kobayashi, Y., Doki, T., Hohdatsu, T., 2014. Use of recombinant nucleocapsid proteins for serological diagnosis of feline coronavirus infection by three immunochromatographic tests. J Virol Methods 196, 1-6. Takano, T., Katada, Y., Moritoh, S., Ogasawara, M., Satoh, K., Satoh, R., Tanabe, M., Hohdatsu, T., 2008a. Analysis of the mechanism of antibody-dependent enhancement of feline infectious peritonitis virus infection: aminopeptidase N is not important and a process of acidification of the endosome is necessary. J Gen Virol 89, 1025-1029. Takano, T., Kawakami, C., Yamada, S., Satoh, R., Hohdatsu, T., 2008b. Antibody-dependent enhancement occurs upon re-infection with the identical serotype virus in feline infectious peritonitis virus infection. J Vet Med Sci 70, 1315-1321. Takano, T., Nakaguchi, M., Doki, T., Hohdatsu, T., 2017. Antibody-dependent enhancement of serotype II feline enteric coronavirus infection in primary feline monocytes. Arch Virol 162, 3339-3345. Takano, T., Ohyama, T., Kokumoto, A., Satoh, R., Hohdatsu, T., 2011a. Vascular endothelial growth factor (VEGF), produced by feline infectious peritonitis (FIP) virus-infected monocytes and macrophages, induces vascular permeability and effusion in cats with FIP. Virus Res 158, 161-168. Takano, T., Tomiyama, Y., Katoh, Y., Nakamura, M., Satoh, R., Hohdatsu, T., 2011b. Mutation of neutralizing/antibody-dependent enhancing epitope on spike protein and 7b gene of feline infectious peritonitis virus: influences of viral replication in monocytes/macrophages and virulence in cats. Virus Res 156, 72-80. Tammer, R., Evensen, O., Lutz, H., Reinacher, M., 1995. Immunohistological demonstration of feline infectious peritonitis virus antigen in paraffin-embedded tissues using feline ascites or murine monoclonal antibodies. Vet Immunol Immunopathol 49, 177-182. Tecles, F., Caldín, M., Tvarijonaviciute, A., Escribano, D., Martínez-Subiela, S., Cerón, J.J., 2015. Serum biomarkers of oxidative stress in cats with feline infectious peritonitis. Res Vet Sci 100, 12-17. Tekes, G., Hofmann-Lehmann, R., Stallkamp, I., Thiel, V., Thiel, H.J., 2008. Genome organization and reverse genetic analysis of a type I feline coronavirus. J Virol 82, 1851-1859. Tekes, G., Thiel, H.J., 2016. Feline Coronaviruses: Pathogenesis of Feline Infectious Peritonitis. Adv Virus Res 96, 193-218. Tilocca, B., Soggiu, A., Sanguinetti, M., Musella, V., Britti, D., Bonizzi, L., Urbani, A., Roncada, P., 2020. Comparative computational analysis of SARS-CoV-2 nucleocapsid protein epitopes in taxonomically related coronaviruses. Microbes Infect 22, 188-194. Tresnan, D.B., Holmes, K.V., 1998. Feline aminopeptidase N is a receptor for all group I coronaviruses. Adv Exp Med Biol 440, 69-75. Tresnan, D.B., Levis, R., Holmes, K.V., 1996. Feline aminopeptidase N serves as a receptor for feline, canine, porcine, and human coronaviruses in serogroup I. J Virol 70, 8669-8674. Vennema, H., Poland, A., Foley, J., Pedersen, N.C., 1998. Feline infectious peritonitis viruses arise by mutation from endemic feline enteric coronaviruses. Virology 243, 150-157. Vlasova, A.N., Diaz, A., Damtie, D., Xiu, L., Toh, T.H., Lee, J.S., Saif, L.J., Gray, G.C., 2022. Novel Canine Coronavirus Isolated from a Hospitalized Patient With Pneumonia in East Malaysia. Clin Infect Dis 74, 446-454. Walter, J., Dohse, K., Rudolph, R., 1989. [A modification of the ABC method (avidin-biotin-peroxidase complex) for the detection of viral antigens in coronavirus infections in cats (FIP) and parvovirus type 2 infections in dogs]. Zentralbl Veterinarmed B 36, 321-332. Wang, M.Y., Zhao, R., Gao, L.J., Gao, X.F., Wang, D.P., Cao, J.M., 2020. SARS-CoV-2: Structure, Biology, and Structure-Based Therapeutics Development. Front Cell Infect Microbiol 10, 587269. Wang, Y.T., Chueh, L.L., Wan, C.H., 2014. An eight-year epidemiologic study based on baculovirus-expressed type-specific spike proteins for the differentiation of type I and II feline coronavirus infections. BMC Vet Res 10, 186. Weiss, R.C., Scott, F.W., 1981. Pathogenesis of feline infetious peritonitis: pathologic changes and immunofluorescence. Am J Vet Res 42, 2036-2048. Wen, J., Cheng, Y., Ling, R., Dai, Y., Huang, B., Huang, W., Zhang, S., Jiang, Y., 2020. Antibody-dependent enhancement of coronavirus. Int J Infect Dis 100, 483-489. Wolfe, L.G., Griesemer, R.A., 1966. Feline infectious peritonitis. Pathol Vet 3, 255-270. Woo, P.C.Y., de Groot, R.J., Haagmans, B., Lau, S.K.P., Neuman, B.W., Perlman, S., Sola, I., van der Hoek, L., Wong, A.C.P., Yeh, S.H., 2023. ICTV Virus Taxonomy Profile: Coronaviridae 2023. J Gen Virol 104. Worthing, K.A., Wigney, D.I., Dhand, N.K., Fawcett, A., McDonagh, P., Malik, R., Norris, J.M., 2012. Risk factors for feline infectious peritonitis in Australian cats. J Feline Med Surg 14, 405-412. Yamamoto, J.K., Edison, L.K., Rowe-Haas, D.K., Takano, T., Gilor, C., Crews, C.D., Tuanyok, A., Arukha, A.P., Shiomitsu, S., Walden, H.D.S., Hohdatsu, T., Tompkins, S.M., Morris, J.G., Jr., Sahay, B., Kariyawasam, S., 2023. Both Feline Coronavirus Serotypes 1 and 2 Infected Domestic Cats Develop Cross-Reactive Antibodies to SARS-CoV-2 Receptor Binding Domain: Its Implication to Pan-CoV Vaccine Development. Viruses 15. Yang, D.-K., Park, Y.-R., Kim, E.-j., Lee, H.J., Shin, K.-S., Kim, J.-H., Lee, K., Hyun, B.-H., 2022. Incidence and sero-surveillance of feline viruses in Korean cats residing in Gyeonggi-do. Korean Journal of Veterinary Research 62, e24. Yen, S.J., Chen, H.W., 2021. Feline Coronaviruses Identified in Feline Effusions in Suspected Cases of Feline Infectious Peritonitis. Microorganisms 9. Yin, Y., Li, T., Wang, C., Liu, X., Ouyang, H., Ji, W., Liu, J., Liao, X., Li, J., Hu, C., 2021. A retrospective study of clinical and laboratory features and treatment on cats highly suspected of feline infectious peritonitis in Wuhan, China. Sci Rep 11, 5208. Yuki, M., Aoyama, R., Nakagawa, M., Hirano, T., Naitoh, E., Kainuma, D., 2020. A Clinical Investigation on Serum Amyloid A Concentration in Client-Owned Healthy and Diseased Cats in a Primary Care Animal Hospital. Vet Sci 7. Ziebuhr, J., 2005. The coronavirus replicase. Curr Top Microbiol Immunol 287, 57-94. Ziebuhr, J., Snijder, E.J., Gorbalenya, A.E., 2000. Virus-encoded proteinases and proteolytic processing in the Nidovirales. J Gen Virol 81, 853-879. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88235 | - |
| dc.description.abstract | 貓傳染性腹膜炎 (FIP) 是由貓冠狀病毒 (FCoV) 其中一種生物型,貓傳染性腹膜炎病毒 (FIPV) ,引起之貓致命性疾病。而對於FIPV感染期間的病理免疫機制,尤其是抗體依賴增強作用 (ADE) 缺乏研究,這導致該病毒疫苗開發方面存在不確定因素。此外,貓對於近年造成全球威脅的第二型嚴重急性呼吸道綜合症冠狀病毒 (SARS-CoV-2) 也具有感受性,當貓同時感染這兩種冠狀病毒,FIPV和SARS-CoV-2之間的潛在交叉反應便成了一大議題。本研究旨在通過對FIP患貓的積液樣本中的病毒和抗體進行分析,以增加我們對FIP病理發生機制和冠狀病毒交叉反應的了解。從2022年1月開始,46個疑似FIP貓腹水樣本經PCR和免疫螢光試驗 (IFA) 的重複驗證確診為陽性。而首先,我們對這些陽性案例的特徵進行分析以揭示FIP的危險因子,發現了2歲以下以及白蛋白與球蛋白比值 (A/G ratio) 小於等於0.4的貓隻與FIP陽性有著顯著關聯。隨後,我們成功地在36個陽性FIP積液樣本中進行了FCoV片段的序列分析,其中36個屬於基因一型,僅有一個檢體同時存在基因一型和二型FCoV,相對於基因二型FCoV,基因一型FCoV親緣樹狀圖顯示出高度多樣性。再者,積液當中的細胞激素TNF-α及IL-6濃度,雖在FIP陽性與陰性病例之間並無顯著差異,但仍使我們更進一步瞭解該疾病的免疫機制。此外,通過從FIP患貓積液中純化之免疫球蛋白G (IgG) 和建立的體外FIPV ADE測試模型,檢測到了FIP陽性積液樣本中的ADE現象。另一項研究探討了FCoV和SARS-CoV-2之間的潛在交叉反應,結果顯示,來自兔隻抗SARS-CoV-2核殼蛋白 (Nucleocapsid) 的多株抗體 (pAb) 通過西方墨點法 (Western blot) 和酵素連結免疫吸附試驗(ELISA)與FCoV產生反應,但在FIPV ADE測試模型沒有觀察到ADE現象。為進一步研究這兩種病毒之間的關係,將人類COVID-19康復血清引入測試,發現兩名患者的血清與FCoV的刺突蛋白 (Spike) 亞單位1 (subunit 1) 和核殼蛋白產生交叉反應。同時,一人的血清樣本甚至略微增強FIPV的感染狀態,是為ADE現象,也初步證實了兩種病毒的交叉反應。此外,將FIP貓積液中的IgG與SARS-CoV-2的刺突蛋白、核殼蛋白及其片段進行測試,發現IgG能夠與SARS-CoV-2的刺突蛋白亞單位2 (subunit 2) 和核膜蛋白的所有片段結合,這再次證明了FCoV和SARS-CoV-2之間的雙向交叉反應。本研究首次報告了FIP貓積液中IgG引發的ADE現象,並發現FCoV和SARS-CoV-2之間的潛在交叉反應,為未來FIPV之感染研究提供了更近一步的見解。 | zh_TW |
| dc.description.abstract | Feline infectious peritonitis (FIP) is a fatal disease in cats caused by feline infectious peritonitis virus (FIPV), a biotype of feline coronavirus (FCoV). The lack of research on antibody-dependent enhancement (ADE) during FIPV pathogenesis has resulted in uncertainties in vaccine development. Moreover, cats are susceptible to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), another coronavirus posing a pandemic threat, and the potential cross-reactivity between these two coronaviruses remains unclear. This study aimed to increase our knowledge of FIP pathogenesis and coronavirus cross-reactivity by characterizing the virus and antibodies in FIP-diseased effusion samples. From January 2022, 46 FIP-confirmed samples were collected using PCR and IFA simultaneously. The signalments of these cases were firstly analyzed to reveal the FIP risk factors, which discovered that the cats with age equal to or lower than two y/o and A/G ratio equal to or lower than 0.4 were significantly correlated to FIP-positive. Subsequently, materials related to FIP pathogenesis in FIP effusions were investigated. FCoV fragments were successfully sequenced in 36 positive samples, with 35 cases belonging to genotype I and only one co-infected with genotype I and II FCoV. The phylogenetic analysis of the type I FCoV sequences revealed high diversity. Although there was no significant difference in the level of TNF-α and IL-6 in the effusions between FIP-positive and FIP-negative cases, this finding contributes to a better understanding of the immune mechanisms underlying FIP. The ADE phenomenon was also detected in FIP-positive effusion samples through IgG purified from FIP cat’s effusions and the established in vitro FIPV ADE test model. Another investigation explored the potential cross-reactivity between FCoV and SARS-CoV-2. Results revealed that only rabbit-derived anti-SARS-CoV-2 nucleocapsid pAb reacted with FCoV through western blot and ELISA, but no ADE phenomenon was observed. To further study the relationship between these two viruses, human COVID-19 convalescent serum was introduced into the test, which surprisingly demonstrated that serum from two patients cross-reacted with FCoV spike subunit 1 (S1) and nucleocapsid proteins—meanwhile, one human serum sample even slightly enhanced FIPV infection. Also, the IgG from FIP cat effusions was incubated with SARS-CoV-2 spike, nucleocapsid proteins, and their truncated fragments. The IgG was found capable of binding to the spike subunit 2 (S2) and all fragments of nucleocapsid protein of SARS-CoV-2, which proved the two-way cross-reactivity between FCoV and SARS-CoV-2. This study is the first to report the in vitro ADE phenomenon elicited from IgG in FIP effusions and discovered potential cross-reactivity between FCoV and SARS-CoV-2, providing valuable insights for future FCoV studies. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-09T16:08:23Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-09T16:08:23Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 中文摘要 I
Abstract III List of Figures X List of Tables XII Chapter 1 Introduction 1 1.1 Feline coronavirus 1 1.1.1 The structure of Feline Coronavirus 1 1.1.2 The genome of Feline Coronavirus 3 1.1.3 Genotypes of Feline Coronavirus 4 1.1.4 Biotypes of Feline coronavirus 5 1.1.5 Epidemiology and phylogenetic analysis of feline infectious peritonitis virus infection in Taiwan and other countries 6 1.2 Feline infectious peritonitis 8 1.2.1 Characteristics of feline infectious peritonitis 8 1.2.2 Clinical signs of feline infectious peritonitis 9 1.2.3 Diagnosis of feline infectious peritonitis 10 1.2.3.1 Overview 10 1.2.3.2 Diagnosis of FIPV infection from blood 11 1.2.3.3 Diagnosis of FIPV infection from effusions 13 1.2.4 Host immune response during feline infectious peritonitis 15 1.3 Antibody-dependent enhancement 17 1.4 SARS-CoV-2 and its relationship with cats 19 1.5 Cross-reactivity between SARS-CoV-2 and FIPV 20 1.6 Aim of this study 21 Chapter 2 Materials and Methods 23 2.1 Clinical feline effusion samples collection and processing 23 2.2 Indirect immunofluorescence assay 25 2.3 Nucleic acid extraction and RT-PCR 27 2.4 FCoV genotyping, sequencing, and phylogenetic analysis 28 2.5 Enzyme-linked immunosorbent assay (ELISA) 30 2.6 Western blot (WB) 32 2.7 Feline cytokine levels measurement 34 2.8 Feline effusion IgG purification 36 2.9 Cell and virus cultures 38 2.10 Viral titer determination and plaque assay 39 2.11 FIPV ADE assay and neutralizing test of purified IgG from FIPV-infected cats’ effusions 40 2.12 Antigenic analysis of anti-FCoV S and N protein IgG in each purified IgG sample. 41 2.13 Statistical analysis 42 Chapter 3 Results 43 3.1 Sample collection and experimental design 43 3.2 FIP cases confirmed by IFA and RT-PCR 43 3.3 Characteristics of FIP cases 44 3.4 FIPV genotyping and phylogenetic analysis 45 3.4.1 The proportion of genotype I and genotype II FIPV collected in this study 45 3.4.2 Phylogenetic analysis of genotype I FIPV sequences 46 3.4.3 Phylogenetic analysis of genotype II FIPV sequences 47 3.5 Cytokine profiling of FIPV positive and negative effusion samples 48 3.6 IgG purification: Sample selection, elution, desalting, and FCoV binding confirmation 49 3.6.1 IgG purification: the successful example 49 3.6.2 The examination of the binding ability of purified IgG against FCoV 50 3.7 FIPV ADE establishment and the assay with IgG from FIP cats’ clinical effusions 50 3.7.1 Successful FIPV ADE establishment 50 3.7.2 FIPV ADE assay with IgG purified from 4 FIP-positive cats and neutralizing test of these IgG samples 51 3.7.3 Antigenic analysis of cat effusion IgG 52 3.8 Cross-reactivity between FCoV and SARS-CoV-2 53 3.8.1 Cross-antigenicity test with FCoV whole virion and anti-SARS-CoV-2 spike S1 and S2, N, and M protein pAb 53 3.8.2 FIPV ADE assay with anti-SARS-CoV-2 spike S1 and S2, N, and M protein pAb 54 3.8.3 Cross-antigenicity test with FCoV whole virion and human COVID-19 convalescent serum 55 3.8.4 FIPV ADE assay with human COVID-19 convalescent serum 56 3.8.5 Two-way cross-antigenicity test with IgG purified from FIP-positive cat’s effusions and structural proteins from SARS-CoV-2 57 3.8.5.1 IgG purified from FIP-positive cat’s effusions and SARS-CoV-2 spike 57 3.8.5.2 IgG purified from FIP-positive cat’s effusions and SARS-CoV-2 nucleocapsid protein 58 Chapter 4 Discussion 60 Chapter 5 Figures and tables 71 Chapter 6 References 114 | - |
| dc.language.iso | en | - |
| dc.subject | 第二型嚴重急性呼吸道症候群冠狀病毒 | zh_TW |
| dc.subject | 貓傳染性腹膜炎 | zh_TW |
| dc.subject | 貓冠狀病毒 | zh_TW |
| dc.subject | 抗體依賴增強作用 | zh_TW |
| dc.subject | 交互作用 | zh_TW |
| dc.subject | Antibody-dependent enhancement | en |
| dc.subject | Feline coronavirus | en |
| dc.subject | Feline infectious peritonitis | en |
| dc.subject | SARS-CoV-2 | en |
| dc.subject | Cross-reactivity | en |
| dc.title | 分析傳染性腹膜炎貓隻積液中之貓冠狀病毒及抗體及其與第二型嚴重急性呼吸綜合症冠狀病毒之間的關聯性 | zh_TW |
| dc.title | Feline coronavirus and antibodies in effusions of cats with feline infectious peritonitis and their potential cross-reactivity with SARS-CoV-2 | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 張惠雯;張晏禎;林中惠 | zh_TW |
| dc.contributor.oralexamcommittee | Hui-Wen Chang;Yen-Chen Chang;CHUNG-HUI LIN | en |
| dc.subject.keyword | 貓傳染性腹膜炎,貓冠狀病毒,抗體依賴增強作用,交互作用,第二型嚴重急性呼吸道症候群冠狀病毒, | zh_TW |
| dc.subject.keyword | Feline infectious peritonitis,Feline coronavirus,Antibody-dependent enhancement,Cross-reactivity,SARS-CoV-2, | en |
| dc.relation.page | 125 | - |
| dc.identifier.doi | 10.6342/NTU202301829 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-07-24 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 獸醫學系 | - |
| Appears in Collections: | 獸醫學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-111-2.pdf | 17.3 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
