Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88218
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor梁文傑zh_TW
dc.contributor.advisorMan-kit Leungen
dc.contributor.author薛仁竣zh_TW
dc.contributor.authorJen-Chun Hsuehen
dc.date.accessioned2023-08-08T16:49:51Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-08-
dc.date.issued2023-
dc.date.submitted2023-07-21-
dc.identifier.citation1. Schlenk, W.; Holtz, J., Über Die Einfachsten Metallorganischen Alkaliverbindungen. Ber. Dtsch. Chem. Ges. 1917, 50 (1), 262-274.
2. Wietelmann, U.; Klett, J., 200 Years of Lithium and 100 Years of Organolithium Chemistry. Z. anorg. allg. Chem. 2018, 644 (4), 194-204.
3. Ziegler, K.; Colonius, H., Untersuchungen Justus Liebigs Ann. Chem. 1930, 479 (1), 135-149.
4. Wittig, G.; Pockels, U.; Dröge, H., Über Die Austauschbarkeit Von Aromatisch Gebundenem Wasserstoff Gegen Lithium Mittels Phenyl-Lithiums. Ber. Dtsch. Chem. Ges. 1938, 71 (9), 1903-1912.
5. Gilman, H.; Langham, W.; Jacoby, A. L., Metalation as a Side Reaction in the Preparation of Organolithium Compounds. J. Am. Chem. Soc. 1939, 61 (1), 106-109.
6. Flemming, J. P.; Berry, M. B.; Brown, J. M., Sequential Ortho-Lithiations; the Sulfoxide Group as a Relay to Enable Meta-Substitution. Org. Biomol. Chem. 2008, 6 (7), 1215-1221.
7. Narasimhan, N. S.; Joshi, R. R., Organo-Lithiation and Halogen Metal Exchange Reactions in Organic Synthesis-an Anomolous Aromatic Substitution via Halogen-Metal Exchange. Proc. Indian Acad. Sci. 1988, 100 (2), 205-215.
8. Masters, N. F.; Widdowson, D. A., Regiocontrolled Lithiation of Arenetricarbonylchromium (0) Complexes: Meta-Substitution of Phenols and Anilines. J. Chem. Soc., Chem. Commun. 1983, (17), 955-956.
9. Mathew, T.; Papp, A. Á.; Paknia, F.; Fustero, S.; Surya Prakash, G. K., Benzodiazines: Recent Synthetic Advances. Chem. Soc. Rev. 2017, 46 (10), 3060-3094.
10. Fröhlich, T.; Reiter, C.; Ibrahim, M. M.; Beutel, J.; Hutterer, C.; Zeitträger, I.; Bahsi, H.; Leidenberger, M.; Friedrich, O.; Kappes, B.; Efferth, T.; Marschall, M.; Tsogoeva, S. B., Synthesis of Novel Hybrids of Quinazoline and Artemisinin with High Activities against Plasmodium Falciparum, Human Cytomegalovirus, and Leukemia Cells. ACS Omega 2017, 2 (6), 2422-2431.
11. Auti, P. S.; George, G.; Paul, A. T., Recent Advances in the Pharmacological Diversification of Quinazoline/Quinazolinone Hybrids. RSC Adv. 2020, 10 (68), 41353-41392.
12. Yang, X.-L.; Meng, Q.-Y.; Gao, X.-W.; Lei, T.; Wu, C.-J.; Chen, B.; Tung, C.-H.; Wu, L.-Z., Superoxide Radical Anion-Mediated Aerobic Oxidative Synthesis of 2-Substituted Quinazolines under Visible Light. Asian J. Org. Chem. 2017, 6 (4), 449-452.
13. Yamaguchi, T.; Sakairi, K.; Yamaguchi, E.; Tada, N.; Itoh, A., Magnesium Iodide-Catalyzed Synthesis of 2-Substituted Quinazolines Using Molecular Oxygen and Visible Light. RSC Adv. 2016, 6 (62), 56892-56895.
14. Chaudhari, C.; Hakim Siddiki, S. M. A.; Tamura, M.; Shimizu, K.-i., Acceptorless Dehydrogenative Synthesis of 2-Substituted Quinazolines from 2-Aminobenzylamine with Primary Alcohols or Aldehydes by Heterogeneous Pt Catalysts. RSC Adv. 2014, 4 (95), 53374-53379.
15. Parua, S.; Sikari, R.; Sinha, S.; Chakraborty, G.; Mondal, R.; Paul, N. D., Accessing Polysubstituted Quinazolines via Nickel Catalyzed Acceptorless Dehydrogenative Coupling. J. Org. Chem. 2018, 83 (18), 11154-11166.
16. Verma, S.; Kujur, S.; Sharma, R.; Pathak, D. D., Cucurbit[6]uril Supported β-Ni(OH)2 Nanoparticles as a Heterogeneous Catalyst for the Synthesis of Quinazolines via Acceptorless Dehydrogenative Coupling of Alcohols with Nitriles. New J. Chem. 2022, 46 (44), 21356-21365.
17. Sundarraman, B.; Rengan, R.; Semeril, D., Nno Pincer Ligand-Supported Palladium(II) Complexes: Direct Synthesis of Quinazolines via Acceptorless Double Dehydrogenative Coupling of Alcohols. Organometallics 2022, 41 (11), 1314-1324.
18. Ma, J.; Wan, Y.; Hong, C.; Li, M.; Hu, X.; Mo, W.; Hu, B.; Sun, N.; Jin, L.; Shen, Z., ABNO-Catalyzed Aerobic Oxidative Synthesis of 2-Substituted 4H-3,1-Benzoxazines and Quinazolines. Eur. J. Org. Chem. 2017, 2017 (23), 3335-3342.
19. Huo, S.; Kong, S.; Zeng, G.; Feng, Q.; Hao, Z.; Han, Z.; Lin, J.; Lu, G.-L., Efficient Access to Quinolines and Quinazolines by Ruthenium Complexes Catalyzed Acceptorless Dehydrogenative Coupling of 2-Aminoarylmethanols with Ketones and Nitriles. Mol. Catal. 2021, 514, 111773.
20. Hao, Z.; Zhou, X.; Ma, Z.; Zhang, C.; Han, Z.; Lin, J.; Lu, G.-L., Dehydrogenative Synthesis of Quinolines and Quinazolines via Ligand-Free Cobalt-Catalyzed Cyclization of 2-Aminoaryl Alcohols with Ketones or Nitriles. J. Org. Chem. 2022, 87 (19), 12596-12607.
21. Gopalaiah, K.; Saini, A.; Devi, A., Iron-Catalyzed Cascade Reaction of 2-Aminobenzyl Alcohols with Benzylamines: Synthesis of Quinazolines by Trapping of Ammonia. Org. Biomol. Chem. 2017, 15 (27), 5781-5789.
22. Han, B.; Wang, C.; Han, R.-F.; Yu, W.; Duan, X.-Y.; Fang, R.; Yang, X.-L., Efficient Aerobic Oxidative Synthesis of 2-Aryl Quinazolinesviabenzyl C–H Bond Amination Catalyzed by 4-Hydroxy-TEMPO. Chem. Commun. 2011, 47 (27), 7818-7820.
23. Pandya, A. N.; Villa, E. M.; North, E. J., A Simple and Efficient Approach for the Synthesis of 2-Aminated Quinazoline Derivatives via Metal Free Oxidative Annulation. Tetrahedron Lett. 2017, 58 (13), 1276-1279.
24. Panja, S. K.; Dwivedi, N.; Saha, S., I2-Catalyzed Three-Component Protocol for the Synthesis of Quinazolines. Tetrahedron Lett. 2012, 53 (46), 6167-6172.
25. Zhang, J.; Zhu, D.; Yu, C.; Wan, C.; Wang, Z., A Simple and Efficient Approach to the Synthesis of 2-Phenylquinazolines via sp3 C−H Functionalization. Org. Lett. 2010, 12 (12), 2841-2843.
26. Derabli, C.; Boulcina, R.; Kirsch, G.; Carboni, B.; Debache, A., A DMAP-Catalyzed Mild and Efficient Synthesis of 1,2-Dihydroquinazolines via a One-Pot Three-Component Protocol. Tetrahedron Lett. 2014, 55 (1), 200-204.
27. Zhang, J.; Yu, C.; Wang, S.; Wan, C.; Wang, Z., A Novel and Efficient Methodology for the Construction of Quinazolines Based on Supported Copper Oxide Nanoparticles. Chem. Commun. 2010, 46 (29), 5244-5246.
28. Han, B.; Yang, X.-L.; Wang, C.; Bai, Y.-W.; Pan, T.-C.; Chen, X.; Yu, W., CuCl/DABCO/4-HO-TEMPO-Catalyzed Aerobic Oxidative Synthesis of 2-Substituted Quinazolines and 4H-3,1-Benzoxazines. J. Org. Chem. 2012, 77 (2), 1136-1142.
29. Huang, C.; Fu, Y.; Fu, H.; Jiang, Y.; Zhao, Y., Highly Efficient Copper-Catalyzed Cascade Synthesis of Quinazoline and Quinazolinone Derivatives. Chem. Commun. 2008, (47), 6333-6335.
30. Ju, J.; Hua, R.; Su, J., Copper-Catalyzed Three-Component One-Pot Synthesis of Quinazolines. Tetrahedron 2012, 68 (46), 9364-9370.
31. Ma, P.; Wang, Y.; Wang, J.; Ma, N., Copper-Catalyzed Synthesis of Quinazolines via Cascade Cyclization/Hydrodehalogenation. New J. Chem. 2023, 47 (19), 9377-9382.
32. Xu, C.; Jia, F.-C.; Zhou, Z.-W.; Zheng, S.-J.; Li, H.; Wu, A.-X., Copper-Catalyzed Multicomponent Domino Reaction of 2-Bromoaldehydes, Benzylamines, and Sodium Azide for the Assembly of Quinazoline Derivatives. J. Org. Chem. 2016, 81 (7), 3000-3006.
33. Wang, C.; Li, S.; Liu, H.; Jiang, Y.; Fu, H., Copper-Catalyzed Synthesis of Quinazoline Derivatives via Ullmann-Type Coupling and Aerobic Oxidation. J. Org. Chem. 2010, 75 (22), 7936-7938.
34. Lin, J.-P.; Zhang, F.-H.; Long, Y.-Q., Solvent/Oxidant-Switchable Synthesis of Multisubstituted Quinazolines and Benzimidazoles via Metal-Free Selective Oxidative Annulation of Arylamidines. Org. Lett. 2014, 16 (11), 2822-2825.
35. Xu, L.; Li, H.; Liao, Z.; Lou, K.; Xie, H.; Li, H.; Wang, W., Divergent Synthesis of Imidazoles and Quinazolines via Pd(OAc)2-Catalyzed Annulation of N-Allylamidines. Org. Lett. 2015, 17 (14), 3434-3437.
36. Shen, Z.-c.; Yang, P.; Tang, Y., Transition Metal-Free Visible Light-Driven Photoredox Oxidative Annulation of Arylamidines. J. Org. Chem. 2016, 81 (1), 309-317.
37. Wang, Y.; Wang, H.; Peng, J.; Zhu, Q., Palladium-Catalyzed Intramolecular C(sp2)–H Amidination by Isonitrile Insertion Provides Direct Access to 4-Aminoquinazolines from N-Arylamidines. Org. Lett. 2011, 13 (17), 4604-4607.
38. Su, X.; Chen, C.; Wang, Y.; Chen, J.; Lou, Z.; Li, M., One-Pot Synthesis of Quinazoline Derivatives via [2+2+2] Cascade Annulation of Diaryliodonium Salts and Two Nitriles. Chem. Commun. 2013, 49 (60), 6752-6754.
39. Ramanathan, M.; Liu, S.-T., Preparation of Quinazolines via a 2+2+2 Annulation from Aryldiazonium Salts and Nitriles. J. Org. Chem. 2017, 82 (15), 8290-8295.
40. Zhu, J.; Shao, Y.; Hu, K.; Qi, L.; Cheng, T.; Chen, J., Pd-Catalyzed Tandem Reaction of N-(2-Cyanoaryl)benzamides with Arylboronic Acids: Synthesis of Quinazolines. Org. Biomol. Chem. 2018, 16 (44), 8596-8603.
41. Hu, K.; Zhen, Q.; Gong, J.; Cheng, T.; Qi, L.; Shao, Y.; Chen, J., Palladium-Catalyzed Three-Component Tandem Process: One-Pot Assembly of Quinazolines. Org. Lett. 2018, 20 (10), 3083-3087.
42. Ranade, A. C.; Mali, R. S.; Deshpande, H. R., Novel Synthesis of 2,4-Diphenylpyrimido [4,5-b] Quinoline. Experientia 1979, 35 (5), 574-574.
43. Houlihan, W. J.; Pieroni, A. J., Novel Synthesis of 2,4-Diarylbenzo[h] Quinazolines. J. Heterocycl. Chem. 1973, 10 (3), 405-406.
44. Berry, D. J.; Cook, J. D.; Wakefield, B. J., Polyhalogenoaromatic Compounds. Part XXIV. The Reaction of Chloropyridyl-Lithium Compounds with Nitriles as a Route to Triazanaphthalenes. J. Chem. Soc., Perkin Trans. 1 1972, (0), 2190-2192.
45. Mikshiev, V. Y.; Antonov, A. S.; Pozharskii, A. F., Tandem Synthesis of 10-Dimethylaminobenzo[h]Quinazolines from 2-Ketimino-1,8-bis(dimethylamino)naphthalenes via Nucleophilic Replacement of the Unactivated Aromatic NMe2 Group. Org. Lett. 2016, 18 (12), 2872-2875.
46. Ma, Y.; Breslin, S.; Keresztes, I.; Lobkovsky, E.; Collum, D. B., Synthesis of a 7-Azaindole by Chichibabin Cyclization: Reversible Base-Mediated Dimerization of 3-Picolines. J. Org. Chem. 2008, 73 (24), 9610-9618.
47. Mongin, F.; Schlosser, M., Regioselective Ortho-Lithiation of Chloro and Bromo Substituted Fluoroarenes. Tetrahedron Lett. 1996, 37 (36), 6551-6554.
48. Caster, K. C.; Keck, C. G.; Walls, R. D., Synthesis of Benzonorbornadienes:  Regioselective Benzyne Formation. J. Org. Chem 2001, 66 (9), 2932-2936.
49. Wang, Z.; Li, H.; Peng, Z.; Wang, Z.; Wang, Y.; Lu, P., Preparation and Photophysical Properties of Quinazoline-Based Fluorophores. RSC Adv. 2020, 10 (51), 30297-30303.
50. Boldridge, D. W.; Scott, G. W., Excited Singlet State Absorption Spectra and Relaxation Kinetics of the Azanaphthalenes. Chem. Phys. 1986, 84 (12), 6790-6798.
51. Etinski, M.; Marian, C. M., A Theoretical Study of Low-Lying Singlet and Triplet Excited States of Quinazoline, Quinoxaline and Phthalazine: Insight into Triplet Formation. Phys. Chem. Chem. Phys. 2017, 19 (21), 13828-13837.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88218-
dc.description.abstract喹唑啉在藥物研究上扮演相當重要的角色,在市面上有許多以喹唑啉結構所衍生的藥物用於治療多項疾病,因為此項特性,許多科學家致力於研究如何透過具經濟效益且簡易的方式合成喹唑啉衍生物。在本論文中我們提供了一鍋化合成喹唑啉衍生物的方法,主要講述以含氟苯環與二異丙基胺基鋰反應產生鄰位導向鋰化中間產物,其產生的負電荷可與兩當量的芳香腈進行連續的親核加成反應,最後以氟原子作為離去基進行芳香環親核取代反應得到2,4-雙芳香環取代的喹唑啉衍生物,此方法所使用到的起始物皆可由市面上取得,過程中並無過渡金屬催化劑使用,且簡便的一鍋化合成方式給予了合成喹唑啉衍生物的新途徑。zh_TW
dc.description.abstractQuinazoline plays a significant role in pharmaceutical research. Numerous quinazoline-derived drugs are available in the market for treating various diseases. Due to this characteristic, many scientists are dedicated to researching cost-effective and straightforward methods for synthesizing quinazoline derivatives. In this study, we report a one-pot synthesis of quinazoline derivatives from halofluorobenzenes and nitriles. The synthesis involves the reaction of halofluorobenzenes with lithium diisopropylamide to generate a lithiated intermediate that exhibits ortho-selectivity. The resulting aryl lithium undergoes sequential nucleophilic addition with two equivalents of aryl nitriles. Finally, a nucleophilic aromatic substitution reaction occurs with fluoride as the leaving group, resulting in 2,4-diarylquinazoline derivatives. The advantages of this approach are transition metal-free, easy to operate, and all the starting materials are commercially available, providing a new method for synthesizing quinazoline derivatives.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-08T16:49:51Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-08T16:49:51Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝辭 (i)
摘要 (ii)
Abstract (iii)
目錄 (iv)
圖目錄 (v)
表目錄 (vii)
化合物結構編號與命名 viii
第一章、緒論 (1)
1.1 有機鋰試劑發展史及應用 (1)
1.2 喹唑啉衍生物介紹及應用 (4)
1.3 喹唑啉衍生物方合成方法學 (6)
1.3.1 以鄰位修飾苯胺合成喹唑啉 (6)
1.3.2 以鄰位修飾芳香基鹵化物合成喹唑啉 (7)
1.3.3 以芳基脒化合物合成唑啉衍生物 (8)
1.3.4 以有機腈類合成喹唑啉衍生物 (10)
1.4 研究動機與文獻回顧 (12)
1.4.1 實驗動機 (12)
1.4.2 文獻回顧 (14)
第二章、實驗結果與討論 (17)
2.1 反應條件優化 (17)
2.2 官能基耐受性測試 (19)
2.2.1 不同官能基之含氟苯環反應測試 (19)
2.2.2 不同官能基之芳香腈反應測試 (23)
2.3 利用正丁基鋰合成喹唑啉衍生物 (24)
2.4 利用不同芳香腈合成喹唑啉衍生物 (27)
2.5 化合物之光性質分析 (31)
2.6 化合物電化學之分析 (38)
第三章、結論 (45)
第四章、實驗合成方法與步驟 (47)
4.1 實驗儀器設備及藥品 (47)
4.2 反應合成步驟 (49)
4.3 化合物鑑定數據 (55)
第五章、附錄 (69)
5.1 化合物之1H及13C核磁共振圖譜 (69)
5.2 化合物之X-RAY晶體結構與數據表 (134)
參考文獻 (171)
-
dc.language.isozh_TW-
dc.subject鄰位鋰化zh_TW
dc.subject喹唑啉zh_TW
dc.subject一鍋化合成zh_TW
dc.subject芳香族親核取代反應zh_TW
dc.subjectNucleophilic aromatic substitution reactionen
dc.subjectOrtho-lithiationen
dc.subjectOne-pot synthesisen
dc.subjectQuinazolineen
dc.title鹵代氟苯與腈類藉由鄰位鋰化驅動 [2+2+2] 串聯環化反應一鍋化合成2,4-雙取代喹唑啉衍生物zh_TW
dc.titleOrtho-Lithiation Driven One-Pot Synthesis of 2,4-Disubstituted Quinazolines via [2+2+2] Cascade Annulation of Halofluorobenzenes with Nitrilesen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee劉緒宗;簡敦誠zh_TW
dc.contributor.oralexamcommitteeShiuh-Tzung Liu;Tun-Cheng Chienen
dc.subject.keyword喹唑啉,一鍋化合成,鄰位鋰化,芳香族親核取代反應,zh_TW
dc.subject.keywordQuinazoline,One-pot synthesis,Ortho-lithiation,Nucleophilic aromatic substitution reaction,en
dc.relation.page175-
dc.identifier.doi10.6342/NTU202301835-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-07-24-
dc.contributor.author-college理學院-
dc.contributor.author-dept化學系-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf13.2 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved