Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88201
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔣正偉zh_TW
dc.contributor.advisorCheng-Wei Chiangen
dc.contributor.author蘇雋爲zh_TW
dc.contributor.authorChun-Wei Suen
dc.date.accessioned2023-08-08T16:45:17Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-08-
dc.date.issued2023-
dc.date.submitted2023-07-07-
dc.identifier.citation[1] D. F. Freedman, Coherent Neutrino Nucleus Scattering as a Probe of the Weak Neutral Current, Phys. Rev. D 9 (1974) 1389. 2
[2] COHERENT collaboration, Observation of Coherent Elastic Neutrino-Nucleus Scattering, Science 357 (2017) 1123 [1708.01294]. 2
[3] COHERENT collaboration, Measurement of the Coherent Elastic Neutrino-Nucleus Scattering Cross Section on CsI by COHERENT, Phys. Rev. Lett. 129 (2022) 081801 [2110.07730]. 2, 21, 46, 47
[4] COHERENT collaboration, First Measurement of Coherent Elastic Neutrino-Nucleus Scattering on Argon, Phys. Rev. Lett. 126 (2021) 012002 [2003.10630]. 2, 21, 46
[5] P. Coloma, M. C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, COHERENT Enlightenment of the Neutrino Dark Side, Phys. Rev. D 96 (2017) 115007 [1708.02899]. 2
[6] J. Liao and D. Marfatia, COHERENT constraints on nonstandard neutrino interactions, Phys. Lett. B 775 (2017) 54 [1708.04255]. 2
[7] C. Giunt, General COHERENT constraints on neutrino nonstandard interactions, Phys. Rev. D 101 (2020) 035039 [1909.00466]. 2
[8] P. Coloma, I. Esteban, M. C. Gonzalez-Garcia and M. Malton, Improved global fit to Non-Standard neutrino Interactions using COHERENT energy and timing data, JHEP 02 (2020) 023 [1911.09109]. 2
[9] P. B. Denton and J. Gehrlein, A Statistical Analysis of the COHERENT Data and Applications to New Physics, JHEP 04 (2021) 266 [2008.06062]. 2
[10] A. N. Khan, D. W. McKay and W. Rodejohann, CP-violating and charged current neutrino nonstandard interactions in CEνNS, Phys. Rev. D 104 (2021) 015019 [2104.00425]. 2
[11] M. Hoferichter, J. Menendez and A. Schwenk, Coherent elastic neutrino-nucleus scattering: EFT analysis and nuclear responses, Phys. Rev. D 102 (2020) 074018 [2007.08529]. 2, 22, 23
[12] J. Liao, H. Liu and D. Marfatia, Implications of the first evidence for coherent elastic scattering of reactor neutrinos, Phys. Rev. D 106 (2022) L031702 [2202.10622]. 2
[13] M. Abdullah, H. Abele, D. Akimov, G. Angloher, D. Aristizabal Sierra, C. Augier et al., Coherent elastic neutrino-nucleus scattering: Terrestrial and astrophysical applications, 2203.07361. 2
[14] R. Calabrese, J. Gunn, G. Miele, S. Morisi, S. Roy and P. Santorelli, Constraining scalar leptoquarks using COHERENT data, Phys. Rev. D 107 (2023) 055039 [2212.11210]. 2
[15] D. K. Papoulias and T. S. Kosmas, COHERENT constraints to conventional and exotic neutrino physics, Phys. Rev. D 97 (2018) 033003 [1711.09773]. 2
[16] M. Abdullah, J. B. Dent, B. Dutta, G. L. Kane, S. Liao and L. E. Strigari, Coherent elastic neutrino nucleus scattering as a probe of a Z’ through kinetic and mass mixing effects, Phys. Rev. D 98 (2018) 015005 [1803.01224]. 2, 4
[17] P. B. Denton, Y. Farzan and I. M. Shoemaker, Testing large non-standard neutrino interactions with arbitrary mediator mass after COHERENT data, JHEP 07 (2018) 037 [1804.03660]. 2
[18] CONNIE collaboration, Search for light mediators in the low-energy data of the CONNIE reactor neutrino experiment, JHEP 04 (2020) 054 [1804.03660]. 2
[19] O. G. Miranda, D. K. Papoulias, G. Sanchez Garcia, O. Sanders, M. Tortola and J. W. F. Valle, Implications of the first detection of coherent elastic neutrino-nucleus scattering (CEvNS) with Liquid Argon, JHEP 05 (2020) 130 [2003.12050]. 2
[20] M. Cadeddu, N. Cargioli, F. Dordei, C. Giunti, Y. F. Li, E. Picciau et al., Constraints on light vector mediators through coherent elastic neutrino nucleus scattering data from COHERENT, JHEP 01 (2021) 116 [2008.05022]. 2, 4
[21] P. Coloma, M. C. Gonzalez-Garcia and M. Maltoni, Neutrino oscillation constraints on U(1)’ models: from non-standard interactions to long-range forces, JHEP 01 (2021) 114 [2009.14220]. 2
[22] L. M. G. de la Vega, L. J. Flores, N. Nath and E. Peinado, Complementarity between dark matter direct searches and CEνNS experiments in U(1)’ models, JHEP 09 (2021) 146 [2107.04037]. 2
[23] CONUS collaboration, Novel constraints on neutrino physics beyond the standard model from the CONUS experiment, JHEP 05 (2022) 085 [2110.02174]. 2
[24] P. Coloma, I. Esteban, M. C. Gonzalez-Garcia, L. Larizgoitia, F. Monrabal and S. Palomares-Ruiz, Bounds on new physics with data of the Dresden-II reactor experiment and COHERENT, JHEP 05 (2022) 037 [2202.10829]. 2
[25] M. Atzori Corona, M. Cadeddu, N. Cargioli, F. Dordei, C. Giunti, Y. F. Li et al., Probing light mediators and (g-2) through detection of coherent elastic neutrino nucleus scattering at COHERENT, JHEP 05 (2022) 109 [2202.11002]. 2, 4
[26] MUON G-2 collaboration, Final report of the E821 muon anomalous magnetic moment measurement at BNL, Phys. Rev. D 73 (2006) 072003 [0602035]. 2
[27] T. Aoyama, N. Asmussen, M. Benayoun, J. Bijnens, T. Blum, M. Bruno et al., The anomalous magnetic moment of the muon in the Standard Model, Phys. Rept. 887 (2020) 1 [2006.04822]. 2
[28] MUON G-2 collaboration, Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm, Phys. Rev. Lett. 126 (2021) 141801 [2104.03281]. 2
[29] C. H. Chen and T. Nomura, Lμ-Lτ gauge-boson production from lepton flavor violating τ decays at Belle II, Phys. Rev. D 96 (2017) 095023 [1704.04407]. 3
[30] HEAVY FLAVOR AVERAGING GROUP AND HFLAV collaboration, Averages of b-hadron, c-hadron, and τ -lepton properties as of 2021, Phys. Rev. D 107 (2023) 052008 [2206.07501]. 3
[31] LHCB collaboration, Measurement of the ratios of branching fractions R(D*) and R(D^0), 2302.02886. 3
[32] LHCB collaboration, Test of lepton flavour universality using B0 → D^{*-}τ+ν_τ decays with hadronic τ channels, 2305.01463. 3
[33] MILC collaboration, B→Dlν form factors at nonzero recoil and |Vcb| from 2+1-flavor lattice QCD, Phys. Rev. D 92 (2015) 034506 [1503.07237]. 3, 56
[34] HPQCD collaboration, B→Dlν form factors at nonzero recoil and |Vcb| from 2+1-flavor lattice QCD, Phys. Rev. D 92 (2015) 054510 [1505.03925]. 3, 56
[35] D. Bigi and P. Gambino, Revisiting B → Dlν, Phys. Rev. D 94 (2016) 094008 [1606.08030]. 3, 56
[36] F. U. Bernlochner, Z. Ligeti, M. Papucci and D. J. Robinson, Combined analysis of semileptonic B decays to D and D*: R(D^(*)), |Vcb|, and new physics, Phys. Rev. D 11 (2017) 115008 [1703.05330]. 3, 55, 56, 94, 95, 96
[37] S. Jaiswal, S. Nandi and S. K. Patra, Extraction of |Vcb| from B → D^(*)lνl and the Standard Model predictions of R(D^(*)), JHEP 12 (2017) 060 [1707.09977]. 3, 56
[38] BARBAR collaboration, Extraction of form Factors from a Four-Dimensional Angular Analysis of \bar{B} → D*l^-\bar{ν}_l, Phys. Rev. Lett. 123 (2019) 091801 [1903.10002]. 3, 56
[39] M. Bordone, M. Jung and D. van Dyk, Theory determination of \bar{B} → D^(*)l^-\bar{ν} form factors at O(1/m2c), Eur. Phys. J. C 80 (2020) 74 [1908.09398]. 3, 56
[40] G. Martinelli, S. Simula and L. Vittorio, |Vcb| and R(D^(*)) using lattice QCD and unitarity, Phys. Rev. D 105 (2022) 034503 [2105.08674]. 3, 56
[41] D. Becirevic, S. Fajfer, N. Kosnik and O. Sumensari, Leptoquark model to explain the B-physics anomalies, R_K and R_D, Phys. Rev. D 94 (2016) 115021 [1608.08501]. 3
[42] B. Bhattacharya, A. Datta, J. P. Guevin, D. London and R. Watanabe, Simultaneous Explanation of the R_K and R_{D(*)} Puzzles: a Model Analysis, JHEP 01 (2017) 015 [1609.09078]. 3
[43] A. Crivellin, J. Fuentes-Martin, A. Greljo and G. Isidori, Lepton Flavor Non-Universality in B decays from Dynamical Yukawas, Phys. Lett. B 766 (2017) 77 [1611.02703]. 3
[44] A. Crivellin, D. Muller and T. Ota, Simultaneous explanation of R(D^(*)) and b → sμ+μ-: the last scalar leptoquarks standing, JHEP 09 (2017) 040 [1703.09226]. 3
[45] C. H. Chen, T. Nomura and H. Okada, Excesses of muon g-2, R_{D(*)} , and R_K in a leptoquark model, Phys. Lett. B 774 (2017) 456 [1703.03251]. 3, 31
[46] C. H. Chen and T. Nomura, Penguin b → sl′^+l′^- and B-meson anomalies in a gauged Lμ-Lτ , Phys. Lett. B 777 (2018) 420 [1707.03249]. 3
[47] A. Crivellin, D. Muller and F. Saturnino, Flavor Phenomenology of the Leptoquark Singlet-Triplet Model, JHEP 06 (2020) 020 [1912.04224]. 3
[48] J. Heeck and A. Thapa, Explaining lepton-flavor non-universality and self-interacting dark matter with Lμ-Lτ , Eur. Phys. J. C 82 (2022) 480 [2202.08854]. 3
[49] LHCB collaboration, Measurement of the ratio of branching fractions B(Bc+ → J/ψτ+ντ)/B(Bc+ → J/ψμ+νμ),Phys.Rev.Lett.120(2018) 121801 [1711.05623]. 3
[50] LHCB collaboration, Observation of the decay Λ^0_b →Λ^+_cτ^-\bar{ν}_τ, Phys.Rev. Lett. 128 (2022) 191803 [2201.03497]. 3
[51] M. Fedele, M. Blanke, A. Crivellin, S. Iguro, T. Kitahara, U. Nierste et al., Impact of Λb→Λcτ ν measurement on new physics in b→clν transitions, Phys. Rev. D 107 (2023) 055005 [2211.14172]. 3
[52] J. Heeck and W. Rodejohann, Gauged Lμ-Lτ Symmetry at the Electroweak Scale, Phys. Rev. D 84 (2011) 075007 [1107.5238]. 3
[53] J. Heeck, M. Holthausen, W. Rodejohann and Y. Shimizu, Higgs →μτ in Abelian and non-Abelian flavor symmetry models, Nucl. Phys. B 896 (2015) 281 [1412.3671]. 3
[54] J. Heeck, Lepton flavor violation with light vector bosons, Phys. Lett. B 758 (2016) 101 [1602.03810]. 3
[55] CDF collaboration, High-precision measurement of the W boson mass with the CDF II detector, Science 376 (2022) 170. 3
[56] S. Heinemeyer, W. Hollik, G. Weiglein and L. Zeune, Implications of LHC search results on the W boson mass prediction in the MSSM, JHEP 12 (2013) 084 [1311.1663]. 4
[57] ATLAS collaboration, Improved W boson Mass Measurement using 7 TeV Proton-Proton Collisions with the ATLAS Detector, . 4
[58] CDF AND D0 collaboration, Combination of CDF and D0 W-Boson Mass Measurements, Phys. Rev. D 88 (2013) 052018 [1307.7627]. 4
[59] Y. Z. Fan, T. P. Tang, Y. L. S. Tsai and L. Wu, Inert Higgs Dark Matter for CDF II W-Boson Mass and Detection Prospects, Phys. Rev. Lett. 129 (2022) 091802 [2204.03693]. 4
[60] A. Strumia, Interpreting electroweak precision data including the W-mass CDF anomaly, JHEP 08 (2022) 248 [2204.04191]. 4
[61] E. Bagnaschi, J. Ellis, M. Madigan, K. Mimasu, V. Sanz and T. You, SMEFT analysis of mW , JHEP 08 (2022) 308 [2204.05260]. 4
[62] H. Bahl, J. Braathen and G. Weiglein, New physics effects on the W-boson mass from a doublet extension of the SM Higgs sector, Phys. Lett. B 833 (2022) 137295 [2204.05269]. 4
[63] Y. Cheng, X. G. He, Z. L. Huang and M. W. Li, Type-II seesaw triplet scalar effects on neutrino trident scattering, Phys. Lett. B 831 (2022) 137218 [2204.05031]. 4
[64] P. Asadi, C. Cesarotti, K. Fraser, S. Homiller and A. Parikh, Oblique Lessons from the W Mass Measurement at CDF IIs, 2204.05283. 4
[65] J. J. Heckman, Extra W-boson mass from a D3-brane, Phys. Lett. B 833 (2022) 137387 [2204.05302]. 4
[66] A. Crivellin, M. Kirk, T. Kitahara and F. Mescia, Large t→cZ as a sign of vectorlike quarks in light of the W mass, Phys. Rev. D 106 (2022) L031704 [2204.05962]. 4
[67] P. Fileviez Perez, H. H. Patel and A. D. Plascencia, On the W mass and new Higgs bosons, Phys. Lett. B 833 (2022) 137371 [2204.07144]. 4
[68] S. Kanemura and K. Yagyu, Implication of the W boson mass anomaly at CDF II in the Higgs triplet model with a mass difference, Phys. Lett. B 831 (2022) 137217 [2204.07511]. 4
[69] J. Kim, S. Lee, P. Sanyal and J. Song, CDF W-boson mass and muon g-2 in a type-X two-Higgs-doublet model with a Higgs-phobic light pseudoscalar, Phys. Rev. D 106 (2022) 035002 [2205.01701]. 4
[70] X. Q. Li, Z. J. Xie, Y. D. Yang and X. B. Yuan, Correlating the CDF W-boson mass shift with the b → sl^+l^- anomalies, 2205.02205. 4
[71] R. Dcruz and A. Thapa, W boson mass shift, dark matter and (g-2)l in ScotoZee model, 2205.02217. 4
[72] T. A. Chowdhury and S. Saad, Leptoquark-vectorlike quark model for the CDFmW,(g-2)μ,R_{K^(*)} anomalies,andneutrinomasses,Phys.Rev.D 106 (2022) 055017 [2205.03917]. 4
[73] J. Gao, D. Liu and K. Xie, Understanding PDF uncertainty on the W boson mass measurements in CT18 global analysis, 2205.03942. 4
[74] X. F. Han, F. Wang, L. Wang, J. M. Yang and Y. Zhang, Joint explanation of W-mass and muon g–2 in the 2HDM, Chin. Phys. C 46 (2022) 103105 [2204.06505]. 4
[75] Y. Cheng, X. G. He, F. Huang, J. Sun and Z. P. Xing, Electroweak precision tests for triplet scalars, 2208.06760. 4
[76] T. Bandyopadhyay, A. Budhraja, S. Mukherjee and T. S. Roy, A twisted tale of the transverse-mass tail, 2212.02534. 4
[77] C. H. Chen, C. W. Chiang and C. W. Su, Top-quark FCNC decays, LFVs, lepton g-2, and W mass anomaly with inert charged Higgses, 2301.07070. 4
[78] S. Banerjee, Searches for Lepton Flavor Violation in Tau Decays at Belle II, Universe 8 (2022) 480 [2209.11639]. 5, 51, 60, 64
[79] A. Crivellin, C. Greub and A. Kokulu, Explaining B → Dτν, B → D*τν and B → τν in a 2HDM of type III, Phys. Rev. D 86 (2012) 054014 [1206.2634]. 7
[80] A. Crivellin, A. Kokulu and C. Greub, Flavor-phenomenology of two-Higgs-doublet models with generic Yukawa structure, Phys. Rev. D 87 (2013) 094031 [1303.5877]. 7
[81] A. Crivellin, J. Heeck and P. Stoffer, A perturbed lepton-specific two-Higgs-doublet model facing experimental hints for physics beyond the Standard Model, Phys. Rev. Lett. 116 (2016) 081801 [1507.07567]. 7
[82] C. H. Chen and T. Nomura, Charged-Higgs on R_{D(*)}, τ polarization, and FBA, Eur. Phys. J. C 77 (2017) 631 [1703.03646]. 7
[83] A. G. Akeroyd and C. H. Chen, Constraint on the branching ratio of B_c → τ\bar{ν} from LEP1 and consequences for R(D^(*)) anomaly, Phys. Rev. D 96 (2017) 075011 [1708.04072]. 7
[84] C. H. Chen and T. Nomura, Charged Higgs boson contribution to B_q^- → l\bar{ν} and \bar{B}→ (P, V )l\bar{ν} in a generic two-Higgs doublet model, Phys. Rev. D 98 (2018) 095007 [1803.00171]. 7
[85] G. C. Branco, P. M. Ferreira, L. Lavoura, M. N. Rebelo, M. Sher and J. P. Silva, Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [1106.0034]. 9, 12, 14
[86] K. G. Klimenko, On Necessary and Sufficient Conditions for Some Higgs Potentials to Be Bounded From Below, Theor. Math. Phys. 62 (1985) 58. 10
[87] K. Kannike, Vacuum Stability Conditions From Copositivity Criteria, Eur. Phys. J. C. 72 (2012) 2093 [1205.3781]. 10
[88] P. S. Barbeau, Y. Efremenko and K. Scholberg, COHERENT at the Spallation Neutron Source, 2111.07033. 22
[89] E. Bertuzzo, G. Grilli di Cortona and L. M. D. Ramos, Probing light vector mediators with coherent scattering at future facilities, JHEP 06 (2022) 075 [2112.04020]. 22
[90] D. Aristizabal Sierra, J. Liao and D. Marfatia, Impact of form factor uncertainties on interpretations of coherent elastic neutrino-nucleus scattering data, JHEP 06 (2019) 141 [1902.07398]. 22
[91] I. Dorsˇner, S. Fajfer, N. Kosnik and I. Nisandzic, Minimally flavored colored scalar in \bar{B}→ D^(*)τ\bar{ν} and the mass matrices constraints, JHEP 11 (2013) 084 [1306.6493]. 32
[92] M. E. Peskin and T. Takeuchi, A New constraint on a strongly interacting Higgs sector, Phys. Rev. Lett. 65 (1990) 964. 34
[93] M. E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381. 34, 39
[94] W. Grimus, L. Lavoura, O. M. Ogreid and P. Osland, A Precision constraint on multi-Higgs-doublet models, J. Phys. G 35 (2008) 075001 [0711.4022]. 35
[95] W. Grimus, L. Lavoura, O. M. Ogreid and P. Osland, The Oblique parameters in multi-Higgs-doublet models, Nucl. Phys. B 801 (2008) 81 [0802.4353]. 35, 37, 38, 39
[96] I. Maksymyk, C. P. Burgess and D. London, Beyond S, T and U, Phys. Rev. D 50 (1994) 529 [9306267]. 39
[97] C. P. Burgess, S. Godfrey, H. Konig, D. London and I. Maksymyk, Model independent global constraints on new physics, Phys. Rev. D 49 (1994) 6115 [9312291]. 39
[98] PARTICLE DATA GROUP collaboration, Review of Particle Physics, PTEP 2022 (2022) 083C01. 41, 42, 48, 56, 60
[99] LHC HIGGS CROSS SECTION WORKING GROUP collaboration, Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector, 1610.07922. 42
[100] W. Altmannshofer, S. Gori, M. Pospelov and I. Yavin, Neutrino Trident Production: A Powerful Probe of New Physics with Neutrino Beams, Phys. Rev. Lett. 113 (2014) 091801 [1406.2332]. 43
[101] CCFR collaboration, Neutrino tridents and W Z interference, Phys. Rev. Lett. 66 (1991) 3117. 43
[102] BARBAR collaboration, Search for a muonic dark force at BABAR, Phys. Rev. D. 94 (2016) 011102 [1606.03501]. 43
[103] BELLE-II collaboration, Search for Lepton-Flavor-Violating τ Decays to a Lepton and an Invisible Boson at Belle II, Phys. Rev. Lett. 130 (2023) 181803 [2212.03634]. 48
[104] J. de Blas, M. Pierini, L. Reina and L. Silvestrini, Impact of the Recent Measurements of the Top-Quark and W-Boson Masses on Electroweak Precision Fits, Phys. Rev. Lett. 129 (2022) 271801 [2204.04204]. 52
[105] L. Wolfenstein, Parametrization of the Kobayashi-Maskawa Matrix, Phys. Rev. Lett. 51 (1983) 1945. 54
[106] J. Charles et al., CP Violation and the CKM Matrix: Assessing the Impact of the Asymmetric B Factories, Eur. Phys. J. C 41 (2005) 1 [0406184]. 54
[107] A. Hocker et al., A New Approach to a Global Fit of the CKM Matrix, Eur. Phys. J. C 21 (2001) 225 [0104062]. 54
[108] CMS collaboration, Search for singly and pair-produced leptoquarks coupling to third-generation fermions in proton-proton collisions at √s=13 TeV, Phys. Lett. B 819 (2021) 136446 [2012.04178]. 55
[109] ATLAS collaboration, Search for pair production of third-generation scalar leptoquarks decaying into a top quark and a τ -lepton in pp collisions at √s = 13 TeV with the ATLAS detector, JHEP 06 (2021) 179 [2101.11582]. 55
[110] ATLAS collaboration, Search for invisible Higgs-boson decays in events with vector-boson fusion signatures using 139 fb^{-1} of proton-proton data recorded by the ATLAS experiment, JHEP 08 (2022) 104 [2202.07953]. 62
[111] I. Caprini, L. Lellouch and M. Neubert, Dispersive bounds on the shape of \bar{B}→ D^(*)l\bar{ν} form factors, Nucl. Phys. B 530 (1998) 153 [9712417]. 95
[112] M. Neubert, Renormalization of heavy quark currents, Nucl. Phys. B 371 (1992) 149. 96 [113] A. F. Falk and M. Neubert, Second order power corrections in the heavy quark effective theory. 1. Formalism and meson form factors, Phys. Rev. D 47 (1993) 2965 [9209268]. 96
[113] A. F. Falk and M. Neubert, Second order power corrections in the heavy quark effective theory. 1. Formalism and meson form factors, Phys. Rev. D 47 (1993) 2965 [9209268]. 96
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88201-
dc.description.abstract受近年來同調微中子-核子彈性散射實驗進展的啟發。因該過程是由百萬電子伏特能量級以下的動量傳遞所觸發,其對極輕的純量及向量玻色子作為傳遞粒子極為敏感。這使我們專注於一個標準模型的擴展,其中引入了 SU(3)_C×SU(2)_L×U(1)_Y× U(1)_{𝐿𝜇−𝐿𝜏} 規範對稱群。其相應的 U(1)_{𝐿𝜇−𝐿𝜏} 規範玻色子不僅用於解釋緲子的磁偶極矩異常,還可作為參與同調微中子-核子彈性散射的潛在候選者,以至於能透過此過程來探尋其蹤跡。此外,我們還進一步考慮帶有 U(1)_{𝐿𝜇−𝐿𝜏} 規範的雙希格斯二重態模型,不僅透過非零真空期望值引入 U(1)_{𝐿𝜇−𝐿𝜏} 規範玻色子的質量,還可影響三個傾斜參數 S, T, U。因此,U(1)_{𝐿𝜇−𝐿𝜏} 規範玻色子的耦合常數與質量是相關的,同時透過 T 參數的大幅增加可以解決 CDF II 量測到的 W 規範玻色子質量異常。此外,U(1)_{em} 與 U(1)_{𝐿𝜇−𝐿𝜏} 規範對稱之間的混合導致了樹級 Z'-Z 混合,此效應的影響大過於已在許多文獻中所探討的動力學混合。與傳統的第一型雙希格斯二重態模型相比,除了被 W 和 Z 規範玻色子吞噬的帶電分量和中性贗純量,另一個質量為零的中性贗純量作為戈德斯通玻色子為 U(1)_{𝐿𝜇−𝐿𝜏} 規範玻色子所吞噬並成為其縱向分量。因此,雙希格斯二重態模型中剩餘的物理自由度為兩個中性純量和一個帶電分量。然而,這些帶電希格斯玻色子對 𝑏 → 𝑐𝜏𝜈_𝜏 衰變的額外影響並不足以與實驗量測到的 R(D^(*)) 異常相容。為了解決 R(D^(*)) 異常,我們引入了一個在 SU(3)_C×SU(2)_L×U(1)_Y 規範對稱群下表示的純量輕子夸克 S=(3,1,2/3)。除此之外,因為此純量輕子夸克帶有 U(1)_{𝐿𝜇−𝐿𝜏} 荷,它與輕子的耦合強度原則上可隨輕子風味的不同而改變,其中與 𝜏 輕子的耦合主導此衰變。最後,我們預測了 𝜏→𝜇𝑍 →𝜇𝑒+𝑒- 以及 𝜏→𝜇𝑍∗ →3𝜇 衰變能被實驗檢驗,因其衰變率落在 Belle II 的靈敏度之中。zh_TW
dc.description.abstractMotivated by the recent progress of the coherent elastic neutrino-nucleus scattering experiment featured in the sub-MeV momentum transfer sensitive to the very light scalar and the vector boson as the mediator, we concentrate on a Standard Model extension under SU(3)_C×SU(2)_L×U(1)_Y×U(1)_{𝐿𝜇−𝐿𝜏} gauge groups, where the corresponding U(1)_{𝐿𝜇−𝐿𝜏} gauge boson is introduced not only to explain the muon g-2 anomaly but also to be the potential candidate for coherent elastic neutrino-nucleus scattering to search for its hint. Furthermore, a scenario with a U(1)_{𝐿𝜇−𝐿𝜏} gauged two-Higgs-doublet model is considered further to not only induce the mass of U(1)_{𝐿𝜇−𝐿𝜏} gauge boson by a non-zero vacuum expectation value, but also contribute to the oblique parameters S, T and U. In this sense, the coupling and the mass of a U(1)_{𝐿𝜇−𝐿𝜏} gauge boson are correlated and W boson anomaly from CDF II can be resolved simultaneously by a sizable increase of T parameter. In addition, the mixing between U(1)_{em} and U(1)_{𝐿𝜇−𝐿𝜏} leads to the tree-level Z'-Z mixing dominating over the kinetic mixing already discussed in numerous literatures. In contrast to the conventional type-I two-Higgs-doublet model, a neutral pseudoscalar component as a massless Goldstone boson is swallowed up by U(1)_{𝐿𝜇−𝐿𝜏} gauge boson and becomes its longitudinal component in addition to the charged and the other neutral pseudoscalar component eaten by W and Z gauge bosons, respectively. Therefore, the remaining physical degrees of freedom in the two Higgs doublets are the two neutral scalar components and a charged component. However, the extra effect by the charged Higgs in the process 𝑏 → 𝑐𝜏𝜈_𝜏 isn't significant enough to be compatible with the measured excesses of R(D^(*)). In order to resolve the R(D^(*)) anomaly, a scalar leptoquark S=(3,1,2/3) carrying U(1)_{𝐿𝜇−𝐿𝜏} charges under SU(3)_C×SU(2)_L×U(1)_Y gauge groups is applied to achieve the flavor-dependent couplings in the lepton sector where the coupling to 𝜏 lepton is dominant. Finally, the promising predictions are made for the decay processes 𝜏→𝜇𝑍 →𝜇𝑒+𝑒- and 𝜏→𝜇𝑍∗ →3𝜇 able to be tested since their decay rates are at the sensitivity level of Belle II.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-08T16:45:17Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-08T16:45:17Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAbstract i
List of Figures v
List of Tables ix
1 Introduction 1
2 Model 7
2.1 Scalar Masses and Trilinear Higgs Couplings in 2HDM . . . . . . 9
2.2 Yukawa Couplings ......................... 14
2.3 Gauge Couplings and Z′−Z Mixing ............... 16
3 Phenomenology 21
3.1 CEνNS ............................... 21
3.2 Lepton g−2 ............................ 25
3.3 SM-like Higgs Two-Body Decay and Lepton Flavor Violation . . 27
3.4 R(D^(∗))............................... 30
3.5 W Boson Mass Anomaly ...................... 34
4 Constraints and Numerical Analysis 41
4.1 h→H^0 H^0, Z_1 Z_1, Z_1 Z_2 ...................... 41
4.2 Lepton g−2 and CEνNS...................... 43
4.3 Lepton Flavor Violation....................... 48
4.4 W Boson Mass Anomaly...................... 51
4.5 R(D^(∗))............................... 53
4.6 Z_1 and H^0 Decay.......................... 59
5 Summary 63
Appendices 65
A CEνNS differential cross section 67
B Two- and Three- body decay 71
B.1 h→H^0 H^0,Z_1 Z_1,Z_1 Z_2 and h→μτ ............... 71
B.2 H^0→Z_1 Z_1 ............................. 74
B.3 Z_1→ff .............................. 75
B.4 τ→μZ_1 and τ→μγ........................ 77
B.5 τ→3μ ............................... 82
C Oblique parameters in 2HDM 89
D B ̄ → D^(∗) transition form factors 93
D.1 Form factor parameterizations ................... 93
D.2 Form factors in the HQET ..................... 94
Reference 99
-
dc.language.isoen-
dc.subject𝑅(𝐷^(∗)) 反常zh_TW
dc.subject超越標準模型zh_TW
dc.subject同調微中子–核子彈性散射zh_TW
dc.subject緲子磁偶極矩zh_TW
dc.subjectW 規範玻色子質量zh_TW
dc.subjectmuon g-2en
dc.subject𝑅(𝐷^(∗)) anomaliesen
dc.subjectW boson's massen
dc.subjectCEνNSen
dc.subjectBeyond Standard Modelen
dc.title帶 𝐿𝜇−𝐿𝜏 規範對稱與純量輕子夸克的模型下之同調微中子–核子彈性散射與緲子磁偶極矩、W 規範玻色子質量及 𝑅(𝐷^(∗)) 反常的兼容zh_TW
dc.titleCompatibility of CEνNS with muon g - 2, W mass, and 𝑅(𝐷^(∗)) in a gauged 𝐿𝜇−𝐿𝜏 with a scalar LQen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳泉宏;呂榮祥zh_TW
dc.contributor.oralexamcommitteeChuan-Hung Chen;Rong-Shyang Luen
dc.subject.keyword超越標準模型,同調微中子–核子彈性散射,緲子磁偶極矩,W 規範玻色子質量,𝑅(𝐷^(∗)) 反常,zh_TW
dc.subject.keywordBeyond Standard Model,CEνNS,muon g-2,W boson's mass,𝑅(𝐷^(∗)) anomalies,en
dc.relation.page111-
dc.identifier.doi10.6342/NTU202301296-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-07-11-
dc.contributor.author-college理學院-
dc.contributor.author-dept物理學系-
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
5.97 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved