Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88227
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡協澄zh_TW
dc.contributor.advisorHsieh-Chen Tsaien
dc.contributor.author王昱zh_TW
dc.contributor.authorYu Wangen
dc.date.accessioned2023-08-09T16:06:07Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-09-
dc.date.issued2023-
dc.date.submitted2023-07-19-
dc.identifier.citationN. Alom and U. K. Saha. Four decades of research into the augmentation techniques of savonius wind turbine rotor. Journal of Energy Resources Technology, 140(5), jan 2018.
I. Ansys. Ansys fluent-theory guide-release 2020r1, 2020.
U. Asghar, I. Aziz, and F. Sher. Modelling and simulation of flow induced vibrations in vertical axis wind turbine blade. In 2017 14th International Bhurban Conference on Applied Sciences and Technology (IBCAST). IEEE, jan 2017.
A. Bianchini, F. Balduzzi, G. Ferrara, and L. Ferrari. Virtual incidence effect on rotating airfoils in darrieus wind turbines. Energy Conversion and Management, 111:329–338, mar 2016.
B. Blocken. 50 years of computational wind engineering: Past, present and future. Journal of Wind Engineering and Industrial Aerodynamics, 129:69–102, jun 2014.
B. Blocken. Computational fluid dynamics for urban physics: Importance, scales, possibilities, limitations and ten tips and tricks towards accurate and reliable simulations. Building and Environment, 91:219–245, sep 2015.
C. E. Brunner, J. Kiefer, M. O. L. Hansen, and M. Hultmark. Study of reynolds number effects on the aerodynamics of a moderately thick airfoil using a high-pressure wind tunnel. Experiments in Fluids, 62(8), aug 2021.
A.-J. Buchner, M. Lohry, L. Martinelli, J. Soria, and A. Smits. Dynamic stall in vertical axis wind turbines: Comparing experiments and computations. Journal of Wind Engineering and Industrial Aerodynamics, 146:163–171, nov 2015.
M. Burlando, A. Ricci, A. Freda, and M. Repetto. Numerical and experimental methods to investigate the behaviour of vertical-axis wind turbines with stators. Journal of Wind Engineering and Industrial Aerodynamics, 144:125–133, sep 2015.
M. R. Castelli, A. Englaro, and E. Benini. The darrieus wind turbine: Proposal for a new performance prediction model based on CFD. Energy, 36(8):4919–4934, aug 2011.
D. D. Chiras. Wind power basics. New Society Publishers, 2010.
J. M. Edwards, L. A. Danao, and R. J. Howell. Novel experimental power curve determination and computational methods for the performance analysis of vertical axis wind turbines. Journal of Solar Energy Engineering, 134(3), may 2012.
C. S. Ferreira, G. van Kuik, G. van Bussel, and F. Scarano. Visualization by PIV of dynamic stall on a vertical axis wind turbine. Experiments in Fluids, 46(1):97–108, aug 2008.
J. Franke, A. Hellsten, K. Schlünzen, and B. Carissimo. Best practice guideline for the cfd simulation of flows in the urban environment - a summary. In 11th Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, Cambridge, UK, July 2007, United Kingdom, 2007. Cambridge Environmental Research Consultants.
C. Galinos, T. J. Larsen, H. A. Madsen, and U. S. Paulsen. Vertical axis wind turbine design load cases investigation and comparison with horizontal axis wind turbine. Energy Procedia, 94:319–328, sep 2016.
H. Glauert. The Elements of Aerofoil and Airscrew Theory. Cambridge University Press, jun 1983.
K. Golecha, T. Eldho, and S. Prabhu. Influence of the deflector plate on the performance of modified savonius water turbine. Applied Energy, 88(9):3207–3217, sep 2011.
B. Hand, G. Kelly, and A. Cashman. Structural analysis of an offshore vertical axis wind turbine composite blade experiencing an extreme wind load. MarineStructures, 75:102858, jan 2021.
R. Howell, N. Qin, J. Edwards, and N. Durrani. Wind tunnel and numerical study of a small vertical axis wind turbine. Renewable Energy, 35(2):412–422, feb 2010.
A. Iida, K. Kato, and A. Mizuno. Numerical simulation of unsteady flow and aerodynamic performance of vertical axis wind turbines with les. 01 2007.
M. Islam, S. Mekhilef, and R. Saidur. Progress and recent trends of wind energy technology. Renewable and Sustainable Energy Reviews, 21:456–468, may 2013.
X. Jin, Y. Wang, W. Ju, J. He, and S. Xie. Investigation into parameter influence of upstream deflector on vertical axis wind turbines output power via three-dimensional CFD simulation. Renewable Energy, 115:41–53, jan 2018.
D. Kim and M. Gharib. Efficiencyimprovement ofstraight-bladedvertical-axis wind turbines with an upstream deflector. Journal of Wind Engineering and Industrial Aerodynamics, 115:48–52, apr 2013.
M. S. Kumar, A. Krishnan, and R. Vijayanandh. Vibrational fatigue analysis of NACA 63215 small horizontal axis wind turbine blade. Materials Today: Proceedings, 5(2):6665–6674, 2018.
R. Kumar, K. Raahemifar, and A. S. Fung. A critical review of vertical axis wind turbines for urban applications. Renewable and Sustainable Energy Reviews, 89:281– 291, jun 2018.
K. Layeghmand, N. G. Tabari, and M. Zarkesh. Improving efficiency of savonius wind turbine by means of an airfoil-shaped deflector. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(10), sep 2020.
Y. Lin, K. Wind power generation device, 2020.
I. Mălăel, L. Moutet, and V. Drăgan. Numerical simulation of a vertical axis wind turbine for urban use. Applied Mechanics and Materials, 811:333–338, nov 2015.
F. R. Menter. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8):1598–1605, aug 1994.
S. Mertens, G. van Kuik, and G. van Bussel. Performance of a high tip speed ratio h-darrieus in the skewed flow on a roof. In ASME 2003 Wind Energy Symposium. ASMEDC, jan 2003.
M. Mohamed, G.Janiga, E.Pap, andD.Thévenin. Optimalbladeshapeofamodified savonius turbine using an obstacle shielding the returning blade. Energy Conversion and Management, 52(1):236–242, jan 2011.
M. Mohammadi, R. Mohammadi, A. Ramadan, and M. Mohamed. Numerical investigation of performance refinement of a drag wind rotor using flow augmentation and momentum exchange optimization. Energy, 158:592–606, sep 2018.
E. Möllerström, F. Ottermo, J. Hylander, and H. Bernhoff. Noise emission of a 200 kW vertical axis wind turbine. Energies, 9(1):19, dec 2015.
A. Orlando, L. Pagnini, and M. P. Repetto. Structural response and fatigue assessment of a small vertical axis wind turbine under stationary and non-stationary excitation. Renewable Energy, 170:251–266, jun 2021.
U. S. Paulsen, H. A. Madsen, K. A. Kragh, P. H. Nielsen, I. Baran, J. Hattel, E. Ritchie, K. Leban, H. Svendsen, and P. A. Berthelsen. DeepWind-from idea to 5 MW concept. Energy Procedia, 53:23–33, 2014.
A. Rezaeiha, I. Kalkman, and B. Blocken. CFD simulation of a vertical axis wind turbine operating at a moderate tip speed ratio: Guidelines for minimum domain size and azimuthal increment. Renewable Energy, 107:373–385, jul 2017.
G. Schmid, C.-H. Chen, W.-C. Ma, T.-H. Yang, and S.-L. Chen. Performance enhancement of rooftop turbine ventilators using wind deflectors. Journal of the Chinese Institute of Engineers, 39(4):461–467, jan 2016.
G. Tescione, D. Ragni, C. He, C. S. Ferreira, and G. van Bussel. Near wake flow analysis of a vertical axis wind turbine by stereoscopic particle image velocimetry. Renewable Energy, 70:47–61, oct 2014.
Y. Tominaga, A. Mochida, R. Yoshie, H. Kataoka, T. Nozu, M. Yoshikawa, and T. Shirasawa. AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings. Journal of Wind Engineering and Industrial Aerodynamics, 96(10-11):1749–1761, oct 2008.
A. Tummala, R. K. Velamati, D. K. Sinha, V. Indraja, and V. H. Krishna. A review on small scale wind turbines. Renewable and Sustainable Energy Reviews, 56:1351– 1371, apr 2016.
L. I. Weingarten and R. E. Nickell. Nonlinear stress analysis of vertical-axis wind turbine blades. Journal of Engineering for Industry, 97(4):1234–1237, nov 1975.
R. E. Wilson and P. B. Lissaman. Applied aerodynamics of wind power machines. 7 1974.
K. H. Wong, W. T. Chong, S. C. Poh, Y.-C. Shiah, N. L. Sukiman, and C.-T. Wang. 3d CFD simulation and parametric study of a flat plate deflector for vertical axis wind turbine. Renewable Energy, 129:32–55, dec 2018.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88227-
dc.description.abstract本研究旨在透過數值模擬分析外部機翼狀導流板對垂直軸風力發電機(垂直風機)發電效能的影響。藉得數值模擬,不同導流板弦長、不同導流板數量及不同導流板方向設置的垂直風機的發電效能得以相互比較。本研究亦導入多流管理論模型分析安裝導流板後,於高尖端速度比下垂直風機的效能提升及機制。結果顯示,導流板因能有效地加速其鼻端附近的流體,只要其機翼弦長大於0.6倍的轉子半徑,就得以在大範圍的尖端速度比下,最高提升轉子的功率輸出達 30%。然而,使用導流板亦意味著增加整體風機的正投影面積,這會使得整體風機的空氣動力學效率下降。同時,模擬結果亦顯示導流板的方向設置(正對或對稱入口流)會在不同導流板數量下產生不同的功率提升。平均來說,裝有六個導流板的垂直風機會有最佳的效能。最後,我們以3D列印製作了一個24公分大小的模型,並以國立臺灣大學機械工程學系(台大機械系)的低速風洞進行效能提升測試。結果顯示,裝有導流板的垂直風機於自由旋轉下相對無導流板的垂直風機能有更高的轉速。這間接驗證了外部導流板能有效提升垂直風機的效能。zh_TW
dc.description.abstractThis study is aimed at numerically investigating the effects of exterior airfoil-shaped deflectors on power production of Vertical Axis Wind Turbines (VAWTs). Incompressible flows around VAWTs with various deflector chord lengths, various number of deflectors, and two configurations are simulated. A theoretical muti-streamtube model, which is shown to have a good prediction of the performance of VAWTs with no deflectors at high tip-speed ratios, is also used to calculate the power output of VAWTs with deflectors and theoretically analyze the effects caused by deflectors. The results show that the deflectors, which accelerate the fluids around their noses, are able to enhance the rotor power output up to about 30% over a wide range of tip-speed ratio when their chord length is greater than 0.6 of the turbine rotor radius. However, the implementation of deflectors also implies the increase in the frontal area of VAWT, where the overall aerodynamic efficiency decreases correspondingly. Moreover, simulations show that the deflector orientation (aligned or symmetric to the incoming stream) can generate different power enhancement depending on the number of deflectors, which suggests that VAWTs with 6 deflectors on average has the optimal performance. Finally, a 24-cm model is 3D printed to be experimentally tested the performance improvement in a low-speed wind tunnel in the department of Mechanical Engineering at National Taiwan University (NTUME). The results show that VAWTs with deflectors spins freely at a higher rotation speed than ones without deflectors, which indirectly validate the effectiveness of exterior deflectors in performance enhancement.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-09T16:06:06Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-09T16:06:07Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i
Acknowledgements ii
摘要 iii
Abstract iv
Contents vi
List of Figures viii
List of Tables xi
Nomenclature xii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Background 2
1.3 Outline 3
Chapter 2 Model Problem 4
2.1 Numerical Setup 4
2.2 Numerical Method Validation 8
Chapter 3 Multi-streamtube Model 10
Chapter 4 VAWT with Deflectors 16
4.1 Numerical Setup 16
4.2 Deflectors of Fixed Number and Varying Length 18
4.3 Deflectors of Fixed Length and Varying Number 21
4.4 Cp vs lambda 39
4.5 Windtunnel Experiment 41
Chapter 5 Conclusion 44
References 46
-
dc.language.isoen-
dc.title利用外部導風板增進垂直軸風力發電機效能之數值分析zh_TW
dc.titleNumerical Analysis on Performance Enhancement of Vertical-Axis Wind Turbines using Exterior Deflectorsen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee周逸儒;張鈞棣;李宇修zh_TW
dc.contributor.oralexamcommitteeYi-Ju Chou;Chun-Ti Chang;Yu-Hsiu Leeen
dc.subject.keyword垂直軸風力發電機,外部導流板,zh_TW
dc.subject.keywordVertical-axis Wind Turbine,Exterior deflectors,en
dc.relation.page51-
dc.identifier.doi10.6342/NTU202301405-
dc.rights.note未授權-
dc.date.accepted2023-07-19-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  目前未授權公開取用
13.54 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved