Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 獸醫學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88206
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王家琪zh_TW
dc.contributor.advisorChia-Chi Wangen
dc.contributor.author邱鈺雯zh_TW
dc.contributor.authorYu-Wen Chiuen
dc.date.accessioned2023-08-08T16:46:40Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-08-
dc.date.issued2023-
dc.date.submitted2023-07-24-
dc.identifier.citationAkdag Cayli Y, Sahin S, Buttini F, et al (2017) Dry powders for the inhalation of ciprofloxacin or levofloxacin combined with a mucolytic agent for cystic fibrosis patients. Drug Development and Industrial Pharmacy 43:1378–1389. https://doi.org/10.1080/03639045.2017.1318902
Anderson GP, Linden A, Rabe KF (1994) Why are long-acting beta-adrenoceptor agonists long-acting? European Respiratory Journal 7:569–578. https://doi.org/10.1183/09031936.94.07030569
Borchard G, Cassará ML, Roemelé PE, et al (2002) Transport and local metabolism of budesonide and fluticasone propionate in a human bronchial epithelial cell line (Calu‐3). Pharm Sci 91:1561–1567. https://doi.org/10.1002/jps.10151
Bosquillon C, Madlova M, Patel N, et al (2017) A Comparison of Drug Transport in Pulmonary Absorption Models: Isolated Perfused rat Lungs, Respiratory Epithelial Cell Lines and Primary Cell Culture. Pharm Res 34:2532–2540. https://doi.org/10.1007/s11095-017-2251-y
Breiman L (2001) Random forests. Machine learning 45:5–32. https://doi.org/10.1023/A:1010933404324
Brillault J, De Castro WV, Couet W (2010) Relative contributions of active mediated transport and passive diffusion of fluoroquinolones with various lipophilicities in a Calu-3 lung epithelial cell model. Antimicrobial agents and chemotherapy 54:543–545. https://doi.org/10.1128/AAC.00733-09
Chou C-Y, Lin P, Kim J, et al (2022) Ensemble learning for predicting ex vivo human placental barrier permeability. BMC Bioinformatics 22:629. https://doi.org/10.1186/s12859-022-04937-y
Cooper A, Potter T, Luker T (2010) Prediction of Efficacious Inhalation Lung Doses via the Use of In Silico Lung Retention Quantitative Structure-Activity Relationship Models and In Vitro Potency Screens. Drug Metab Dispos 38:2218–2225. https://doi.org/10.1124/dmd.110.034462
Edwards CD, Luscombe C, Eddershaw P, Hessel EM (2016) Development of a Novel Quantitative Structure-Activity Relationship Model to Accurately Predict Pulmonary Absorption and Replace Routine Use of the Isolated Perfused Respiring Rat Lung Model. Pharm Res 33:2604–2616. https://doi.org/10.1007/s11095-016-1983-4
Eixarch H, Haltner-Ukomadu E, Beisswenger C, Bock U (2010) Drug delivery to the lung: permeability and physicochemical characteristics of drugs as the basis for a pulmonary biopharmaceutical classification system (pBCS). Journal of Epithelial Biology & Pharmacology 3:1–14. https://doi.org/10.2174/18750443010030100001
Enoch SJ, Seed MJ, Roberts DW, et al (2012) Development of Mechanism-Based Structural Alerts for Respiratory Sensitization Hazard Identification. Chem Res Toxicol 25:2490–2498. https://doi.org/10.1021/tx3003092
Eriksson J (2021) Drug absorption in the lungs: studies in the isolated perfused rat lung model combined with physiologically based biopharmaceutics modelling. Acta Universitatis Upsaliensis
Eriksson J, Sjögren E, Lennernäs H, Thörn H (2020) Drug Absorption Parameters Obtained Using the Isolated Perfused Rat Lung Model Are Predictive of Rat In Vivo Lung Absorption. AAPS J 22:71. https://doi.org/10.1208/s12248-020-00456-x
Eriksson J, Sjögren E, Thörn H, et al (2018) Pulmonary absorption – estimation of effective pulmonary permeability and tissue retention of ten drugs using an ex vivo rat model and computational analysis. European Journal of Pharmaceutics and Biopharmaceutics 124:1–12. https://doi.org/10.1016/j.ejpb.2017.11.013
Faassen F, Kelder J, Lenders J, et al (2003) Physicochemical properties and transport of steroids across Caco-2 cells. Pharmaceutical research 20:177–186. https://doi.org/10.1023/a:1022210801734
Fisher A, Rudin C, Dominici F (2019) All Models are Wrong, but Many are Useful: Learning a Variable’s Importance by Studying an Entire Class of Prediction Models Simultaneously. Journal of Machine Learning Research 20:1–81. https://doi.org/10.48550/arXiv.1801.01489
Foster KA, Avery ML, Yazdanian M, Audus KL (2000) Characterization of the Calu-3 cell line as a tool to screen pulmonary drug delivery. International Journal of Pharmaceutics 208:1–11. https://doi.org/10.1016/S0378-5173(00)00452-X
Furubayashi T, Inoue D, Nishiyama N, et al (2020) Comparison of Various Cell Lines and Three-Dimensional Mucociliary Tissue Model Systems to Estimate Drug Permeability Using an In Vitro Transport Study to Predict Nasal Drug Absorption in Rats. Pharmaceutics 12:79. https://doi.org/10.3390/pharmaceutics12010079
Furubayashi T, Kamaguchi A, Kawaharada K, et al (2007) Evaluation of the contribution of the nasal cavity and gastrointestinal tract to drug absorption following nasal application to rats. Biol Pharm Bull 30:608–611. https://doi.org/10.1248/bpb.30.608
Geurts P, Ernst D, Wehenkel L (2006) Extremely randomized trees. Machine learning 63:3–42. https://doi.org/10.1007/s10994-006-6226-1
Golden E, Maertens M, Hartung T, Maertens A (2021) Mapping Chemical Respiratory Sensitization: How Useful Are Our Current Computational Tools? Chem Res Toxicol 34:473–482. https://doi.org/10.1021/acs.chemrestox.0c00320
Gonda I (2006) Systemic delivery of drugs to humans via inhalation. J Aerosol Med 19:47–53. https://doi.org/10.1089/jam.2006.19.47
Graham C, Rosenkranz HS, Karol MH (1997) Structure–Activity Model of Chemicals That Cause Human Respiratory Sensitization. Regulatory Toxicology and Pharmacology 26:296–306. https://doi.org/10.1006/rtph.1997.1170
Grainger CI, Greenwell LL, Lockley DJ, et al (2006) Culture of Calu-3 cells at the air interface provides a representative model of the airway epithelial barrier. Pharmaceutical research 23:1482–1490. https://doi.org/10.1007/s11095-006-0255-0
Guha R (2007) Chemical informatics functionality in R. Journal of Statistical Software 18:1–16. https://doi.org/10.18637/jss.v018.i05
Haghi M, Traini D, Bebawy M, Young PM (2012) Deposition, Diffusion and Transport Mechanism of Dry Powder Microparticulate Salbutamol, at the Respiratory Epithelia. Mol Pharmaceutics 9:1717–1726. https://doi.org/10.1021/mp200620m
Hombach J, Hoyer H, Bernkop-Schnürch A (2008) Thiolated chitosans: development and in vitro evaluation of an oral tobramycin sulphate delivery system. European Journal of Pharmaceutical Sciences 33:1–8. https://doi.org/10.1016/j.ejps.2007.09.001
Ibrahim M, Verma R, Garcia-Contreras L (2015) Inhalation drug delivery devices: technology update. Med Devices (Auckl) 8:131–139. https://doi.org/10.2147/MDER.S48888
Inoue D, Furubayashi T, Tanaka A, et al (2020) Quantitative estimation of drug permeation through nasal mucosa using in vitro membrane permeability across Calu-3 cell layers for predicting in vivo bioavailability after intranasal administration to rats. European Journal of Pharmaceutics and Biopharmaceutics 149:145–153. https://doi.org/10.1016/j.ejpb.2020.02.004
Jarc T, Novak M, Hevir N, et al (2019) Demonstrating suitability of the Caco-2 cell model for BCS-based biowaiver according to the recent FDA and ICH harmonised guidelines. Journal of Pharmacy and Pharmacology 71:1231–1242. https://doi.org/10.1111/jphp.13111
Jarvis J (2005) Relationship between chemical structure and the occupational asthma hazard of low molecular weight organic compounds. Occupational and Environmental Medicine 62:243–250. https://doi.org/10.1136/oem.2004.016402
Lalko JF, Kimber I, Gerberick GF, et al (2012) The Direct Peptide Reactivity Assay: Selectivity of Chemical Respiratory Allergens. Toxicological Sciences 129:421–431. https://doi.org/10.1093/toxsci/kfs205
Lanevskij K, Didziapetris R (2019) Physicochemical QSAR Analysis of Passive Permeability Across Caco-2 Monolayers. Journal of Pharmaceutical Sciences 108:78–86. https://doi.org/10.1016/j.xphs.2018.10.006
Lin H-L, Chiu Y-W, Wang C-C, Tung C-W (2022) Computational prediction of Calu-3-based in vitro pulmonary permeability of chemicals. Regulatory Toxicology and Pharmacology 135:105265. https://doi.org/10.1016/j.yrtph.2022.105265
Lötvall J (2002) The Long and Short of β2-agonists. Pulmonary Pharmacology & Therapeutics 15:497–501. https://doi.org/10.1006/pupt.2002.0400
Marchand S, Grégoire N, Brillault J, et al (2016) Biopharmaceutical characterization of nebulized antimicrobial agents in rats. 4. Aztreonam. Antimicrobial agents and chemotherapy 60:3196–3198. https://doi.org/10.1128/AAC.00165-16
Markowska M, Oberle R, Juzwin S, et al (2001) Optimizing Caco-2 cell monolayers to increase throughput in drug intestinal absorption analysis. Journal of pharmacological and toxicological methods 46:51–55. https://doi.org/10.1016/s1056-8719(01)00161-7
Mathias NR, Timoszyk J, Stetsko PI, et al (2002) Permeability Characteristics of Calu-3 Human Bronchial Epithelial Cells: In Vitro - In Vivo Correlation to Predict Lung Absorption in Rats. Journal of Drug Targeting 10:31–40. https://doi.org/10.1080/10611860290007504
Mukherjee M, Pritchard DI, Bosquillon C (2012) Evaluation of air-interfaced Calu-3 cell layers for investigation of inhaled drug interactions with organic cation transporters in vitro. Int J Pharm 426:7–14. https://doi.org/10.1016/j.ijpharm.2011.12.036
Newby D, Freitas AA, Ghafourian T (2015) Decision trees to characterise the roles of permeability and solubility on the prediction of oral absorption. European Journal of Medicinal Chemistry 90:751–765. https://doi.org/10.1016/j.ejmech.2014.12.006
Ong HX, Benaouda F, Traini D, et al (2014) In vitro and ex vivo methods predict the enhanced lung residence time of liposomal ciprofloxacin formulations for nebulisation. European Journal of Pharmaceutics and Biopharmaceutics 86:83–89. https://doi.org/10.1016/j.ejpb.2013.06.024
Panduga V, Stocks MJ, Bosquillon C (2017) Ipratropium is ‘luminally recycled’ by an inter-play between apical uptake and efflux transporters in Calu-3 bronchial epithelial cell layers. International Journal of Pharmaceutics 532:328–336. https://doi.org/10.1016/j.ijpharm.2017.08.112
Patel J, Pal D, Vangala V, et al (2002) Transport of HIV-protease inhibitors across 1α, 25di-hydroxy vitamin D3-treated Calu-3 cell monolayers: modulation of P-glycoprotein activity. Pharmaceutical research 19:1696–1703. https://doi.org/10.1023/a:1020761514471
Pham The H, González‐Álvarez I, Bermejo M, et al (2011) In silico prediction of Caco‐2 cell permeability by a classification QSAR approach. Molecular informatics 30:376–385
Pham-The H, Cabrera-Pérez MÁ, Nam N-H, et al (2018) In Silico Assessment of ADME Properties: Advances in Caco-2 Cell Monolayer Permeability Modeling. Current Topics in Medicinal Chemistry 18:2209–2229. https://doi.org/10.2174/1568026619666181130140350
Sakagami M (2020) In vitro, ex vivo and in vivo methods of lung absorption for inhaled drugs. Advanced Drug Delivery Reviews 161–162:63–74. https://doi.org/10.1016/j.addr.2020.07.025
Seed MJ, Enoch SJ, Agius RM (2015) Chemical determinants of occupational hypersensitivity pneumonitis. Occupational Medicine 65:673–681. https://doi.org/10.1093/occmed/kqv143
Selo MA, Sake JA, Kim K-J, Ehrhardt C (2021) In vitro and ex vivo models in inhalation biopharmaceutical research — advances, challenges and future perspectives. Advanced Drug Delivery Reviews 177:113862. https://doi.org/10.1016/j.addr.2021.113862
Sibinovska N, Žakelj S, Roškar R, Kristan K (2020) Suitability and functional characterization of two Calu-3 cell models for prediction of drug permeability across the airway epithelial barrier. International Journal of Pharmaceutics 585:119484. https://doi.org/10.1016/j.ijpharm.2020.119484
Simm J, Magrans De Abril I, Sugiyama M (2014) Tree-Based Ensemble Multi-Task Learning Method for Classification and Regression. IEICE Trans Inf & Syst E97.D:1677–1681. https://doi.org/10.1587/transinf.E97.D.1677
Simões RS, Maltarollo VG, Oliveira PR, Honorio KM (2018) Transfer and Multi-task Learning in QSAR Modeling: Advances and Challenges. Front Pharmacol 9:74. https://doi.org/10.3389/fphar.2018.00074
Ta GH, Jhang C-S, Weng C-F, Leong MK (2021) Development of a Hierarchical Support Vector Regression-Based In Silico Model for Caco-2 Permeability. Pharmaceutics 13:174. https://doi.org/10.3390/pharmaceutics13020174
Tronde A, Krondahl E, von Euler-Chelpin H, et al (2002) High airway-to-blood transport of an opioid tetrapeptide in the isolated rat lung after aerosol delivery. Peptides 23:469–478. https://doi.org/10.1016/S0196-9781(01)00624-6
Tronde A, Nordén B, Jeppsson A-B, et al (2003a) Drug Absorption from the Isolated Perfused Rat Lung–Correlations with Drug Physicochemical Properties and Epithelial Permeability. Journal of Drug Targeting 11:61–74. https://doi.org/10.1080/1061186031000086117
Tronde A, Nordén B o., Marchner H, et al (2003b) Pulmonary Absorption Rate and Bioavailability of Drugs in Vivo in Rats: Structure–Absorption Relationships and Physicochemical Profiling of Inhaled Drugs. Journal of Pharmaceutical Sciences 92:1216–1233. https://doi.org/10.1002/jps.10386
Veber DF, Johnson SR, Cheng H-Y, et al (2002) Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J Med Chem 45:2615–2623. https://doi.org/10.1021/jm020017n
Volpe DA (2004) Permeability classification of representative fluoroquinolones by a cell culture method. AAPS Pharmsci 6:1–6. https://doi.org/10.1208/ps060213
Wang S, Chow MSS, Zuo Z (2011) An approach for rapid development of nasal delivery of analgesics—Identification of relevant features, in vitro screening and in vivo verification. International Journal of Pharmaceutics 420:43–50. https://doi.org/10.1016/j.ijpharm.2011.08.019
Wenzel J, Matter H, Schmidt F (2019) Predictive Multitask Deep Neural Network Models for ADME-Tox Properties: Learning from Large Data Sets. J Chem Inf Model 59:1253–1268. https://doi.org/10.1021/acs.jcim.8b00785
Willighagen EL, Mayfield JW, Alvarsson J, et al (2017) The Chemistry Development Kit (CDK) v2.0: atom typing, depiction, molecular formulas, and substructure searching. J Cheminform 9:33. https://doi.org/10.1186/s13321-017-0220-4
Yap CW (2011) PaDEL‐descriptor: An open source software to calculate molecular descriptors and fingerprints. Journal of computational chemistry 32:1466–1474. https://doi.org/10.1002/jcc.21707
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88206-
dc.description.abstract肺吸收不管作為藥物傳遞或是潛在的毒物曝露都是很重要的途徑。而為了精簡藥物或化學物評估流程並順應減少動物實驗的趨勢,吸入性生物藥物學研究除了傳統的動物實驗之外,有越來越多不同的實驗模式系統被發展出來,包括體外實驗 (in vitro)、活體外實驗 (ex vivo) 和電腦模擬實驗 (in silico)。以細胞為實驗模式的體外實驗,其中Calu-3和Caco-2細胞穿透模型已常在肺穿透或肺吸收相關研究中被使用。活體外實驗模式則是以大鼠分離灌流肺 (isolated perfused lung, IPL) 模型研究為主。本研究以蒐集的IPL肺吸收速率常數 (absorption rate constant, ka) 資料、Caco-2細胞穿透係數 (apparent permeability coefficient, Papp) 資料和Calu-3細胞穿透係數資料來建構機器學習模型,利用三種不同實驗模式訓練資料建立多任務極限樹 (ExtraTrees) 模型。由實驗結果得知,與傳統單任務學習模型相比,訊練過程中加入了Caco-2和Calu-3相關任務的訓練資料,在遷移學習過程中獲得的資訊確實可以進一步幫助IPL吸收速率常數的預測。模型在特徵選擇中找出了7個重要的物化特性敘述子。獨立測試結果顯示模型表現良好,預測值和觀察值的皮爾森相關係數 (Pearson correlation coefficient) 達到0.84,為高度相關。此外,此機器學習模型也與公開文獻發表過現有的偏最小平方法 (partial least squares, PLS) 統計迴歸模型相比較並有更好的表現、易用性以及泛化能力。最後,本研究也使用此模型預測美國FDA核准之吸入性藥物進行個案研究,預測結果顯示用於局部治療藥物的長效型β2致效劑吸收速率較短效型慢;用在系統性全身麻醉的氣體麻醉劑吸收速率明顯較快,和臨床用途相符,進一步驗證此模型之準確性,第二個個案研究以本模型預測呼吸致敏物吸收速率,預測結果顯示呼吸致敏物於組織停留時間較久,此結果差異提供了快速篩選致敏物的可能性,後續可進一步驗證呼吸致敏物於組織穿透的差異性。本研究之模型架構將可隨著日後更多資料的產生與整合,可望作為藥物開發前期篩選吸入型藥物或評估潛在毒性化學物肺吸收的預測工具。zh_TW
dc.description.abstractPulmonary absorption is an important route for both drug delivery and toxic chemical exposure. Pulmonary inhalation biopharmaceutical research can be conducted with different model systems, including in vitro, ex vivo and in silico models. To streamline the drug or chemicals assessment process and to reduce animal experiments, various model systems thus have been developed. For example, Calu-3 and Caco-2 permeability cell models have been used in pulmonary permeability or absorption studies. Isolated perfused lung (IPL) ex vivo models which is usually conducted in rats can be used for measurements of pulmonary absorption. In this study, we developed a machine learning model that employed a tree-based multitask learning approach to predict IPL absorption rate constant (kaIPL) of various chemicals, combining the knowledge obtained from relevant tasks of Caco-2 and Calu-3 permeability. The results showed that the multitask learning architecture improved the prediction accuracy compared with single task learning. After feature selection, seven physicochemical descriptors were used to construct the final prediction model. The results show good performance of multitask learning with a high correlation between predictions and observations of logkaIPL (r = 0.84) in the independent test dataset. In addition, results show that our model has better performance, generalization ability and usability when compared with the existing partial least squares (PLS) model. This study also utilized this model to predict the absorption rates of FDA approved inhalation drugs and respiratory sensitizers for two case studies. The results show that the absorption rate of long-acting β2 agonists are slower than that of short-acting agonists, while the absorption rates of inhalational anesthetics are obviously faster, which are consistent with the clinical use and desirable property in general anesthesia. In the second case study, the prediction results show that there is an overall longer absorption time for sensitizers. The difference of the distributions can make the model be a potential screening tool to distinguish the relatively high-risk respiratory sensitizers. These results further verify the accuracy of the model and explore potential applications. With more available data and integration, the proposed model architecture may serve as a valuable tool to screen drug or chemical absorption of lung in the early stage drug development and toxic chemical assessment.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-08T16:46:40Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-08T16:46:40Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
謝辭 ii
摘要 iii
Abstract iv
Abbreviations vi
目錄 vii
圖目錄 viii
表目錄 ix
第一章 緒論 1
1.1 文獻回顧 1
1.2 研究目的與研究問題 4
第二章 材料與方法 6
2.1 資料集 6
2.2 研究流程 7
2.3 研究方法 10
第三章 研究結果與討論 16
3.1資料相關性 16
3.2多任務學習模型特徵選擇 19
3.3單任務與多任務學習之各模型表現 23
3.4 MTL模型預測結果 27
3.5 模型適用域 28
3.6 與參考文獻PLS模型比較 32
3.7 個案研究 – FDA核准之吸入劑型藥物 36
3.8 個案研究 – 呼吸致敏物與非呼吸致敏物 39
3.9 網頁工具開發 40
第四章 結論 42
參考文獻 44
附錄 50
-
dc.language.isozh_TW-
dc.subject肺吸收zh_TW
dc.subject機器學習zh_TW
dc.subject極限樹zh_TW
dc.subject多任務學習zh_TW
dc.subjectCalu-3人類肺腺癌細胞株zh_TW
dc.subjectCaco-2人類結腸癌細胞株zh_TW
dc.subject分離灌流肺模型zh_TW
dc.subjectCaco-2en
dc.subjectIsolated perfused lungen
dc.subjectMachine learningen
dc.subjectExtraTreesen
dc.subjectPulmonary absorptionen
dc.subjectMultitask learningen
dc.subjectCalu-3en
dc.title以多任務學習預測化學物於活體外實驗模式之肺吸收zh_TW
dc.titleMultitask learning for predicting ex vivo pulmonary absorption of chemicalsen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee童俊維;詹東榮;盧子彬zh_TW
dc.contributor.oralexamcommitteeChun-Wei Tung;Tong-Rong Jan;Tzu-Pin Luen
dc.subject.keyword肺吸收,分離灌流肺模型,Caco-2人類結腸癌細胞株,Calu-3人類肺腺癌細胞株,多任務學習,極限樹,機器學習,zh_TW
dc.subject.keywordIsolated perfused lung,Caco-2,Calu-3,Pulmonary absorption,Multitask learning,ExtraTrees,Machine learning,en
dc.relation.page63-
dc.identifier.doi10.6342/NTU202301682-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-07-24-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept獸醫學系-
顯示於系所單位:獸醫學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
2.09 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved