Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88231
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王兆麟zh_TW
dc.contributor.advisorJaw-Lin Wangen
dc.contributor.author吳觀宇zh_TW
dc.contributor.authorGuan-Yu Wuen
dc.date.accessioned2023-08-09T16:07:13Z-
dc.date.available2023-11-18-
dc.date.copyright2023-08-09-
dc.date.issued2023-
dc.date.submitted2023-07-24-
dc.identifier.citationCoste, B., et al., Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science, 2010. 330(6000): p. 55-60.
Zhao, Q., et al., Structure and mechanogating mechanism of the Piezo1 channel. Nature, 2018. 554(7693): p. 487-492.
Qin, L., et al., Roles of mechanosensitive channel Piezo1/2 proteins in skeleton and other tissues. Bone Research, 2021. 9(1): p. 44.
Ranade, S.S., R. Syeda, and A. Patapoutian, Mechanically Activated Ion Channels. Neuron, 2015. 87(6): p. 1162-1179.
Jha, A., et al., A role for transient receptor potential ankyrin 1 cation channel (TRPA1) in airway hyper-responsiveness? Canadian journal of physiology and pharmacology, 2015. 93: p. 1-6.
Startek, J.B., et al., TRP Channels as Sensors of Chemically-Induced Changes in Cell Membrane Mechanical Properties. International Journal of Molecular Sciences, 2019. 20(2): p. 371.
Kalia, J. and K.J. Swartz, Exploring structure-function relationships between TRP and Kv channels. Scientific Reports, 2013. 3(1): p. 1523.
Chu, Y.C., et al., Elevation of Intra-Cellular Calcium in Nucleus Pulposus Cells with Micro-Pipette-Guided Ultrasound. Ultrasound Med Biol, 2021. 47(7): p. 1775-1784.
Qiu, Z., et al., The Mechanosensitive Ion Channel Piezo1 Significantly Mediates In Vitro Ultrasonic Stimulation of Neurons. iScience, 2019. 21: p. 448-457.
Yoo, S., et al., Focused ultrasound excites cortical neurons via mechanosensitive calcium accumulation and ion channel amplification. Nat Commun, 2022. 13(1): p. 493.
Issberner, U., P.W. Reeh, and K.H. Steen, Pain due to tissue acidosis: a mechanism for inflammatory and ischemic myalgia? Neurosci Lett, 1996. 208(3): p. 191-4.
Sluka, K.A., O.C. Winter, and J.A. Wemmie, Acid-sensing ion channels: A new target for pain and CNS diseases. Curr Opin Drug Discov Devel, 2009. 12(5): p. 693-704.
Baron Forster, A. and E. Lingueglia, Pharmacology of acid-sensing ion channels – Physiological and therapeutical perspectives. Neuropharmacology, 2015. 94.
Sherwood, T., E. Frey, and C. Askwith, Structure and activity of the acid-sensing ion channels. American journal of physiology. Cell physiology, 2012. 303: p. C699-710.
Rook, M.L., et al., Molecular Investigation of Chicken Acid-Sensing Ion Channel 1 β11-12 Linker Isomerization and Channel Kinetics. Front Cell Neurosci, 2021. 15: p. 761813.
Lim, J., et al., ASIC1a is required for neuronal activation via low-intensity ultrasound stimulation in mouse brain. eLife, 2021. 10: p. e61660.
Chen, C.C. and C.W. Wong, Neurosensory mechanotransduction through acid-sensing ion channels. J Cell Mol Med, 2013. 17(3): p. 337-49.
Lin, S.-H., et al., Evidence for the involvement of ASIC3 in sensory mechanotransduction in proprioceptors. Nature Communications, 2016. 7(1): p. 11460.
Gu, J.G., et al., Abstracts of the 7(th) Asian Pain Symposium. Mol Pain, 2018. 14: p. 1744806917753999.
Martin, E., Pathophysiology of pain. Pain Management in Older Adults: A Nursing Perspective, 2018: p. 7-29.
Miller, D.L., et al., Overview of therapeutic ultrasound applications and safety considerations. J Ultrasound Med, 2012. 31(4): p. 623-34.
Uddin, S.M.Z., et al., Low-Intensity Continuous Ultrasound Therapies—A Systematic Review of Current State-of-the-Art and Future Perspectives. J Clin Med, 2021. 10(12).
Mundi, R., et al., Low-intensity pulsed ultrasound: Fracture healing. Indian J Orthop, 2009. 43(2): p. 132-40.
Kim, H., et al., Mouse Cre-LoxP system: general principles to determine tissue-specific roles of target genes. Lab Anim Res, 2018. 34(4): p. 147-159.
Wittmann, M.C., R.N. Steinberg, and E.F. Redish, Making sense of how students make sense of mechanical waves. The physics teacher, 1999. 37(1): p. 15-21.
Zill, D.G., Advanced engineering mathematics. 2020: Jones & Bartlett Learning.
Stillwell, J. and J. Stillwell, Mathematics and its History. Vol. 3. 1989: Springer.
鄭振東, 超音波工程. 初版, 全華科技圖書股份有限公司, 1999. 14.
Krajewski, J., Głośniki i zestawy głośnikowe: budowa, działanie, zastosowanie. 2003: Wydawnictwa Komunikacji i Łączności.
Sabri, F., et al., In vivo ultrasonic detection of polyurea crosslinked silica aerogel implants. PLoS One, 2013. 8(6): p. e66348.
Yiu, C. and J. Wang, Efficient method for calculating the transmission coefficient of two‐dimensional quantum wire structures. Journal of Applied Physics, 1996. 80(7): p. 4208-4210.
Gilbert, P.U., Physics in the Arts. 2021: Academic Press.
Craig Jr, R.R. and E.M. Taleff, Mechanics of materials. 2020: John Wiley & Sons.
Munson, B.R., et al., Fluid mechanics. 2013: Wiley Singapore.
Baxter, S.J., Earthquake basics. 2000, Newark, DE: Delaware Geological Survey, University of Delaware.
Parazzoli, C., et al., Experimental verification and simulation of negative index of refraction using Snell’s law. Physical Review Letters, 2003. 90(10): p. 107401.
Breazeale, M.A., L. Adler, and G.W. Scott, Interaction of ultrasonic waves incident at the Rayleigh angle onto a liquid‐solid interface. Journal of Applied Physics, 2008. 48(2): p. 530-537.
Romanowicz, B., Surface waves. Encyclopedia of Solid Earth Geophysics, 2020: p. 1-13.
Brule, S., S. Enoch, and S. Guenneau, Experimental evidence of auxetic features in seismic metamaterials: Ellipticity of seismic Rayleigh waves for subsurface architectured ground with holes. 2018.
Yan, Q., et al., SurfingAttack: Interactive Hidden Attack on Voice Assistants Using Ultrasonic Guided Waves. 2020.
Pant, S., J. Laliberte, and M. Martinez, Structural Health Monitoring (SHM) of Composite Aerospace Structures Using Lamb Waves. 2013.
Lindner, G., et al., Detection of coatings within liquid-filled tubes and containers by mode conversion of leaky Lamb waves. Journal of Sensors and Sensor Systems, 2013. 2: p. 73-84.
Nayfeh, A.H. and D.E. Chimenti, Propagation of guided waves in fluid‐coupled plates of fiber‐reinforced composite. The Journal of the Acoustical Society of America, 1988. 83(5): p. 1736-1743.
Castaings, M. and B. Hosten, Guided waves propagating in sandwich structures made of anisotropic, viscoelastic, composite materials. The Journal of the Acoustical Society of America, 2003. 113(5): p. 2622-2634.
Mattei, C. and L. Adler, Leaky wave detection at air-solid interfaces by laser interferometry. Ultrasonics, 2000. 38(1-8): p. 570-4.
Chimenti, D.E., A.H. Nayfeh, and D.L. Butler, Leaky Rayleigh waves on a layered halfspace. Journal of Applied Physics, 1982. 53(1): p. 170-176.
Kaniak, G. and H. Schweinzer, Advanced ultrasound object detection in air by intensive use of side lobes of transducer radiation pattern. 2008. 1092-1095.
Sapozhnikov, O.A. and M.R. Bailey, Radiation force of an arbitrary acoustic beam on an elastic sphere in a fluid. J Acoust Soc Am, 2013. 133(2): p. 661-76.
Bruus, H., Acoustofluidics 7: The acoustic radiation force on small particles. Lab on a chip, 2012. 12 6: p. 1014-21.
Chu, Y.C., et al., Design of an ultrasound chamber for cellular excitation and observation. J Acoust Soc Am, 2019. 145(6): p. El547.
Doinikov, A.A., et al., Acoustic streaming produced by sharp-edge structures in microfluidic devices. Microfluidics and Nanofluidics, 2020. 24(5): p. 32.
Abramowitz, M. and I.A. Stegun, Handbook of mathematical functions. Vol. 55. 1964: Dover New York.
Izadifar, Z., P. Babyn, and D. Chapman, Ultrasound Cavitation/Microbubble Detection and Medical Applications. Journal of Medical and Biological Engineering, 2019. 39(3): p. 259-276.
Hodnett, M. and B. Zeqiri, Toward a reference ultrasonic cavitation vessel: Part 2-investigating the spatial variation and acoustic pressure threshold of inertial cavitation in a 25 kHz ultrasound field. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2008. 55(8): p. 1809-1822.
Gonzalez-Rodriguez, D., et al., Mechanical Criterion for the Rupture of a Cell Membrane under Compression. Biophys J, 2016. 111(12): p. 2711-2721.
Mishra, S., et al., Advances in Piezoelectric Polymer Composites for Energy Harvesting Applications: A Systematic Review. Macromolecular Materials and Engineering, 2018. 304.
Bernreuther, W. and M. Suzuki, The electric dipole moment of the electron. Reviews of Modern Physics, 1991. 63(2): p. 313.
Jetti, S.K., et al., Evaluation of the role of nitric oxide in acid sensing ion channel mediated cell death. Nitric Oxide, 2010. 22(3): p. 213-219.
林宇宣, 超音波刺激裝置設計與模擬. 2021.
Ahmad, K., et al., Cross-Talk Between Extracellular Matrix and Skeletal Muscle: Implications for Myopathies. Frontiers in Pharmacology, 2020. 11.
Bourne, G.W. and J.M. Trifaró, The gadolinium ion: A potent blocker of calcium channels and catecholamine release from cultured chromaffin cells. Neuroscience, 1982. 7(7): p. 1615-1622.
Lacampagne, A., et al., The stretch-activated ion channel blocker gadolinium also blocks L-type calcium channels in isolated ventricular myocytes of the guinea-pig. Biochim Biophys Acta, 1994. 1191(1): p. 205-8.
Neuberger, A., K.D. Nadezhdin, and A.I. Sobolevsky, Structural mechanisms of TRPV6 inhibition by ruthenium red and econazole. Nature Communications, 2021. 12(1): p. 6284.
Alijevic, O. and S. Kellenberger, Subtype-specific Modulation of Acid-sensing Ion Channel (ASIC) Function by 2-Guanidine-4-methylquinazoline*. Journal of Biological Chemistry, 2012. 287(43): p. 36059-36070.
Cristofori-Armstrong, B., et al., The modulation of acid-sensing ion channel 1 by PcTx1 is pH-, subtype- and species-dependent: Importance of interactions at the channel subunit interface and potential for engineering selective analogues. Biochemical Pharmacology, 2019. 163: p. 381-390.
Diochot, S., et al., A new sea anemone peptide, APETx2, inhibits ASIC3, a major acid-sensitive channel in sensory neurons. Embo j, 2004. 23(7): p. 1516-25.
Goldstein, R., Fluid mechanics measurements. 2017.
Gong, J., et al., Shear stress activates nociceptors to drive Drosophila mechanical nociception. Neuron, 2022. 110(22): p. 3727-3742.e8.
Anishkin, A., et al., Feeling the hidden mechanical forces in lipid bilayer is an original sense. Proc Natl Acad Sci U S A, 2014. 111(22): p. 7898-905.
Patel, A., et al., Canonical TRP channels and mechanotransduction: From physiology to disease states. Pflügers Archiv : European journal of physiology, 2010. 460: p. 571-81.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88231-
dc.description.abstract多項文獻的實驗結果已經證實,低強度超音波具備高空間解析度與深度傳播的能力,進而促進神經調節。雖然低強度超音波已為神經刺激的臨床診斷帶來新的方法;但是對於超音波在分子生物層面作用的力學機制,尚未有明確的解釋。本研究開發一種特殊的超音波刺激裝置:超音波微管,刺激背根神經元和小鼠神經纖維瘤細胞;並詳細研究細胞受到超音波刺激後,產生鈣離子反應相關的離子通道。玻璃微管的針尖呈現閉口的狀態;作為一個波傳導的裝置,將超音波傳感器發射的超音波傳導至針尖,再經由針尖釋放機械力刺激。當超音波被釋放時,會產生兩種力學刺激:第一種是聲壓,其會對行進方向上的細胞產生擠壓的效應;第二種是聲流,其會對細胞膜表面施加橫向的作用力,稱為剪力。這兩種力量的量值可以經由超音波參數:輸入電壓與佔空比的組合(模組)進行調控。

本研究的實驗結果證實,酸敏感離子通道一型1a(Acid-sensing ion channels 1a, 簡稱ASIC1a)在背根神經元和小鼠神經纖維瘤受超音波刺激所產生的鈣離子反應中,扮演了機械力敏感通道的角色;另外本研究特別使用ASIC1a基因修飾的老鼠進行實驗,也證實了同一個實驗結果。除此之外,本研究剔除本體感覺神經元上的酸敏感離子通道三型基因(ASIC3),發現鈣離子反應的程度會受到影響,證實ASIC3可能是本體感覺神經元上的機械力敏感通道。最後,本研究發現比起聲壓主導的超音波刺激,聲流主導刺激更容易造成細胞的鈣離子濃度變化。
zh_TW
dc.description.abstractLines of compelling evidence have shown that low-intensity ultrasound has the capability of neuromodulation modality with exquisite spatial specificity and depth penetration. Although low-intensity focused ultrasound holds great promise as a novel approach to the potential clinical applications of neuron stimulation, the underlying mechanism at the cellular and molecular level remain unclear. In this study, we utilized a device of micropipette-guided ultrasound to dissect the involved channels in ultrasound-induced activation of somatosensory neurons and neuroblastoma Neuro-2a cells. The glass micropipette with an end-closed tip is a developed wave-guide device to transport the force of ultrasound. Ultrasound from the tip generates two forms of force: one is the acoustic pressure into cell solution with acoustic pressure exerting on cells placed along its path, and the other is the streaming flow applying shear force on cells. These two force modalities could be fine-tuned by the input voltage and the duty factor. Our results demonstrated ASIC1a has been identified as a vital mechanosensitive channel to mediate low-intensity ultrasound-induced activation of dorsal root ganglion neurons and Neuro-2a cells. We further generated a transgenic mice and probe the role of ASIC1a in ultrasound-sensitive calcium response. In addition, ASIC3 is expressed in proprioceptors so that we generated transgenic mice with a floxed allele of ASIC3 (ASIC3f/f) and probed ASIC3 also has been a mechanoreceptor. Lastly, our results confirmed streaming force dominantly modulate intracellular calcium concentration compared to compressional predominant force.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-09T16:07:13Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-09T16:07:13Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
中文摘要 iv
Abstract v
目 錄 vi
圖目錄 x
表目錄 xviii
符號與術語縮寫索引 xix
第一章 緒論 1
1-1 研究背景 1
1-1-1 機械力敏感通道之研究背景 1
1-1-2 超音波微管開發之研究背景 5
1-1-3 酸敏感離子通道一型受超音波刺激之研究背景 7
1-1-4 酸敏離子通道三型受力學刺激之研究背景 9
1-1-5 研究背景總結 11
1-2 問題與研究目的 12
1-3 研究架構 14
1-4 研究範圍 17
1-5 研究限制 18
第二章 文獻回顧 19
2-1 波動力學與聲學簡介 19
2-1-1 從波動力學方程式推導聲強度計算之理論研究 20
2-1-2 聲波的基本性質 26
2-2-3 聲阻抗的基本性質 28
2-2-4 聲強度 30
2-2-5 聲強級 31
2-2 波傳導的種類 32
2-2-1 縱波與橫波 32
2-2-2 板波 34
2-2-3 洩漏蘭姆波 39
2-3 超音波造成的物理效應簡介 40
2-3-1 基本性質 40
2-3-2 超音波參數定義 43
2-3-3 聲壓(聲輻射力) 45
2-3-4 聲流 46
2-3-5 空蝕效應 47
2-3 壓電效應原理簡介 49
第三章 研究方法 51
3-1 實驗設備 51
3-1-1 實驗設備總體架設 51
3-1-2 訊號產生器與放大器 54
3-1-3 超音波探頭與玻璃微管 56
3-1-4 溶液置換系統 58
3-1-5 鈣離子影像顯微鏡 60
3-2 使用細胞與材料 62
3-2-1 小鼠神經纖維瘤細胞 62
3-2-2 背根神經節細胞 63
3-2-3 漢克平衡酸鹼緩衝溶液 63
3-2-4 Fura-2/AM 鈣離子螢光染劑 65
3-3 鈣離子影像分析方法 65
第四章 實驗設計 68
4-1 超音波微管之機械性質探討與量測 68
4-1-1 超音波聲壓量測實驗規劃 68
4-1-2 超音波聲流場剪應力量測實驗規劃 76
4-2 實驗一:小鼠神經纖維瘤細胞之鈣離子反應探討 78
4-2-1 超音波微管刺激方法的制定 80
4-2-2 檢驗離子通道類型之實驗方法的制定 81
4-3 實驗二:背根神經節細胞之鈣離子反應探討 84
4-4 實驗三:本體感覺神經元之鈣離子反應探討 86
4-5 實驗四:聲壓與聲流對鈣離子反應影響之比較 88
第五章 實驗結果 89
5-1 超音波微管之機械性質量測結果 89
5-1-1 聲壓量測結果 89
5-1-2 聲流量測結果 95
5-2 小鼠神經纖維瘤細胞之鈣離子反應實驗結果 103
5-2-1 N2a細胞受超音波模組刺激之反應結果 103
5-2-2 超音波微管刺激方法的制定實驗結果 105
5-2-3 離子通道抑制劑檢驗N2a細胞離子通道實驗結果 108
5-3 背根神經節細胞之鈣離子反應實驗結果 111
5-4 本體感覺神經元之鈣離子反應實驗結果 114
5-5 聲壓與聲流對鈣離子反應之影響實驗結果 116
第六章 結論與未來展望 119
6-1 結論 119
6-2 討論與未來展望 120
參考資料 121
-
dc.language.isozh_TW-
dc.subject酸敏感離子通道一型zh_TW
dc.subject機械力敏感通道zh_TW
dc.subject酸敏感離子通道三型zh_TW
dc.subject酸敏感離子通道一型zh_TW
dc.subject機械力敏感通道zh_TW
dc.subject低強度超音波zh_TW
dc.subject導波zh_TW
dc.subject低強度超音波zh_TW
dc.subject酸敏感離子通道三型zh_TW
dc.subject導波zh_TW
dc.subjectASIC3en
dc.subjectGuided waveen
dc.subjectLow-intensity ultrasounden
dc.subjectMechanoreceptorsen
dc.subjectASIC1aen
dc.subjectASIC3en
dc.subjectGuided waveen
dc.subjectLow-intensity ultrasounden
dc.subjectMechanoreceptorsen
dc.subjectASIC1aen
dc.title探究不同力學模組的超音波刺激對機械力敏感通道所引發的鈣離子反應之影響zh_TW
dc.titleThe Cellular Calcium Response to the Ultrasound Stimulation with Specific Force Modalities via Mechanosensitive Receptorsen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李百祺;陳文翔;陳志成zh_TW
dc.contributor.oralexamcommitteePai-Chi Li;Wen-Shiang Chen;Chih-Cheng Chenen
dc.subject.keyword導波,低強度超音波,機械力敏感通道,酸敏感離子通道一型,酸敏感離子通道三型,zh_TW
dc.subject.keywordGuided wave,Low-intensity ultrasound,Mechanoreceptors,ASIC1a,ASIC3,en
dc.relation.page125-
dc.identifier.doi10.6342/NTU202301318-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-07-25-
dc.contributor.author-college工學院-
dc.contributor.author-dept醫學工程學系-
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf11.72 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved