請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88217完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林偲妘 | zh_TW |
| dc.contributor.advisor | Szu-Yun Lin | en |
| dc.contributor.author | 沈瑞陽 | zh_TW |
| dc.contributor.author | Leon Sim | en |
| dc.date.accessioned | 2023-08-08T16:49:36Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-08 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-15 | - |
| dc.identifier.citation | 1. Ghobarah, A., H. Abou‐Elfath, and A. Biddah, Response‐based damage assessment of structures. Earthquake engineering & structural dynamics, 1999. 28(1): p. 79-104.
2. Chesnel, A.-L., R. Binet, and L. Wald. Object oriented assessment of damage due to natural disaster using very high resolution images. in 2007 IEEE International Geoscience and Remote Sensing Symposium. 2007. IEEE. 3. Valentijn, T., J. Margutti, M. van den Homberg, and J. Laaksonen, Multi-hazard and spatial transferability of a cnn for automated building damage assessment. Remote Sensing, 2020. 12(17): p. 2839. 4. Guha-Sapir, D. and R. Below, The quality and accuracy of disaster data: A comparative analyse of 3 global data sets. Centre for Research on the Epidemiology of Disasters (CRED) Working Paper, Brussels: CRED, 2002. 5. Voigt, S., F. Giulio-Tonolo, J. Lyons, J. Kučera, B. Jones, T. Schneiderhan, G. Platzeck, K. Kaku, M.K. Hazarika, and L. Czaran, Global trends in satellite-based emergency mapping. Science, 2016. 353(6296): p. 247-252. 6. Zhou, L., S. Pan, J. Wang, and A.V. Vasilakos, Machine learning on big data: Opportunities and challenges. Neurocomputing, 2017. 237: p. 350-361. 7. Krizhevsky, A., I. Sutskever, and G.E. Hinton, Imagenet classification with deep convolutional neural networks. Communications of the ACM, 2017. 60(6): p. 84-90. 8. Guha-Sapir, D., F. Vos, R. Below, and S. Ponserre, Annual disaster statistical review 2011: the numbers and trends. 2012. 9. Paton, D. and D. Johnston, Disasters and communities: vulnerability, resilience and preparedness. Disaster Prevention and Management: An International Journal, 2001. 10(4): p. 270-277. 10. Kunz, M., B. Mühr, T. Kunz-Plapp, J. Daniell, B. Khazai, F. Wenzel, M. Vannieuwenhuyse, T. Comes, F. Elmer, and K. Schröter, Investigation of superstorm Sandy 2012 in a multi-disciplinary approach. Natural Hazards and Earth System Sciences, 2013. 13(10): p. 2579-2598. 11. Kamat, V.R. and S. El-Tawil. Rapid post-disaster evaluation of building damage using augmented situational visualization. in Construction Research Congress 2005: Broadening Perspectives. 2005. 12. Zhong, L., L. Hu, and H. Zhou, Deep learning based multi-temporal crop classification. Remote sensing of environment, 2019. 221: p. 430-443. 13. Bouchard, I., M.-È. Rancourt, D. Aloise, and F. Kalaitzis, On Transfer Learning for Building Damage Assessment from Satellite Imagery in Emergency Contexts. Remote Sensing, 2022. 14(11): p. 2532. 14. Jocher, G., A. Chaurasia, A. Stoken, J. Borovec, Y. Kwon, K. Michael, J. Fang, Z. Yifu, C. Wong, and D. Montes, ultralytics/yolov5: v7. 0-YOLOv5 SOTA Realtime Instance Segmentation. Zenodo, 2022. 15. Howard, A.G., M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu, R. Pang, V. Vasudevan, Q.V. Le, and H. Adam, Searching for MobileNetV3. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019: p. 1314-1324. 16. Caruana, R., A. Niculescu-Mizil, G. Crew, and A. Ksikes. Ensemble selection from libraries of models. in Proceedings of the twenty-first international conference on Machine learning. 2004. 17. Perry, R.W. and M.K. Lindell, Preparedness for emergency response: guidelines for the emergency planning process. Disasters, 2003. 27(4): p. 336-350. 18. Denis, G., H. de Boissezon, S. Hosford, X. Pasco, B. Montfort, and F. Ranera, The evolution of Earth Observation satellites in Europe and its impact on the performance of emergency response services. Acta Astronautica, 2016. 127: p. 619-633. 19. Klomp, J., Economic development and natural disasters: A satellite data analysis. Global Environmental Change, 2016. 36: p. 67-88. 20. Voigt, S., T. Kemper, T. Riedlinger, R. Kiefl, K. Scholte, and H. Mehl, Satellite image analysis for disaster and crisis-management support. IEEE transactions on geoscience and remote sensing, 2007. 45(6): p. 1520-1528. 21. Šakić Trogrlić, R., M. van den Homberg, M. Budimir, C. McQuistan, A. Sneddon, and B. Golding, Early warning systems and their role in disaster risk reduction, in Towards the “Perfect” Weather Warning: Bridging Disciplinary Gaps through Partnership and Communication. 2022, Springer International Publishing Cham. p. 11-46. 22. Council, A.T., N.E.H.R. Program, and N.T.H.M. Program, Guidelines for design of structures for vertical evacuation from tsunamis. 2008: US Department of Homeland Security, Federal Emergency Management Agency. 23. Cassidy, E.D., Development and structural testing of FRP reinforced OSB panels for disaster resistant construction. 2002. 24. Boccardo, P. and F. Giulio Tonolo. Remote sensing role in emergency mapping for disaster response. in Engineering Geology for Society and Territory-Volume 5: Urban Geology, Sustainable Planning and Landscape Exploitation. 2015. Springer. 25. Lorenzo-Alonso, A., Á. Utanda, M.E. Aulló-Maestro, and M. Palacios, Earth observation actionable information supporting disaster risk reduction efforts in a sustainable development framework. Remote Sensing, 2018. 11(1): p. 49. 26. Kaku, K., Satellite remote sensing for disaster management support: A holistic and staged approach based on case studies in Sentinel Asia. International Journal of Disaster Risk Reduction, 2019. 33: p. 417-432. 27. Yu, M., C. Yang, and Y. Li, Big data in natural disaster management: a review. Geosciences, 2018. 8(5): p. 165. 28. Wisner, B. and J. Adams, Environmental health in emergencies and disasters: a practical guide. 2002: World health organization. 29. Vallance, S.A., Early disaster recovery: a guide for communities. 2011. 30. Wilson, P.A., Deliberative planning for disaster recovery: remembering New Orleans. Journal of Deliberative Democracy, 2008. 5(1). 31. Silva, T., V. Wuwongse, and H.N. Sharma, Disaster mitigation and preparedness using linked open data. Journal of Ambient Intelligence and Humanized Computing, 2013. 4: p. 591-602. 32. (FEMA), F.E.M.A. Hazard mitigation grant program. 2023 [cited 2023 10 May 2023]; Available from: https://www.fema.gov/grants/mitigation. 33. De Jong, S.M. and F.D. Van der Meer, Remote sensing image analysis: including the spatial domain. Vol. 5. 2007: Springer Science & Business Media. 34. Merchant, J.W., Remote sensing of the environment: an earth resource perspective. Cartography and Geographic Information Science, 2000. 27(4): p. 311-311. 35. Yagoub, M.M., Land Observation Satellites [PowerPoint Slides]. 2016, Department of Geography and Urban Planning, UAE University. p. 1. 36. Joyce, K.E., S.E. Belliss, S.V. Samsonov, S.J. McNeill, and P.J. Glassey, A review of the status of satellite remote sensing and image processing techniques for mapping natural hazards and disasters. Progress in physical geography, 2009. 33(2): p. 183-207. 37. Kerle, N. and C. Oppenheimer, Satellite remote sensing as a tool in lahar disaster management. Disasters, 2002. 26(2): p. 140-160. 38. Lillesand, T., R.W. Kiefer, and J. Chipman, Remote sensing and image interpretation. 2015: John Wiley & Sons. 39. Chavez, P.S., Image-based atmospheric corrections-revisited and improved. Photogrammetric engineering and remote sensing, 1996. 62(9): p. 1025-1035. 40. Wisner, B., P.M. Blaikie, P. Blaikie, T. Cannon, and I. Davis, At risk: natural hazards, people's vulnerability and disasters. 2004: Psychology Press. 41. Chabot, D. and D.M. Bird, Wildlife research and management methods in the 21st century: Where do unmanned aircraft fit in? Journal of Unmanned Vehicle Systems, 2015. 3(4): p. 137-155. 42. Nex, F. and F. Remondino, UAV for 3D mapping applications: a review. Applied geomatics, 2014. 6: p. 1-15. 43. Kerle, N. and R.R. Hoffman, Collaborative damage mapping for emergency response: the role of Cognitive Systems Engineering. Natural hazards and earth system sciences, 2013. 13(1): p. 97-113. 44. Xie, F., Z. Lin, D. Gui, and H. Lin, Study on construction of 3D building based on UAV images. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2012. 39: p. 469-473. 45. Anderson, K. and K.J. Gaston, Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Frontiers in Ecology and the Environment, 2013. 11(3): p. 138-146. 46. Stöcker, C., R. Bennett, F. Nex, M. Gerke, and J. Zevenbergen, Review of the current state of UAV regulations. Remote sensing, 2017. 9(5): p. 459. 47. Casbeer, D.W., D.B. Kingston, R.W. Beard, and T.W. McLain, Cooperative forest fire surveillance using a team of small unmanned air vehicles. International Journal of Systems Science, 2006. 37(6): p. 351-360. 48. Colomina, I. and P. Molina, Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS Journal of photogrammetry and remote sensing, 2014. 92: p. 79-97. 49. Everaerts, J., The use of unmanned aerial vehicles (UAVs) for remote sensing and mapping. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2008. 37(2008): p. 1187-1192. 50. Crommelinck, S., R. Bennett, M. Gerke, F. Nex, M.Y. Yang, and G. Vosselman, Review of automatic feature extraction from high-resolution optical sensor data for UAV-based cadastral mapping. Remote Sensing, 2016. 8(8): p. 689. 51. Candiago, S., F. Remondino, M. De Giglio, M. Dubbini, and M. Gattelli, Evaluating multispectral images and vegetation indices for precision farming applications from UAV images. Remote sensing, 2015. 7(4): p. 4026-4047. 52. Szeliski, R., Computer vision: algorithms and applications. 2022: Springer Nature. 53. Goodfellow, I., Y. Bengio, and A. Courville, Deep learning. 2016: MIT press. 54. Lu, D. and Q. Weng, A survey of image classification methods and techniques for improving classification performance. International journal of Remote sensing, 2007. 28(5): p. 823-870. 55. O'Shea, K., and Ryan Nash., An Introduction to Convolutional Neural Networks. arXiv preprint, 2015. arXiv:1511.08458. 56. Simard, K.C.S.P.P., High Performance Convolutional Neural Networks for Document Processing, in Tenth International Workshop on Frontiers in Handwriting Recognition. 2006, Portail INRIA.HAL.SCIENCE: Université de Rennes 1, Oct 2006, La Baule (France). 57. He, K., X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition. in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016. 58. Xu, B., N. Wang, T. Chen, and M. Li, Empirical Evaluation of Rectified Activations in Convolutional Network. ArXiv, 2015. abs/1505.00853. 59. Hinton, G.E., N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, Improving neural networks by preventing co-adaptation of feature detectors. ArXiv, 2012. abs/1207.0580. 60. Simonyan, K. and A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition. CoRR, 2014. abs/1409.1556. 61. Zeiler, M.D. and R. Fergus. Visualizing and Understanding Convolutional Networks. 2014. Cham: Springer International Publishing. 62. Rawat, W. and Z. Wang, Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review. Neural Computation, 2017. 29(9): p. 2352-2449. 63. Nia, K.R. and G. Mori. Building Damage Assessment Using Deep Learning and Ground-Level Image Data. in 2017 14th Conference on Computer and Robot Vision (CRV). 2017. 64. Gupta, R., B. Goodman, N.N. Patel, R. Hosfelt, S. Sajeev, E.T. Heim, J. Doshi, K. Lucas, H. Choset, and M.E. Gaston. Creating xBD: A Dataset for Assessing Building Damage from Satellite Imagery. in CVPR Workshops. 2019. 65. Felzenszwalb, P.F., R.B. Girshick, D. McAllester, and D. Ramanan, Object Detection with Discriminatively Trained Part-Based Models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010. 32(9): p. 1627-1645. 66. Zhao, Z.Q., P. Zheng, S.T. Xu, and X. Wu, Object Detection With Deep Learning: A Review. IEEE Transactions on Neural Networks and Learning Systems, 2019. 30(11): p. 3212-3232. 67. Girshick, R., J. Donahue, T. Darrell, and J. Malik. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. in 2014 IEEE Conference on Computer Vision and Pattern Recognition. 2014. 68. Redmon, J., S. Divvala, R. Girshick, and A. Farhadi. You Only Look Once: Unified, Real-Time Object Detection. in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016. 69. Liu, W., D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A.C. Berg. SSD: Single Shot MultiBox Detector. in Computer Vision – ECCV 2016. 2016. Cham: Springer International Publishing. 70. Girshick, R. Fast R-CNN. in 2015 IEEE International Conference on Computer Vision (ICCV). 2015. 71. Ren, S., K. He, R. Girshick, and J. Sun, Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017. 39(06): p. 1137-1149. 72. Han, Q., Q. Yin, X. Zheng, and Z. Chen, Remote sensing image building detection method based on Mask R-CNN. Complex & Intelligent Systems, 2022. 8(3): p. 1847-1855. 73. Shi, L., F. Zhang, J. Xia, J. Xie, Z. Zhang, Z. Du, and R. Liu, Identifying Damaged Buildings in Aerial Images Using the Object Detection Method. Remote Sensing, 2021. 13(21): p. 4213. 74. Voigt, S., T. Schneiderhan, A. Twele, M. Gähler, E. Stein, and H. Mehl, Rapid damage assessment and situation mapping: learning from the 2010 Haiti earthquake. Photogrammetric Engineering and Remote Sensing (PE&RS), 2011. 77(9): p. 923-931. 75. Vu, T.T., M. Matsuoka, and F. Yamazaki, Detection and animation of damage using very high-resolution satellite data following the 2003 Bam, Iran, earthquake. Earthquake Spectra, 2005. 21(1_suppl): p. 319-327. 76. Pfeifer, N., P. Glira, and C. Briese, Direct georeferencing with on board navigation components of light weight UAV platforms. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci, 2012. 39(B7): p. 487-492. 77. Li, M., S. Zang, B. Zhang, S. Li, and C. Wu, A review of remote sensing image classification techniques: The role of spatio-contextual information. European Journal of Remote Sensing, 2014. 47(1): p. 389-411. 78. Fauvel, M., J.A. Benediktsson, J. Chanussot, and J.R. Sveinsson, Spectral and Spatial Classification of Hyperspectral Data Using SVMs and Morphological Profiles. IEEE Transactions on Geoscience and Remote Sensing, 2008. 46(11): p. 3804-3814. 79. LeCun, Y., Y. Bengio, and G. Hinton, Deep learning. Nature, 2015. 521(7553): p. 436-444. 80. He, H. and E.A. Garcia, Learning from Imbalanced Data. IEEE Transactions on Knowledge and Data Engineering, 2009. 21(9): p. 1263-1284. 81. Gao, Y., P. Zhai, and K.M. Mosalam, Balanced semisupervised generative adversarial network for damage assessment from low‐data imbalanced‐class regime. Computer‐Aided Civil and Infrastructure Engineering, 2021. 36: p. 1094 - 1113. 82. Leichtle, T., C. Geiß, T. Lakes, and H. Taubenböck, Class imbalance in unsupervised change detection – A diagnostic analysis from urban remote sensing. International Journal of Applied Earth Observation and Geoinformation, 2017. 60: p. 83-98. 83. Japkowicz, N. and S. Stephen, The class imbalance problem: A systematic study. Intelligent Data Analysis, 2002. 6: p. 429-449. 84. Shorten, C. and T.M. Khoshgoftaar, A survey on Image Data Augmentation for Deep Learning. Journal of Big Data, 2019. 6(1): p. 60. 85. Chawla, N., K. Bowyer, L.O. Hall, and W.P. Kegelmeyer, SMOTE: Synthetic Minority Over-sampling Technique. ArXiv, 2002. abs/1106.1813. 86. Taha, A.Y., S. Tiun, A.H.A. Rahman, and A. Sabah, Multilabel Over-sampling and Under-sampling with Class Alignment for Imbalanced Multilabel Text Classification. Journal of Information & Communication Technology, 2021. 20(3): p. 423-456. 87. Elkan, C., The Foundations of Cost-Sensitive Learning. Proceedings of the Seventeenth International Conference on Artificial Intelligence: 4-10 August 2001; Seattle, 2001. 1. 88. Breiman, L., Bagging predictors. Machine Learning, 1996. 24(2): p. 123-140. 89. Breiman, L., Bias, Variance , And Arcing Classifiers. Technical Report 460, Statistics Department, University of California, 2000. 90. Wolpert, D.H., Stacked generalization. Neural Networks, 1992. 5(2): p. 241-259. 91. Dietterich, T.G. Ensemble Methods in Machine Learning. in International Workshop on Multiple Classifier Systems. 2000. 92. Galar, M., A. Fernandez, E. Barrenechea, H. Bustince, and F. Herrera, A Review on Ensembles for the Class Imbalance Problem: Bagging-, Boosting-, and Hybrid-Based Approaches. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2012. 42(4): p. 463-484. 93. Cheng, C.S., A.H. Behzadan, and A. Noshadravan, Deep learning for post‐hurricane aerial damage assessment of buildings. Comput.-Aided Civ. Infrastruct. Eng., 2021. 36(6): p. 695–710. 94. Sagi, O. and L. Rokach, Ensemble learning: A survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2018. 8: p. e1249. 95. Zhou, Z.H., Ensemble Methods: Foundations and Algorithms. 2012: Taylor & Francis. 96. Breiman, L., Stacked regressions. Machine Learning, 1996. 24(1): p. 49-64. 97. Peiris, M.T.R., R.D. Jones, P.R. Davidson, and P.J. Bones. Detecting Behavioral Microsleeps from EEG Power Spectra. in 2006 International Conference of the IEEE Engineering in Medicine and Biology Society. 2006. 98. Bochkovskiy, A., C.-Y. Wang, and H.-Y.M. Liao, Yolov4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934, 2020. 99. Lin, T.-Y., P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie. Feature pyramid networks for object detection. in Proceedings of the IEEE conference on computer vision and pattern recognition. 2017. 100. Wu, W., H. Liu, L. Li, Y. Long, X. Wang, Z. Wang, J. Li, Y. Chang, and H. Lv, Application of local fully Convolutional Neural Network combined with YOLO v5 algorithm in small target detection of remote sensing image. PloS one., 2021. 16(10): p. e0259283. 101. Hu, J., L. Shen, and G. Sun. Squeeze-and-excitation networks. in Proceedings of the IEEE conference on computer vision and pattern recognition. 2018. 102. Ramachandran, P., B. Zoph, and Q.V. Le, Searching for activation functions. arXiv preprint arXiv:1710.05941, 2017. 103. Tan, M. and Q. Le. Efficientnet: Rethinking model scaling for convolutional neural networks. in International conference on machine learning. 2019. PMLR. 104. Friedman, J.H., Greedy function approximation: a gradient boosting machine. Annals of statistics, 2001: p. 1189-1232. 105. Pham, S.T., P.S. Vo, and D.N. Nguyen, Effective electrical submersible pump management using machine learning. Open Journal of Civil Engineering, 2021. 11(1): p. 70-80. 106. Zhu, X., J. Liang, and A. Hauptmann. MSNet: A Multilevel Instance Segmentation Network for Natural Disaster Damage Assessment in Aerial Videos. in 2021 IEEE Winter Conference on Applications of Computer Vision (WACV). 2021. 107. Cheng, C.-S., A.H. Behzadan, and A. Noshadravan, DoriaNET: A visual dataset from Hurricane Dorian for post-disaster building damage assessment. DesignSafe-CI, 2021. 108. Dwyer, B.N., J. (2022); Solawetz, J.; et. al., Roboflow. 2023. 109. Vrigazova, B., The proportion for splitting data into training and test set for the bootstrap in classification problems. Business Systems Research: International Journal of the Society for Advancing Innovation and Research in Economy, 2021. 12(1): p. 228-242. 110. Buda, M., A. Maki, and M.A. Mazurowski, A systematic study of the class imbalance problem in convolutional neural networks. Neural networks, 2018. 106: p. 249-259. 111. Perez, L. and J. Wang, The effectiveness of data augmentation in image classification using deep learning. arXiv preprint arXiv:1712.04621, 2017. 112. Lin, T.-Y., P. Goyal, R. Girshick, K. He, and P. Dollár. Focal loss for dense object detection. in Proceedings of the IEEE international conference on computer vision. 2017. 113. Huang, C., Y. Li, C.C. Loy, and X. Tang. Learning deep representation for imbalanced classification. in Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88217 | - |
| dc.description.abstract | 本研究探討了各種旨在使用無人機(Unmanned Aerial Vehicle)影像和機器學習來提升建築物損害分類的方法。以 YOLO 和 MobileNet作為基礎模型,我們提出並測試了一種創新的k1 k2重新加權方法,該方法旨在調整模型預測的類別分數並糾正分類錯誤。此研究還探究了使用元學習模型進行堆疊學習,以神經網絡和梯度提升機器模型為例,作為整合基礎模型優勢的一種方法。我們使用兩個不同的數據集,ISBDA 102和DoriaNet 216,來評估這些技術的有效性。
我們的調查強調了訓練數據多樣性對損害分類模型性能的重大影響。K1K2權重方法展示出了一些改進,但其局限性也變得明顯,並在某些錯誤類型條件和'Minor'和'Major'損害實例之間的比率分佈下顯得更為顯著。這一發現指出了需要更細緻的方法來解決預測錯誤。 我們探索了兩種類型的元學習者 - 僅具有三個隱藏層的神經網絡(Neural Network)和基礎的梯度提升機器模型(GBM)。這些元學習模型的性能在不同數據集之間產生變化。當他們在ISBDA 205上進行訓練並在ISBDA 102上進行測試時,我們觀察到了些微的性能上升和mAP分數的下降,這突出了多樣化和靈活的訓練數據的重要性。當在DoriaNet 216上進行測試時,我們還注意到了不同損害類別之間的精確度和召回率的權衡,這表明需要針對性的模型優化。 通過添加DoriaNet 55數據集,我們取得了顯著的改進,特別是元學習者在'Destroyed'建築物的分類上。對於K1K2權重方法,在大多數損害類別中,除了'Destroyed'類別,都有顯著的改善。這表明,適度增加訓練數據可以顯著提升預測準確性,強調了數據多樣性大於數量的重要性。 然而,我們還識別出K1K2權重方法的另一個局限性,主要關於被忽視的'Major'和'Destroyed'損害之間的關係。這導致在DoriaNet 216數據集上測試'Destroyed'預測的性能下降。 總的來說,這項研究強調了數據多樣性和先進的機器學習方法在提高損害分類準確性中的關鍵作用。它也強調了通過添加數據提高模型性能與保持計算效率之間的平衡。這些發現為進一步使用機器學習進行建築物損害分類的進步開闢了有希望的道路。 | zh_TW |
| dc.description.abstract | This research investigates various methods aimed at enhancing the classification of building damage using UAV (Unmanned Aerial Vehicle) imagery and machine learning methods. With YOLO and MobileNet as our base models, the study focuses on the application of the K1K2 reweighting methods and meta learners as tools to correct class prediction errors and improve model accuracy.
Our investigation highlighted the significant impact of training data diversity on the performance of damage classification models. The K1K2 reweighting method demonstrated some improvements, but its limitations became evident, proving more effective under certain error type conditions and ratio distributions between 'Minor' and 'Major' damage instances. This finding pointed to the need for a more nuanced approach to address prediction errors. We explored two types of meta learners—neural networks with only three hidden layers and basic Gradient Boosting Machines (GBM). The performance of these meta learners varied across different datasets. Moderate performance with a decline in mAP scores was observed when they were trained on ISBDA 205 and tested on ISBDA 102, underscoring the importance of diverse and versatile training data. A trade-off between precision and recall across different damage classes was also noted when testing on DoriaNet 216, indicating the need for targeted model optimization. Significant improvements were achieved with the addition of the DoriaNet 55 dataset, especially in the classification of 'Destroyed' buildings by meta learners. For K1K2 reweighting methods, a substantial improvement was evident across most damage classes, except for 'Destroyed'. This suggests that a moderate increase in training data can notably enhance prediction accuracy, emphasizing data diversity over quantity. However, another limitation of the K1K2 reweighting method was identified, mainly concerning the overlooked relationship between 'Major' and 'Destroyed' damages. This resulted in a decline in the performance of 'Destroyed' predictions when tested on the DoriaNet 216 dataset. In conclusion, this research underscores the critical role of data diversity and advanced machine learning methods in improving damage classification accuracy. It also stresses the balance between enhancing model performance through additional data and maintaining computational efficiency. The findings open up promising avenues for further advancements in the field of building damage classification using machine learning. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-08T16:49:36Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-08T16:49:36Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | ACKNOWLEDGEMENT I
摘要 II ABSTRACT IV CONTENTS VI LIST OF FIGURES X LIST OF TABLES XIII CHAPTER 1 INTRODUCTION 1 1.1 BACKGROUND 1 1.2 RESEARCH SCOPE AND OBJECTIVES 3 1.3 ORGANIZATION 4 CHAPTER 2 LITERATURE REVIEW 6 2.1 INTRODUCTION 6 2.2 DISASTER MANAGEMENT 8 2.3 REMOTE SENSING 11 2.3.1 Types of Remote Sensing Systems 11 2.3.2 Applications of Remote Sensing in Disaster Management 13 2.3.3 Using UAV as a Carrier for Remote Sensing 14 2.4 AUTOMATED BUILDING DAMAGE ASSESSMENT USING REMOTE SENSING IMAGERY AND COMPUTER VISION TECHNIQUES 17 2.4.1 Computer Vision Techniques 17 2.4.2 Advantages and Challenges 19 2.5 DATA IMBALANCE 21 2.6 ENSEMBLE STACKING 23 2.7 CONCLUDING REMARKS 24 CHAPTER 3 RESEARCH METHODOLOGY 25 3.1 INTRODUCTION 25 3.2 BASE MODELS 26 3.2.1 YOLO v5 26 3.2.2 MobileNet v3 27 3.3 K1 K2 REWEIGHTING METHOD 29 3.3.1 Scenarios of Inconsistent Predictions by Base Models 29 3.3.2 K1 K2 Reweighting 31 3.3.3 K1 K2 Reweighting Consider Probabilities of ‘Slight’ and ‘Severe’ 32 3.3.4 Data Visualization of K1 K2 Reweighting Methods 33 3.4 META LEARNERS 37 3.4.1 Gradient Boosting Machine 38 3.4.2 Neural Network 39 3.5 DATA 41 3.5.1 ISBDA Dataset 41 3.5.2 DoriaNet Dataset 42 3.5.3 Data Preprocessing 44 3.6 PERFORMANCE METRICS 54 3.6.1 True Positives (TP), False Positives (FP), and False Negatives (FN) 54 3.6.2 Intersection over Union (IoU) 55 3.6.3 Precision 55 3.6.4 Recall 56 3.6.5 F1 score 56 3.6.6 Confusion Matrix 57 3.6.7 Average Precision (AP) 58 3.6.8 Precision-Recall (PR) Curve 59 3.7 CONCLUDING REMARKS 60 CHAPTER 4 EXPERIMENTAL RESULTS AND DISCUSSION 62 4.1 INTRODUCTION 62 4.2 EXPERIMENTAL SETUP 63 4.3 PERFORMANCE OF BASE MODELS 65 4.3.1 YOLO v5 Performance 65 4.3.2 Comparison of Common Data Imbalance Solutions 76 4.3.3 MobileNet v3 Performance 86 4.4 K1 K2 REWEIGHTING IMPACT ON MODEL PERFORMANCE 92 4.4.1 K1 K2 Reweight 94 4.4.2 K1 K2 Reweight Considering Probabilities 102 4.4.3 Limitations of the K1 K2 Reweighting Methods 111 4.5 META LEARNERS CASE STUDY 1 (ISBDA 102) 117 4.6 META LEARNERS CASE STUDY 2 (DORIANET 216) 124 4.7 EXTENSION - ISBDA 205 + DORIANET 55 130 4.7.1 K1 K2 Reweighting Methods (K1 K2 Reweight & K1 K2 Reweight Considering Probabilities) 131 4.7.2 Meta Learners (Neural Network & Gradient Boosting Machine) 140 4.8 DISCUSSION OF RESULTS 146 4.9 CONCLUDING REMARKS 148 CHAPTER 5 CONCLUSION 149 5.1 CONCLUSION AND SUGGESTION 149 5.2 FUTURE RESEARCH 152 REFERENCE 153 | - |
| dc.language.iso | en | - |
| dc.subject | 梯度提升模型 | zh_TW |
| dc.subject | 建築損壞評估 | zh_TW |
| dc.subject | 無人機影像 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 類別不平衡 | zh_TW |
| dc.subject | k1 k2重新加權 | zh_TW |
| dc.subject | 元學習者 | zh_TW |
| dc.subject | 堆疊學習 | zh_TW |
| dc.subject | 神經網絡 | zh_TW |
| dc.subject | Deep Learning | en |
| dc.subject | Gradient Boosting Machine | en |
| dc.subject | Neural Network | en |
| dc.subject | Stacking Learning | en |
| dc.subject | Meta Learners | en |
| dc.subject | UAV Imagery | en |
| dc.subject | Machine Learning | en |
| dc.subject | k1 k2 reweighting | en |
| dc.subject | Class Imbalance | en |
| dc.subject | Building Damage Assessment | en |
| dc.title | 堆疊集成深度學習方法應用於建物災損影像辨識 | zh_TW |
| dc.title | A Stacking Ensemble Deep Learning Approach for Post Disaster Building Damage Assessment using UAV Imagery | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林之謙;吳日騰 | zh_TW |
| dc.contributor.oralexamcommittee | Jacob Lin;Rih-Teng Wu | en |
| dc.subject.keyword | 建築損壞評估,無人機影像,機器學習,深度學習,類別不平衡,k1 k2重新加權,元學習者,堆疊學習,神經網絡,梯度提升模型, | zh_TW |
| dc.subject.keyword | Building Damage Assessment,UAV Imagery,Machine Learning,Deep Learning,Class Imbalance,k1 k2 reweighting,Meta Learners,Stacking Learning,Neural Network,Gradient Boosting Machine, | en |
| dc.relation.page | 159 | - |
| dc.identifier.doi | 10.6342/NTU202301609 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-07-17 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 5.4 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
