Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88212
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳紀聖zh_TW
dc.contributor.advisorChi-Sheng Wuen
dc.contributor.author胡芮齊zh_TW
dc.contributor.authorJui-Chi Huen
dc.date.accessioned2023-08-08T16:48:16Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-08-
dc.date.issued2023-
dc.date.submitted2023-07-20-
dc.identifier.citationIEA (2022), Global Energy Review: CO2 Emissions in 2021, IEA, Paris 2021.
Olah, G.A., Beyond oil and gas: the methanol economy. Angewandte Chemie International Edition, 2005. 44(18): p. 2636-2639.
Din, I.U., M.S. Shaharun, M.A. Alotaibi, A.I. Alharthi and A. Naeem, Recent developments on heterogeneous catalytic CO2 reduction to methanol. Journal of CO2 Utilization, 2019. 34: p. 20-33.
Alper, E. and O.Y. Orhan, CO2 utilization: Developments in conversion processes. Petroleum, 2017. 3(1): p. 109-126.
Sollai, S., A. Porcu, V. Tola, F. Ferrara and A. Pettinau, Renewable methanol production from green hydrogen and captured CO2: A techno-economic assessment. Journal of CO2 Utilization, 2023. 68: p. 102345.
Liang, B., J. Ma, X. Su, C. Yang, H. Duan, H. Zhou, S. Deng, L. Li, and Y. Huang, Investigation on deactivation of Cu/ZnO/Al2O3 catalyst for CO2 hydrogenation to methanol. Industrial & Engineering Chemistry Research, 2019. 58(21): p. 9030-9037.
Prašnikar, A.e., A. Pavlišič, F. Ruiz-Zepeda, J. Kovač and B. Likozar, Mechanisms of copper-based catalyst deactivation during CO2 reduction to methanol. Industrial & Engineering Chemistry Research, 2019. 58(29): p. 13021-13029.
Behrens, M., F. Studt, I. Kasatkin, S. Kühl, M. Hävecker, F. Abild-Pedersen, S. Zander, F. Girgsdies, P. Kurr, B.-L. Kniep, M. Tovar, R.W. Fischer, J.K. Nørskov, and R. Schlögl, The Active Site of Methanol Synthesis over Cu/ZnO/Al2O3 Industrial Catalysts. Science, 2012. 336(6083): p. 893-897.
Arena, F., G. Italiano, K. Barbera, S. Bordiga, G. Bonura, L. Spadaro, and F. Frusteri, Solid-state interactions, adsorption sites and functionality of Cu-ZnO/ZrO2 catalysts in the CO2 hydrogenation to CH3OH. Applied Catalysis A: General, 2008. 350(1): p. 16-23.
Weigel, J., R. Koeppel, A. Baiker and A. Wokaun, Surface species in CO and CO2 hydrogenation over copper/zirconia: On the methanol synthesis mechanism. Langmuir, 1996. 12(22): p. 5319-5329.
Ud Din, I., M.S. Shaharun, D. Subbarao and A. Naeem. Homogeneous deposition precipitation method for synthesis of carbon nanofibre based Cu-ZrO2 catalyst for hydrogenation of CO2 to methanol. in Applied Mechanics and Materials. 2014. Trans Tech Publ.
Jiang, X., X. Nie, X. Guo, C. Song and J.G. Chen, Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis. Chemical Reviews, 2020. 120(15): p. 7984-8034.
Tang, C., S. Tang, F. Sha, Z. Han, Z. Feng, J. Wang, and C. Li, Insights into the Selectivity Determinant and Rate-Determining Step of CO2 Hydrogenation to Methanol. The Journal of Physical Chemistry C, 2022. 126(25): p. 10399-10407.
Grabow, L. and M. Mavrikakis, Mechanism of methanol synthesis on Cu through CO2 and CO hydrogenation. Acs Catalysis, 2011. 1(4): p. 365-384.
Chinchen, G.C., P. Denny, D. Parker, M. Spencer and D. Whan, Mechanism of methanol synthesis from CO2/CO/H2 mixtures over copper/zinc oxide/alumina catalysts: use of14C-labelled reactants. Applied Catalysis, 1987. 30(2): p. 333-338.
Kattel, S., P. Liu and J.G. Chen, Tuning selectivity of CO2 hydrogenation reactions at the metal/oxide interface. Journal of the American Chemical Society, 2017. 139(29): p. 9739-9754.
Gao, P., F. Li, H. Zhan, N. Zhao, F. Xiao, W. Wei, L. Zhong, H. Wang, and Y. Sun, Influence of Zr on the performance of Cu/Zn/Al/Zr catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol. Journal of catalysis, 2013. 298: p. 51-60.
Li, H.-X., L.-Q.-Q. Yang, Z.-Y. Chi, Y.-L. Zhang, X.-G. Li, Y.-L. He, T.R. Reina, and W.-D. Xiao, CO2 hydrogenation to methanol over Cu/ZnO/Al2O3 catalyst: kinetic modeling based on either single-or dual-active site mechanism. Catalysis Letters, 2022. 152(10): p. 3110-3124.
Rodriguez Herrero, Y. and A. Ullah, Hydrophobic Polyhedral Oligomeric Silsesquioxane Support Enhanced Methanol Production from CO2 Hydrogenation. ACS Applied Materials & Interfaces, 2023.
Graaf, G.H., E. Stamhuis and A. Beenackers, Kinetics of low-pressure methanol synthesis. Chemical Engineering Science, 1988. 43(12): p. 3185-3195.
Bussche, K.V. and G.F. Froment, A steady-state kinetic model for methanol synthesis and the water gas shift reaction on a commercial Cu/ZnO/Al2O3Catalyst. Journal of catalysis, 1996. 161(1): p. 1-10.
Slotboom, Y., M. Bos, J. Pieper, V. Vrieswijk, B. Likozar, S. Kersten, and D. Brilman, Critical assessment of steady-state kinetic models for the synthesis of methanol over an industrial Cu/ZnO/Al2O3 catalyst. Chemical Engineering Journal, 2020. 389: p. 124181.
Ma, H.-f., W.-y. Ying and D.-y. Fang, Study on methanol synthesis from coal-based syngas. Journal of Coal Science and Engineering (China), 2009. 15(1): p. 98-103.
Seidel, C., A. Jörke, B. Vollbrecht, A. Seidel-Morgenstern and A. Kienle, Kinetic modeling of methanol synthesis from renewable resources. Chemical Engineering Science, 2018. 175: p. 130-138.
Villa, P., P. Forzatti, G. Buzzi-Ferraris, G. Garone and I. Pasquon, Synthesis of alcohols from carbon oxides and hydrogen. 1. Kinetics of the low-pressure methanol synthesis. Industrial & engineering chemistry process design and development, 1985. 24(1): p. 12-19.
Li, C., X. Yuan and K. Fujimoto, Development of highly stable catalyst for methanol synthesis from carbon dioxide. Applied Catalysis A: General, 2014. 469: p. 306-311.
Lunkenbein, T., F. Girgsdies, T. Kandemir, N. Thomas, M. Behrens, R. Schlögl, and E. Frei, Bridging the time gap: a copper/zinc oxide/aluminum oxide catalyst for methanol synthesis studied under industrially relevant conditions and time scales. Angewandte Chemie International Edition, 2016. 55(41): p. 12708-12712.
Guil-López, R., N. Mota, J. Llorente, E. Millán, B. Pawelec, J.L.G. Fierro, and R. Navarro, Methanol synthesis from CO2: a review of the latest developments in heterogeneous catalysis. Materials, 2019. 12(23): p. 3902.
Köppel, R.A., C. Stöcker and A. Baiker, Copper-and silver–zirconia aerogels: preparation, structural properties and catalytic behavior in methanol synthesis from carbon dioxide. Journal of Catalysis, 1998. 179(2): p. 515-527.
Fujitani, T., M. Saito, Y. Kanai, M. Takeuchi, K. Moriya, T. Watanabe, M. Kawai, and T. Kakumoto, Methanol synthesis from CO2 and H2 over Cu/ZnO/Ga2O3 catalyst. Chemistry letters, 1993. 22(6): p. 1079-1080.
Kourtelesis, M., K. Kousi and D.I. Kondarides, CO2 hydrogenation to methanol over La2O3-promoted CuO/ZnO/Al2O3 catalysts: a kinetic and mechanistic study. Catalysts, 2020. 10(2): p. 183.
Hoang, T.T.N., Y.-S. Lin, T.N.H. Le, T.K. Le, T.K.X. Huynh, and D.-H. Tsai, Cu-ZnO@ Al2O3 hybrid nanoparticle with enhanced activity for catalytic CO2 conversion to methanol. Advanced Powder Technology, 2021. 32(5): p. 1785-1792.
Kamsuwan, T., C. Krutpijit, S. Praserthdam, S. Phatanasri, B. Jongsomjit, and P. Praserthdam, Comparative study on the effect of different copper loading on catalytic behaviors and activity of Cu/ZnO/Al2O3 catalysts toward CO and CO2 hydrogenation. Heliyon, 2021. 7(7): p. e07682.
Spencer, M., The role of zinc oxide in Cu/ZnO catalysts for methanol synthesis and the water–gas shift reaction. Topics in Catalysis, 1999. 8(3): p. 259-266.
Fujitani, T., T. Matsuda, Y. Kushida, S. Ogihara, T. Uchijima, and J. Nakamura, Creation of the active site for methanol synthesis on a Cu/SiO 2 catalyst. Catalysis letters, 1997. 49: p. 175-179.
Le Valant, A., C. Comminges, C. Tisseraud, C. Canaff, L. Pinard, and Y. Pouilloux, The Cu–ZnO synergy in methanol synthesis from CO2, Part 1: Origin of active site explained by experimental studies and a sphere contact quantification model on Cu+ ZnO mechanical mixtures. Journal of Catalysis, 2015. 324: p. 41-49.
Bowker, M., R. Hadden, H. Houghton, J. Hyland and K. Waugh, The mechanism of methanol synthesis on copper/zinc oxide/alumina catalysts. Journal of Catalysis, 1988. 109(2): p. 263-273.
Kattel, S., W. Yu, X. Yang, B. Yan, Y. Huang, W. Wan, P. Liu, and J.G. Chen, CO2 Hydrogenation over Oxide‐Supported PtCo Catalysts: The Role of the Oxide Support in Determining the Product Selectivity. Angewandte Chemie International Edition, 2016. 55(28): p. 7968-7973.
Zhang, W., M.M. Rahman, F. Ahmed, N.S. Lopa, C. Ge, T. Ryu, S. Yoon, L. Jin, H. Jang, and W. Kim, A two-step approach for improved exfoliation and cutting of boron nitride into boron nitride nanodisks with covalent functionalizations. Nanotechnology, 2020. 31(42): p. 425604.
Song, L., L. Ci, H. Lu, P.B. Sorokin, C. Jin, J. Ni, A.G. Kvashnin, D.G. Kvashnin, J. Lou, and B.I. Yakobson, Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano letters, 2010. 10(8): p. 3209-3215.
Zhang, K., Y. Feng, F. Wang, Z. Yang and J. Wang, Two dimensional hexagonal boron nitride (2D-hBN): synthesis, properties and applications. Journal of Materials Chemistry C, 2017. 5(46): p. 11992-12022.
Li, L.H., J. Cervenka, K. Watanabe, T. Taniguchi and Y. Chen, Strong oxidation resistance of atomically thin boron nitride nanosheets. ACS nano, 2014. 8(2): p. 1457-1462.
Pan, D., F. Su, H. Liu, Y. Ma, R. Das, Q. Hu, C. Liu, and Z. Guo, The properties and preparation methods of different boron nitride nanostructures and applications of related nanocomposites. The Chemical Record, 2020. 20(11): p. 1314-1337.
Weng, Q., X. Wang, X. Wang, Y. Bando and D. Golberg, Functionalized hexagonal boron nitride nanomaterials: emerging properties and applications. Chemical Society Reviews, 2016. 45(14): p. 3989-4012.
Zhi, C., Y. Bando, C. Tang, H. Kuwahara and D. Golberg, Large‐scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties. Advanced Materials, 2009. 21(28): p. 2889-2893.
Lin, Y., T.V. Williams, T.-B. Xu, W. Cao, H.E. Elsayed-Ali, and J.W. Connell, Aqueous dispersions of few-layered and monolayered hexagonal boron nitride nanosheets from sonication-assisted hydrolysis: critical role of water. The Journal of Physical Chemistry C, 2011. 115(6): p. 2679-2685.
Hummers Jr, W.S. and R.E. Offeman, Preparation of graphitic oxide. Journal of the american chemical society, 1958. 80(6): p. 1339-1339.
Chen, J., B. Yao, C. Li and G. Shi, An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon, 2013. 64: p. 225-229.
Yu, L., P.L. Yap, D.N. Tran, A.M. Santos and D. Losic, High-yield preparation of edge-functionalized and water dispersible few-layers of hexagonal boron nitride (hBN) by direct wet chemical exfoliation. Nanotechnology, 2021. 32(40): p. 405601.
Štengl, V., J. Henych, M. Slušná and P. Ecorchard, Ultrasound exfoliation of inorganic analogues of graphene. Nanoscale research letters, 2014. 9(1): p. 1-14.
Jedrzejczak-Silicka, M., M. Trukawka, M. Dudziak, K. Piotrowska and E. Mijowska, Hexagonal boron nitride functionalized with Au nanoparticles—properties and potential biological applications. Nanomaterials, 2018. 8(8): p. 605.
Wang, Y., W. Gao, K. Li, Y. Zheng, Z. Xie, W. Na, J.G. Chen, and H. Wang, Strong evidence of the role of H2O in affecting methanol selectivity from CO2 hydrogenation over Cu-ZnO-ZrO2. Chem, 2020. 6(2): p. 419-430.
Epp, J., X-ray diffraction (XRD) techniques for materials characterization, in Materials characterization using nondestructive evaluation (NDE) methods. 2016, Elsevier. p. 81-124.
Kwok, D.Y. and A.W. Neumann, Contact angle measurement and contact angle interpretation. Advances in colloid and interface science, 1999. 81(3): p. 167-249.
Williams, D.B. and C.B. Carter, The transmission electron microscope, in Transmission electron microscopy. 1996, Springer. p. 3-17.
Orellana, M., A. Nelson, J. Carey, G. Heo, D. Boychuk, and P. Major, Surface analysis of etched molar enamel by gas adsorption. Journal of dental research, 2008. 87(6): p. 532-536.
Huber, M.L. and A.H. Harvey, Thermal conductivity of gases. CRC Handbook of Chemistry and Physics, 2011. 92: p. 240-241.
Evans, J., M. Wainwright, A. Bridgewater and D. Young, On the determination of copper surface area by reaction with nitrous oxide. Applied Catalysis, 1983. 7(1): p. 75-83.
Guo, T., Q. Guo, S. Li, Y. Hu, S. Yun, and Y. Qian, Effect of surface basicity over the supported Cu-ZnO catalysts on hydrogenation of CO2 to methanol. Journal of Catalysis, 2022. 407: p. 312-321.
Andrade, J.D., X-ray photoelectron spectroscopy (XPS). Surface and interfacial aspects of biomedical polymers, 1985: p. 105-195.
Gorbachev, R.V., I. Riaz, R.R. Nair, R. Jalil, L. Britnell, B.D. Belle, E.W. Hill, K.S. Novoselov, K. Watanabe, and T. Taniguchi, Hunting for monolayer boron nitride: optical and Raman signatures. Small, 2011. 7(4): p. 465-468.
Kovalskii, A.M., I.N. Volkov, N.D. Evdokimenko, O.P. Tkachenko, D.V. Leybo, I.V. Chepkasov, Z.I. Popov, A.T. Matveev, A. Manakhov, and E.S. Permyakova, Hexagonal BN-and BNO-supported Au and Pt nanocatalysts in carbon monoxide oxidation and carbon dioxide hydrogenation reactions. Applied Catalysis B: Environmental, 2022. 303: p. 120891.
Kong, D., D. Zhang, H. Guo, J. Zhao, Z. Wang, H. Hu, J. Xu, and C. Fu, Functionalized boron nitride nanosheets/poly (L-lactide) nanocomposites and their crystallization behavior. Polymers, 2019. 11(3): p. 440.
Dong, J., Q. Fu, H. Li, J. Xiao, B. Yang, B. Zhang, Y. Bai, T. Song, R. Zhang, and L. Gao, Reaction-induced strong metal–support interactions between metals and inert boron nitride nanosheets. Journal of the American Chemical Society, 2020. 142(40): p. 17167-17174.
Liao, Y., K. Tu, X. Han, L. Hu, J.W. Connell, Z. Chen, and Y. Lin, Oxidative etching of hexagonal boron nitride toward nanosheets with defined edges and holes. Scientific reports, 2015. 5(1): p. 1-12.
Gao, L., Q. Fu, M. Wei, Y. Zhu, Q. Liu, E. Crumlin, Z. Liu, and X. Bao, Enhanced nickel-catalyzed methanation confined under hexagonal boron nitride shells. ACS Catalysis, 2016. 6(10): p. 6814-6822.
Kumar Verma, A. and A. Govind Rajan, Surface Roughness Explains the Observed Water Contact Angle and Slip Length on 2D Hexagonal Boron Nitride. Langmuir, 2022. 38(30): p. 9210-9220.
Li, X., H. Qiu, X. Liu, J. Yin and W. Guo, Wettability of supported monolayer hexagonal boron nitride in air. Advanced Functional Materials, 2017. 27(19): p. 1603181.
Guo, X., D. Mao, G. Lu, S. Wang and G. Wu, CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts prepared via a route of solid-state reaction. Catalysis communications, 2011. 12(12): p. 1095-1098.
Zhou, G., Z. He and X. Dong, Role of Metal Oxides in Cu-Based Catalysts with NaBH4 Reduction for the Synthesis of Methanol from CO2/H2. Catalysis Letters, 2021. 151(4): p. 1091-1101.
Marcos, F.C., R.S. Alvim, L. Lin, L.E. Betancourt, D.D. Petrolini, S.D. Senanayake, R.M. Alves, J.M. Assaf, J.A. Rodriguez, and R. Giudici, The role of copper crystallization and segregation toward enhanced methanol synthesis via CO2 hydrogenation over CuZrO2 catalysts: A combined experimental and computational study. Chemical Engineering Journal, 2023. 452: p. 139519.
Gao, P., F. Li, N. Zhao, F. Xiao, W. Wei, L. Zhong, and Y. Sun, Influence of modifier (Mn, La, Ce, Zr and Y) on the performance of Cu/Zn/Al catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol. Applied Catalysis A: General, 2013. 468: p. 442-452.
Wang, S., J. Yang, S. Wang, F. Xiao and N. Zhao, Effect of Preparation Method on the Performance of Cu− Mn−(La)− Zr Catalysts for CO2 Hydrogenation to Methanol. ChemCatChem, 2022: p. e202200957.
Chen, X., H. Abdullah and D.-H. Kuo, CuMnOS nanoflowers with different Cu+/Cu2+ ratios for the CO2-to-CH3OH and the CH3OH-to-H2 redox reactions. Scientific Reports, 2017. 7(1): p. 1-12.
Ye, J., C. Liu, D. Mei and Q. Ge, Active oxygen vacancy site for methanol synthesis from CO2 hydrogenation on In2O3 (110): a DFT study. ACS Catalysis, 2013. 3(6): p. 1296-1306.
Wang, Y., S. Kattel, W. Gao, K. Li, P. Liu, J.G. Chen, and H. Wang, Exploring the ternary interactions in Cu–ZnO–ZrO2 catalysts for efficient CO2 hydrogenation to methanol. Nature communications, 2019. 10(1): p. 1166.
Bao, J., G. Yang, Y. Yoneyama and N. Tsubaki, Significant advances in C1 catalysis: highly efficient catalysts and catalytic reactions. Acs Catalysis, 2019. 9(4): p. 3026-3053.
Ye, H., W. Na, W. Gao and H. Wang, Carbon‐Modified CuO/ZnO Catalyst with High Oxygen Vacancy for CO2 Hydrogenation to Methanol. Energy Technology, 2020. 8(6): p. 2000194.
Bagus, P.S., C.J. Nelin, Y. Al-Salik, E.S. Ilton and H. Idriss, Multiplet splitting for the XPS of heavy elements: Dependence on oxidation state. Surface Science, 2016. 643: p. 142-149.
Arena, F., K. Barbera, G. Italiano, G. Bonura, L. Spadaro, and F. Frusteri, Synthesis, characterization and activity pattern of Cu–ZnO/ZrO2 catalysts in the hydrogenation of carbon dioxide to methanol. Journal of Catalysis, 2007. 249(2): p. 185-194.
Dasireddy, V.D. and B. Likozar, The role of copper oxidation state in Cu/ZnO/Al2O3 catalysts in CO2 hydrogenation and methanol productivity. Renewable Energy, 2019. 140: p. 452-460.
Liu, X.-M., G. Lu and Z.-F. Yan, Nanocrystalline zirconia as catalyst support in methanol synthesis. Applied Catalysis A: General, 2005. 279(1-2): p. 241-245.
Dong, X., F. Li, N. Zhao, F. Xiao, J. Wang, and Y. Tan, CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts prepared by precipitation-reduction method. Applied Catalysis B: Environmental, 2016. 191: p. 8-17.
Natesakhawat, S., J.W. Lekse, J.P. Baltrus, P.R. Ohodnicki Jr, B.H. Howard, X. Deng, and C. Matranga, Active sites and structure–activity relationships of copper-based catalysts for carbon dioxide hydrogenation to methanol. ACS Catalysis, 2012. 2(8): p. 1667-1676.
Chen, H., H. Cui, Y. Lv, P. Liu, F. Hao, and W. Xiong, CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts: Effects of ZnO morphology and oxygen vacancy. Fuel, 2022. 314: p. 123035.
Avgouropoulos, G. and T. Ioannides, Selective CO oxidation over CuO-CeO2 catalysts prepared via the urea–nitrate combustion method. Applied Catalysis A: General, 2003. 244(1): p. 155-167.
Yang, Y., J. Evans, J.A. Rodriguez, M.G. White and P. Liu, Fundamental studies of methanol synthesis from CO 2 hydrogenation on Cu (111), Cu clusters, and Cu/ZnO (0001 [combining macron]). Physical Chemistry Chemical Physics, 2010. 12(33): p. 9909-9917.
Marcos, F.C., L. Lin, L.E. Betancourt, S.D. Senanayake, J.A. Rodriguez, J.M. Assaf, R. Giudici, and E.M. Assaf, Insights into the methanol synthesis mechanism via CO2 hydrogenation over Cu-ZnO-ZrO2 catalysts: Effects of surfactant/Cu-Zn-Zr molar ratio. Journal of CO2 Utilization, 2020. 41: p. 101215.
Arena, F., G. Mezzatesta, G. Zafarana, G. Trunfio, F. Frusteri, and L. Spadaro, How oxide carriers control the catalytic functionality of the Cu–ZnO system in the hydrogenation of CO2 to methanol. Catalysis today, 2013. 210: p. 39-46.
Bansode, A. and A. Urakawa, Towards full one-pass conversion of carbon dioxide to methanol and methanol-derived products. Journal of Catalysis, 2014. 309: p. 66-70.
Shen, W.-J., K.-W. Jun, H.-S. Choi and K.-W. Lee, Thermodynamic investigation of methanol and dimethyl ether synthesis from CO 2 hydrogenation. Korean Journal of Chemical Engineering, 2000. 17: p. 210-216.
Kim, J.-S., S.-B. Lee, M.-C. Kang, K.-W. Lee, M.-J. Choi, and Y. Kang, Promotion of CO 2 hydrogenation to hydrocarbons in three-phase catalytic (Fe-Cu-K-Al) slurry reactors. Korean Journal of Chemical Engineering, 2003. 20: p. 967-972.
Bukhtiyarova, M., T. Lunkenbein, K. Kähler and R. Schlögl, Methanol synthesis from industrial CO 2 sources: a contribution to chemical energy conversion. Catalysis Letters, 2017. 147: p. 416-427.
Din, I.U., M.S. Shaharun, A. Naeem, M.A. Alotaibi, A.I. Alharthi, and Q. Nasir, CO2 conversion to methanol over novel carbon nanofiber-based Cu/ZrO2 catalysts—a kinetics study. Catalysts, 2020. 10(5): p. 567.
Portha, J.-F., K. Parkhomenko, K. Kobl, A.-C. Roger, S. Arab, J.-M. Commenge, and L. Falk, Kinetics of methanol synthesis from carbon dioxide hydrogenation over copper–zinc oxide catalysts. Industrial & Engineering Chemistry Research, 2017. 56(45): p. 13133-13145.
Manrique, R., R. Jiménez, J. Rodríguez-Pereira, V.G. Baldovino-Medrano and A. Karelovic, Insights into the role of Zn and Ga in the hydrogenation of CO2 to methanol over Pd. International Journal of Hydrogen Energy, 2019. 44(31): p. 16526-16536.
Ota, A., E.L. Kunkes, I. Kasatkin, E. Groppo, D. Ferri, B. Poceiro, R.M.N. Yerga, and M. Behrens, Comparative study of hydrotalcite-derived supported Pd2Ga and PdZn intermetallic nanoparticles as methanol synthesis and methanol steam reforming catalysts. Journal of catalysis, 2012. 293: p. 27-38.
Frei, M.S., C. Mondelli, R. García-Muelas, K.S. Kley, B. Puértolas, N. López, O.V. Safonova, J.A. Stewart, D. Curulla Ferré, and J. Pérez-Ramírez, Atomic-scale engineering of indium oxide promotion by palladium for methanol production via CO2 hydrogenation. Nature communications, 2019. 10(1): p. 3377.
Graaf, G.H., H. Scholtens, E. Stamhuis and A. Beenackers, Intra-particle diffusion limitations in low-pressure methanol synthesis. Chemical Engineering Science, 1990. 45(4): p. 773-783.
Froment, G.F., K.B. Bischoff and J. De Wilde, Chemical reactor analysis and design. Vol. 2. 1990: Wiley New York.
Ren, H., C.-H. Xu, H.-Y. Zhao, Y.-X. Wang, J. Liu, and J.-Y. Liu, Methanol synthesis from CO2 hydrogenation over Cu/γ-Al2O3 catalysts modified by ZnO, ZrO2 and MgO. Journal of Industrial and Engineering Chemistry, 2015. 28: p. 261-267.
Larmier, K., W.C. Liao, S. Tada, E. Lam, R. Verel, A. Bansode, A. Urakawa, A. Comas‐Vives, and C. Copéret, CO2‐to‐methanol hydrogenation on zirconia‐supported copper nanoparticles: reaction intermediates and the role of the metal–support interface. Angewandte Chemie International Edition, 2017. 56(9): p. 2318-2323.
Studt, F., I. Sharafutdinov, F. Abild-Pedersen, C.F. Elkjær, J.S. Hummelshøj, S. Dahl, I. Chorkendorff, and J.K. Nørskov, Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. Nature chemistry, 2014. 6(4): p. 320-324.
Liang, X.-L., X. Dong, G.-D. Lin and H.-B. Zhang, Carbon nanotube-supported Pd–ZnO catalyst for hydrogenation of CO2 to methanol. Applied Catalysis B: Environmental, 2009. 88(3-4): p. 315-322.
Sun, K., Z. Fan, J. Ye, J. Yan, Q. Ge, Y. Li, W. He, W. Yang, and C.-j. Liu, Hydrogenation of CO2 to methanol over In2O3 catalyst. Journal of CO2 Utilization, 2015. 12: p. 1-6.
Wang, G., L. Chen, Y. Sun, J. Wu, M. Fu, and D. Ye, Carbon dioxide hydrogenation to methanol over Cu/ZrO 2/CNTs: effect of carbon surface chemistry. RSC Advances, 2015. 5(56): p. 45320-45330.
Zhang, Z., C. Shen, K. Sun and C.-J. Liu, Improvement in the activity of Ni/In2O3 with the addition of ZrO2 for CO2 hydrogenation to methanol. Catalysis Communications, 2022. 162: p. 106386.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88212-
dc.description.abstract甲醇(CH3OH)是工業上廣泛使用的化學原料之一。由於它擁有高的氫碳比,並且在常溫下是以液態存在,因此在文獻中常被討論作為氫能載體。二氧化碳氫化產甲醇不僅可以將氫氣儲存為甲醇,又可以達到二氧化碳再利用的目的,是近年來備受矚目的研究之一。工業上生產甲醇是以合成氣作為原料,並使用Cu/ZnO/Al2O3觸媒,但是由於熱力學限制,此反應傾向在高壓(5-10 MPa)的環境下操作。再者,反應過程中水是不可避免的副產物,然而水的產生不僅會抑制甲醇的選擇率,還會加速Cu的氧化和ZnO的聚集而使觸媒失活。
本研究旨在探討以疏水性材料六方氮化硼(h-BN)作為銅鋅觸媒的載體,進行二氧化碳氫化反應產甲醇。h-BN會先利用超音波處理或modified Hummers’ method進行前處理以增加金屬的附著度,再將銅、鋅等金屬以沉積-沉澱法擔載於h-BN上。我們設計了不同的方法和合成參數,討論不同的 h-BN 前處理方法、觸媒合成方法、金屬擔載量和促進劑種類對觸媒活性的影響。催化反應在 230 oC 和 1.0 MPa下進行。結果顯示,相較於商用觸媒,所有以h-BN為載體的觸媒均表現出較高的甲醇選擇性,並且在本研究中40 wt% Cu/ZnO/La2O3加上 0.3 mol% Mg 擔載在經modified Hummers’ method修飾的 h-BN 上表現出最高的觸媒活性。在200 oC、1.0 MPa下,甲醇時空產率達到105 mgMeOH/gcat/hr。本研究應用XRD、SEM、EDS、H2-TPR、CO2-TPD、XPS和接觸角等儀器對觸媒物性進行量測,討論對活性測試結果的影響。並根據不同反應條件下的結果進行了反應動力學擬合分析。此外,我們還在工研院進行高壓反應測試,已確認了觸媒在高壓環境下有更佳的表現,以利於後續對於h-BN觸媒的開發。
zh_TW
dc.description.abstractMethanol (CH3OH) is widely used for industrial purposes as a common chemical feedstock. Because of its high hydrogen-to-carbon ratio and being liquid under ambient conditions, methanol is widely recommended as hydrogen energy carrier in literature. CO2 hydrogenation to methanol not only stores hydrogen as methanol but also achieves the purpose of CO2 recycling. Industrially, Cu/ZnO/Al2O3 catalyst is used in CO2 hydrogenation to methanol, which needs to be operated under very high pressure (5-10 MPa) from the thermodynamic point of view. In addition, water, an inevitable by-product during the reaction, not only decreases the methanol selectivity but also promotes the oxidation of Cu and the aggregation of ZnO, resulting in the deactivation of the catalyst.
In this study, we used hydrophobic material, hexagonal boron nitride (h-BN), as the support of Cu/ZnO catalyst for CO2 hydrogenation to methanol. h-BN was pretreated by sonication or modified Hummers method to increase the adhesion of metal oxide. Cu/Zn metals were loaded on h-BN by the deposition-precipitation method. We designed different procedures and loading parameters to synthesize catalysts, including h-BN pretreatment method, catalyst synthesis method, metal loading, and promoter. The reaction was carried out at 230 oC and 1 MPa. The result indicated that all catalysts using h-BN as support showed higher methanol selectivity compared with those by Al2O3 support. We found that the catalyst using 40 wt% Cu/ZnO/La2O3 with 0.3 mol% Mg loaded on h-BN pretreated with modified Hummers’ method showed the highest activity in this study. The space-time yield of methanol reached 105 mgMeOH/gcat/hr at 1.0 MPa and 200 oC. The instruments XRD, SEM, EDS, H2-TPR, CO2-TPD, XPS, and contact angle were applied to evaluate the characteristics of catalysts and explain the activity test results. Chemical kinetic analysis was conducted based on the results obtained under different reaction conditions. Furthermore, a high-pressure reaction was carried out at the Industrial Technology Research Institute (ITRI) to confirm the excellent catalyst performance under industrial high-pressure operation, thus worth the further development of h-BN supported catalysts.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-08T16:48:16Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-08T16:48:16Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES ix
LIST OF TABLES xiii
第 1 章 緒論 1
1.1 前言 1
1.2 研究動機與目標 4
1.3 論文總覽 5
第 2 章 文獻回顧 6
2.1 二氧化碳氫化產甲醇 6
2.1.1 反應途徑 6
2.1.2 動力學模型 9
2.1.3 觸媒的失活 10
2.2 二氧化碳氫化產甲醇觸媒 11
2.2.1 銅基觸媒 11
2.2.2 混摻金屬 12
2.3 2D材料 13
2.3.1 六方氮化硼 (hexagonal boron nitrie, h-BN) 13
2.3.2 Hummers’ method 15
第 3 章 實驗方法 17
3.1 實驗方法實驗藥品與儀器設備介紹 17
3.1.1 實驗藥品 17
3.1.2 實驗氣體 19
3.1.3 儀器設備 20
3.2 觸媒製備 22
3.2.1 h-BN 前處理 22
3.2.2 沉積-沉澱法 (Deposition-precipitation method) 23
3.3 動力學分析 25
3.4 氣相層析儀 32
3.4.1 熱傳導式偵測器 (TCD) 32
3.4.2 火焰離子化檢測儀 (FID) 32
3.5 觸媒分析原理介紹 34
3.5.1 X光繞射儀 (X-ray Diffraction, XRD) 34
3.5.2 傅立葉轉換紅外線光譜儀(Fourier-transform infrared spectroscopy, FT-IR) 35
3.5.3 拉曼光譜儀 (Raman) 36
3.5.4 熱重分析儀 (Thermogravimetric analysis,TGA) 37
3.5.5 水接觸角 (Contact angle)量測儀 37
3.5.6 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 38
3.5.7 比表面積與孔洞分布測量儀 (N2 adsorption) 40
3.5.8 化學吸附儀 (Chemisorption Analyzers) 41
3.5.9 X射線光電子能譜儀 (X-ray photoelectron spectroscopy, XPS) 44
3.6 檢量線製作 46
3.6.1 二氧化碳檢量線 (GC-TCD) 46
3.6.2 一氧化碳檢量線 (GC-TCD) 47
3.6.3 氫氣檢量線 (GC-TCD) 48
3.6.4 甲醇檢量線 (GC-FID) 49
3.7 實驗儀器架設 50
3.7.1 壓力反應系統 50
3.8 工研院高壓測試 52
3.8.1 工研院反應系統 52
第 4 章 觸媒製備與鑑定 53
4.1 六方氮化硼之結構分析 53
4.1.1 h-BN之XRD分析 53
4.1.2 h-BN之FTIR & Raman分析 54
4.1.3 h-BN之XPS 分析 55
4.1.4 h-BN之SEM 分析 57
4.1.5 h-BN之H2-TPR & CO2-TPD 分析 58
4.2 XRD結晶繞射分析 59
4.3 熱重分析儀分析 63
4.4 水接觸角分析 64
4.5 掃描式電子顯微分析 65
4.6 BET 比表面積分析 71
4.7 H2-TPR & CO2-TPD分析 73
4.8 N2O-oxidation分析 80
4.9 X射線光電子能譜分析 81
第 5 章 結果與討論 96
5.1 不含觸媒之空白測試 96
5.2 促進劑之影響 96
5.3 金屬擔載比例之影響 99
5.4 h-BN對二氧化碳氫化反應影響 101
5.5 壓力、流速、進料比及溫度對氫化反應之影響 104
5.5.1 壓力 104
5.5.2 總流速(GHSV) 106
5.5.3 進料比(H2/CO2) 107
5.5.4 溫度 109
5.6 動力學擬合分析結果 112
5.7 工研院高壓測試結果 114
5.7.1 溫度、壓力的影響(ITRI) 114
5.7.2 GHSV的影響(ITRI) 116
5.7.3 與實驗室測試結果比較 118
5.8 文獻比較 121
第 6 章 結論與未來展望 123
參考文獻 125
Supporting Information 135
個人小傳 137

LIST OF FIGURES
Figure 1.1 1 CO2 emissions from energy combustion and industrial processes[1] 1
Figure 1.1 2 Conversion of methanol into ethylene (or propylene) [2] 3
Figure 2.1 1 Possible reaction pathways of CO2 hydrogenation to CO, CH3OH, and CH4. *(X) indicates adsorbed species [16] 7
Figure 2.1 2 Mechanism of methanol synthesis and the formate route.[19] 8
Figure 2.1 3 Overview of the experimental temperature and pressure ranges used for fitting the kinetic models[22] of Graaf et al.[20], Vanden Bussche and Froment[21], Ma et al.[23], Seidel et al.[24] and Villa et al.[25]. 10
Figure 2.3 1 Structure of h-BN 14
Figure 2.3 2 Summary of chemical functionalization strategies of h-BN[44] 15
Figure 2.3 3 Modified Hummers' Method Mechanism 16
Figure 3.2 1 Procedure of probe sonication 22
Figure 3.2 2 Procedure of modified Hummers’ method 23
Figure 3.2 3 Procedure of deposition-precipitation method 24
Figure 3.2 4 Procedure of Cu/ZnO catalyst synthesis 25
Figure 3.5 1 Illustration of diffraction of X-rays by a crystal. [53] 34
Figure 3.5 2 Schematic of a sessile-drop contact angle system.[54] 38
Figure 3.5 3 Signals generated when a high-energy beam of electrons 39
Figure 3.5 4 Schematic of the different states in the gas adsorption[56] 41
Figure 3.5 5 Schematic of the interaction of an X-ray photon 45
Figure 3.6 1 Calibration line of CO2 46
Figure 3.6 2 Calibration line of CO 47
Figure 3.6 3 Calibration line of H2 48
Figure 3.6 4 Calibration line of CH3OH 49
Figure 3.7 1 Experiment setup 50
Figure 4.1 1 XRD pattern of pristine hBN and h-BN_H 53
Figure 4.1 2 (a) Raman spectra of h-BN and h-BN_H 54
Figure 4.1 3 FTIR spectra of h-BN and h-BN_H 55
Figure 4.1 4 XPS survey scan pattern of h-BN & h-BN_H 56
Figure 4.1 5 XPS survey scan pattern of B 1s of h-BN_H 56
Figure 4.1 6 SEM images of the hBN structure 57
Figure 4.1 7 SEM images of the hBN(Hummers’) structure 57
Figure 4.1 8 H2-TPR profile of h-BN 58
Figure 4.1 9 CO2-TPD profile of h-BN 58
Figure 4.2 1 XRD pattern of different wt% 3MgCZLa loading on h-BN 59
Figure 4.2 2 XRD pattern of fresh 30wt% 3MgCZM-hBN (M = La, Ga, Zr, Al) 60
Figure 4.2 3 XRD pattern of fresh 40wt% 3MgCZLa-hBN (Hummers’, soni., Non.) 61
Figure 4.2 4 XRD pattern of H2 reduced different wt% 3MgCZLa loading on h-BN 61
Figure 4.2 5 XRD pattern of H2 reduced 62
Figure 4.2 6 XRD pattern of H2 reduced 62
Figure 4.3 1 TGA result of h-BN catalyst with different pretreatment 63
Figure 4.4 1 Contact angle of commercial catalyst 64
Figure 4.4 2 Contact angle of (a) 3MgCZLa, 64
Figure 4.5 1 SEM images of 40 wt% 3MgCZLa-hBN(Non.) 66
Figure 4.5 2 SEM images of 40 wt% 3MgCZLa-hBN(soni.) 66
Figure 4.5 3 SEM images of 40 wt% 3MgCZLa-hBN(Hummers’) 67
Figure 4.5 4 SEM image of 40 wt% 3MgCZLa-hBN(Hummers’) 67
Figure 4.5 5 SEM-EDS of 40 wt% 3MgCZLa-hBN(Non.) 69
Figure 4.5 6 SEM-EDS of 40 wt% 3MgCZLa-hBN(soni.) 70
Figure 4.5 7 SEM-EDS of 40 wt% 3MgCZLa-hBN(Hummers’) 70
Figure 4.7 1 H2-TPR profiles of 30wt% CZM-hBN (M = La, Ga, Zr, Al) 74
Figure 4.7 2 Sketch of the reduced catalysts 76
Figure 4.7 3 CO2-TPD profiles of 30wt% 3MgCZM-hBN 76
Figure 4.7 4 H2-TPR profiles of 40wt% 3MgCZLa-hBN 78
Figure 4.7 5 CO2-TPD profiles of 40wt% 3MgCZLa-hBN 79
Figure 4.9 1 XPS survey scan pattern of 82
Figure 4.9 2 XPS Cu 2p pattern of 30wt% 3MgCZM-hBN (M = La, Ga, Zr, Al) 83
Figure 4.9 3 XPS Zn 2p pattern of 30wt% 3MgCZM-hBN (M = La, Ga, Zr, Al) 84
Figure 4.9 4 XPS O 1s pattern of 30wt% 3MgCZM-hBN (M = La, Ga, Zr, Al) 85
Figure 4.9 5 XPS analysis of 30wt% 3MgCZM-hBN (M = La, Ga, Zr, Al) 86
Figure 4.9 6 XPS survey scan pattern of 40wt% 3MgCZLa-hBN 89
Figure 4.9 7 XPS Cu 2p pattern of 40wt% 3MgCZLa-hBN 90
Figure 4.9 8 XPS Cu LMM pattern of 40wt% 3MgCZLa-hBN 90
Figure 4.9 9 XPS Zn 2p pattern of 40wt% 3MgCZLa-hBN 91
Figure 4.9 10 XPS Zn LMM pattern of 40wt% 3MgCZLa-hBN 92
Figure 4.9 11 XPS O 1s pattern of 40wt% 3MgCZLa-hBN 93
Figure 4.9 12 XPS La 3d pattern of 40wt% 3MgCZLa-hBN 94
Figure 5.2 1 Time on stream of 3MgCZM loading on h-BN (M = Al、La、Ga、Zr) 97
Figure 5.2 2 3MgCZM loading on h-BN (M = Al、La、Ga、Zr) 97
Figure 5.2 3 The relationship between the CO2 conversion and 98
Figure 5.2 4 The relationship between the MeOH selectivity and the CO2-TPD proportion of basic sites γ 99
Figure 5.3 1 Time on stream of different wt% of 3MgCZLa 100
Figure 5.3 2 Different wt% of 3MgCZLa loading on sonicated h-BN 101
Figure 5.4 1 Time on stream of 30 wt% 3MgCZLa-hBN 103
Figure 5.4 2 Time on stream of 40 wt% 3MgCZLa-hBN 103
Figure 5.4 3 Performance of 30-40 wt% 3MgCZLa-hBN 104
Figure 5.5 1 Pressure effect on methanol STY of 40% 3MgCZLa(CP)-hBN(Hummers') 106
Figure 5.5 2 GHSV effect of 40% 3MgCZLa(CP)-hBN(Hummers') 107
Figure 5.5 3 Influence of inlet flow H2/CO2 ratio on 40% 3MgCZLa-hBN(Hummers') 108
Figure 5.5 4 Temperature effect on 40% 3MgCZLa-hBN(Hummers') 109
Figure 5.5 5 Arrhenius plot for CO2 hydrogenation to methanol and the RWGS reaction over 40% 3MgCZLa-hBN(Hummers') 112
Figure 5.6 1 Parity plot representing the accuracy of the parameter estimation for four outlet molar fraction. 113
Figure 5.7 1 Temperature and pressure effect on CO2 conversion in ITRI 115
Figure 5.7 2 Temperature and pressure effect on MeOH selectivity in ITRI 115
Figure 5.7 3 Temperature and pressure effect on space time yield in ITRI 116
Figure 5.7 4 GHSV effect on CO2 conversion in ITRI 117
Figure 5.7 5 GHSV effect on MeOH selectivity in ITRI 117
Figure 5.7 6 GHSV effect on space time yield in ITRI 118
Figure 5.7 7 Arrhenius plot for CO2 hydrogenation to methanol and the RWGS reaction in ITRI test 119

LIST OF TABLES
Table 1 1 Main chemicals products industrially produced from CO2 [4] 2
Table 3 1 Equilibrium constant of all the reactions[20] 28
Table 3 2 Adsorption constant from Graaf et al.[20] 29
Table 3 3 Kinetic constant of all the reactions[20] 30
Table 3 4 Thermal conductivity of different gases[57] 42
Table 4 1 BET surface area of different metal loading on h-BN 71
Table 4 2 BET surface area of different promoter 72
Table 4 3 BET surface area of h-BN and 72
Table 4 4 BET surface area of h-BN catalyst 73
Table 4 5 The H2-TPR results of 30wt% CZM-hBN (M = La, Ga, Zr, Al) 74
Table 4 6 The CO2-TPD results of 30wt% CZM-hBN (M = La, Ga, Zr, Al) 77
Table 4 7 The H2-TPR results of 40wt% 3MgCZLa-hBN (a) Non., (b) soni., (c) Hummers’ 78
Table 4 8 The CO2-TPD results of 40wt% 3MgCZLa-hBN (a) Non., (b) soni., (c) Hummers’ 80
Table 4 9 Textural properties of h-BN catalys with different pretreatment 81
Table 4 10 Oxygen vacancy ratio of the catalysts estimated by XPS. 85
Table 4 11 XPS parameters of 30wt% 3MgCZM-hBN (M = La, Ga, Zr, Al) 87
Table 4 12 Element composition of of 30wt% 3MgCZM-hBN (M = La, Ga, Zr, Al) calculated by XPS 88
Table 4 13 Surface atomic ratio of the catalysts estimated by XPS. 93
Table 4 14 XPS parameters of 40wt% 3MgCZLa-hBN catalyst 94
Table 4 15 Element composition of 40wt% 3MgCZLa-hBN calculated by XPS 95
Table 5 1 Catalyst performance under 1.0 MPa and atmosphere 105
Table 5 2 Activation energies of Cu-based catalysts in different reaction conditions.[3] 110
Table 5 3 Activation energies of methanol synthesis and RWGS reactions. 111
Table 5 4 Pre-exponential factor estimated by fitting 114
Table 5 5 Data of 40% 3MgCZLa-hBN(Hummers') in different system. 118
Table 5 6 Activation energies of 40% 3MgCZLa-hBN(Hummers') in different reaction conditions. 120
Table 5 7 Summary of catalytic performances in this study and literatures 121
-
dc.language.isozh_TW-
dc.subject疏水性zh_TW
dc.subject二氧化碳氫化zh_TW
dc.subject甲醇zh_TW
dc.subject氮化硼zh_TW
dc.subject銅鋅觸媒zh_TW
dc.subjectMethanolen
dc.subjectCO2 hydrogenationen
dc.subjectCu/ZnO catalysten
dc.subjectHydrophobicen
dc.subjectBoron Nitrideen
dc.title疏水性材料六方氮化硼擔載Cu/ZnO應用於二氧化碳氫化產甲醇zh_TW
dc.titleHydrophobic h-BN Supported Cu/ZnO for CO2 Hydrogenation to Methanolen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee雷敏宏;游文岳zh_TW
dc.contributor.oralexamcommitteeMin-Hon Rei;Wen-Yueh Yuen
dc.subject.keyword二氧化碳氫化,甲醇,氮化硼,疏水性,銅鋅觸媒,zh_TW
dc.subject.keywordCO2 hydrogenation,Methanol,Boron Nitride,Hydrophobic,Cu/ZnO catalyst,en
dc.relation.page137-
dc.identifier.doi10.6342/NTU202301646-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-07-21-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
dc.date.embargo-lift2028-07-17-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
8.2 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved