請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88167完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 朴艾雪 | zh_TW |
| dc.contributor.advisor | Aishwarya Y. Puranam | en |
| dc.contributor.author | 陳怡璋 | zh_TW |
| dc.contributor.author | Yi-Chang Chen | en |
| dc.date.accessioned | 2023-08-08T16:36:03Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-08 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-20 | - |
| dc.identifier.citation | [1] M. Berman, A. R. Triki, and M. B. Blaschko. The lovász-softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural net-works, 2018.
[2] M. Carrasco, G. Araya-Letelier, R. Velázquez, and P. Visconti. Image-based auto-mated width measurement of surface cracking. Sensors, 21(22), 2021. [3] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam. Rethinking atrous convolution for semantic image segmentation. 06 2017. [4] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam. Encoder-decoder with atrous separable convolution for semantic image segmentation, 2018. [5] H. Cho, H.-J. Yoon, and J.-Y. Jung. Image-based crack detection using crack width transform (cwt) algorithm. IEEE Access, 6:60100–60114, 2018. [6] D. Choi, W. Bell, D. Kim, and J. Kim. Uav-driven structural crack detection and location determination using convolutional neural networks. Sensors (Basel, Switzerland), 21, 2021. [7] K. Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, 36:193–202, 1980. [8] N. Gehri, J. Mata-Falcón, and W. Kaufmann. Automated crack detection and measurement based on digital image correlation. Construction and Building Materials, 256:119383, 2020. [9] Y. N. He, M. Zhu, Y. Q. He, and B. Wu. Sugarcane classification optimization method based on high resolution satellite remote sensing image of lovÁsz hinge. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-3/W10:397–402, 2020. [10] S. Iyer and S. K. Sinha. A robust approach for automatic detection and segmentation of cracks in underground pipeline images. Image and Vision Computing, 23(10):921–933, 2005. [11] M. Jahanshahi, S. Masri, C. Padgett, and G. Sukhatme. An innovative methodology for detection and quantification of cracks through incorporation of depth perception. Machine Vision and Applications, 24, 02 2013. [12] M. R. Jahanshahi and S. F. Masri. A new methodology for non-contact accurate crack width measurement through photogrammetry for automated structural safety evaluation. Smart Materials and Structures, 22(3):035019, feb 2013. [13] C. Liu, C. Tang, B. Shi, and W.-B. Suo. Automatic quantification of crack patterns by image processing. Comput. Geosci., 57:77–80, 2013. [14] Y.-F. Liu, S. Cho, B. Spencer, and J.-S. Fan. Concrete crack assessment using digital image processing and 3d scene reconstruction. Journal of Computing in Civil Engineering, 30:04014124, 08 2014. [15] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2015. [16] M. Maeda, K. Matsukawa, and Y.Ito. Revision of guideline for postearthquake damage evaluation of rc buildings in japan. 07 2014. [17] B. Mir, T. Sasaki, K. Nakao, K. Nagae, K. Nakada, M. Mitani, T. Tsukada, N. Osada, K. Terabayashi, and M. Jindai. Machine learning-based evaluation of the damage caused by cracks on concrete structures. Precision Engineering, 76:314–327, 2022. [18] R. Mojidra, J. Li, A. Mohammadkhorasani, F. Moreu, W. Collins, C. Bennett, and S. A. Taher. Vision-based inspection of out-of-plane fatigue cracks in steel structures. In D. Zonta, B. Glisic, and Z. Su, editors, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2022, volume 12046, page 120460I. International Society for Optics and Photonics, SPIE, 2022. [19] M. Murakami. Revision of guideline for post-earthquake damage evaluation of reinforced concrete buildings in japan. 2017. [20] Y. Nakano, M. Maeda, H. Kuramoto, and M. Murakami. Guideline for post-earthquake damage evaluation and rehabilitation of rc buildings in japan. 01 2004. [21] H. Oliveira and P. L. Correia. Automatic road crack segmentation using entropy and image dynamic thresholding. 2009 17th European Signal Processing Conference, pages 622–626, 2009. [22] R. Padilla, S. Netto, and E. da Silva. A survey on performance metrics for object- detection algorithms. page 2, 07 2020. [23] M. D. Phung, T. H. Dinh, V. T. Hoang, and Q. Ha. Automatic crack detection in built infrastructure using unmanned aerial vehicles. In Proceedings of the International Symposium on Automation and Robotics in Construction (IAARC). Tribun EU, s.r.o., Brno, jul 2017. [24] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. In N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi, editors, Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pages 234–241, Cham, 2015. Springer International Publishing. [25] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition, 2015. [26] Y.-H. Yang and A. Y. Puranam. Earthquake response of rc frames with high-strength reinforcement. National Taiwan University Master’s Thesis, 2021. [27] J. Yu and M. Blaschko. The lovász hinge: A novel convex surrogate for submodular losses. IEEE Transactions on Pattern Analysis and Machine Intelligence, PP:1–1, 11 2018. [28] P. Yuan, S. Wang, W. Hu, X. Wu, J. Chen, and H. V. Nguyen. A robust first-arrival picking workflow using convolutional and recurrent neural networks. GEOPHYSICS, 85(5):U109–U119, 2020 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88167 | - |
| dc.description.abstract | 建築物上的裂縫是結構健康監測的依據之一,裂縫的寬度在日本的鋼筋混凝土建築震後損傷評估指南多次出現做為損害評估的依據。現存的文獻針對裂縫辨識或裂縫分割已有許多的研究,然而多數的研究僅考量單一情況,且未提供完整的辨識前置作業方法,因此本研究整合了各種裂縫量化和拍攝技術,建立一個完整的量化流程。同時,我們考量了現有流程圖對於量化精確度及快速量化能力的不足,為此本研究發展出了一種附有單個編碼器及兩個解碼器的多重任務深度學習模型,該模型能同時夠有效地提取中心線並生成準確的分割結果,以達到快速量化的效果。我們在模型中引入了Lovasz Hinge Loss作為訓練中的損失函數,它在處理裂縫邊界時相對於傳統的損失函數有一些優勢。 在裂縫寬度的計算成果中表明了在所提供的測試數據集下,本研究基於U-Net架構所提出的多重任務模型相較傳統方法在誤差評估指標中能夠有1~2個百分點的領先。證實了本研究提出的方法除了在時間上的節省外也在精確度中獲得了提升。
此外,本研究探討了一些與裂縫量化相關的問題,如拍攝環境或尺度因子對於裂縫寬度計算造成的影響。我們提出了一個基於3D重建和平面擬合的方法,克服了影像變形的問題,並證實了所提出的投影矩陣對精度修正的有效性。 | zh_TW |
| dc.description.abstract | Cracks on RC buildings are considered to be one of the key parameters used for structural health monitoring. The width of cracks has been repeatedly used as a basis for damage assessment in the post-earthquake damage assessment guidelines for reinforced concrete buildings in Japan. Existing literature has focused on crack recognition or segmentation, but most studies have only considered specific scenarios and have not provided a complete pre-processing method for crack identification. Therefore, in this study, integration of various crack quantification and imaging techniques was done to establish a comprehensive workflow for quantification of cracks.
Furthermore, the limitations of existing flowchart were considered in terms of quantification accuracy and efficiency. To address this, a deep learning model was developed based on a single encoder and two decoders. The developed model can effectively extract the centerline and generate accurate segmentation results simultaneously, enabling fast quantification. The Lovasz Hinge Loss was used as the training loss function, which has advantages in handling crack boundaries compared to traditional loss functions. The results of crack width calculation demonstrate that our proposed multi-task model based on the U-Net architecture outperforms traditional methods by 1-2 percentage points in error evaluation metrics, indicating improved accuracy and time savings with our proposed approach. In addition, issues related to crack quantification were explored, such as the impact of imaging environment or scale factors on crack width calculation. A method was proposed based on 3D reconstruction and plane fitting to overcome the challenges of image deformation, and the effectiveness of the proposed projection matrix was validated in improving accuracy. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-08T16:36:03Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-08T16:36:03Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Contents
Page Verification Letter from the Oral Examination Committee i Acknowledgements iii 摘要v Abstract vii Contents ix List of Figures xiii List of Tables xvii Chapter 1 Introduction 1 1.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Motivation and Contribution . . . . . . . . . . . . . . . . . . . . . . 6 1.3 Scope and organization of the thesis . . . . . . . . . . . . . . . . . . 8 Chapter 2 Dataset 11 2.1 Open source dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Data from lab experiments . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 Self-built dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Chapter 3 Methodology 15 3.1 General Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.1.1 Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.1.1.1 Data collection . . . . . . . . . . . . . . . . . . . . . . 15 3.1.1.2 Crack quantification . . . . . . . . . . . . . . . . . . . 16 3.1.2 Crack Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2 Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2.1 Deep convolution neural network . . . . . . . . . . . . . . . . . . . 20 3.2.2 Loss function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2.3 Feature detection and Homography transformation . . . . . . . . . 25 3.2.4 Thinning algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2.5 Burr removal algorithm . . . . . . . . . . . . . . . . . . . . . . . . 28 3.2.6 Width calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.2.7 Structure from motion (SFM) . . . . . . . . . . . . . . . . . . . . . 32 3.2.8 World image coordinate transform . . . . . . . . . . . . . . . . . . 36 Chapter 4 Result and discussion 41 4.1 Training result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.2 Segmentation result in testing data of laboratory experiment . . . . . 52 4.3 Result of centerline prediction in testing data . . . . . . . . . . . . . 53 4.4 Crack width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.5 3D reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Chapter 5 Conclusion 87 5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 References 91 Appendix A — Crack map 95 A.1 Crack map in lab experimental data . . . . . . . . . . . . . . . . . . 95 | - |
| dc.language.iso | en | - |
| dc.subject | 平面擬合 | zh_TW |
| dc.subject | 裂縫量化 | zh_TW |
| dc.subject | 裂縫分割 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 神經網路 | zh_TW |
| dc.subject | 3D重建 | zh_TW |
| dc.subject | Crack segmentation | en |
| dc.subject | Crack quantification | en |
| dc.subject | Plane fitting | en |
| dc.subject | 3D reconstruction | en |
| dc.subject | CNN | en |
| dc.subject | Deep learning | en |
| dc.title | 現存結構中裂縫分割與量化之通用流程整合 | zh_TW |
| dc.title | A General Framework for Crack Segmentation and Quantification in Existing Structures | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 吳日騰 | zh_TW |
| dc.contributor.coadvisor | Rih-Teng Wu | en |
| dc.contributor.oralexamcommittee | 歐昱辰;陳俊杉 | zh_TW |
| dc.contributor.oralexamcommittee | Yu-Chen Ou;Chuin-Shan Chen | en |
| dc.subject.keyword | 裂縫量化,裂縫分割,深度學習,神經網路,3D重建,平面擬合, | zh_TW |
| dc.subject.keyword | Crack quantification,Crack segmentation,Deep learning,CNN,3D reconstruction,Plane fitting, | en |
| dc.relation.page | 100 | - |
| dc.identifier.doi | 10.6342/NTU202301726 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-07-20 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 205.64 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
