請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8815完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 盧虎生(Huu-Sheng Lur) | |
| dc.contributor.author | Ying-Ju Chen | en |
| dc.contributor.author | 陳瀅如 | zh_TW |
| dc.date.accessioned | 2021-05-20T20:01:53Z | - |
| dc.date.available | 2012-10-13 | |
| dc.date.available | 2021-05-20T20:01:53Z | - |
| dc.date.copyright | 2009-10-13 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-10-07 | |
| dc.identifier.citation | Adams RM, Rosenzweig C, Peart RM, Ritchie JT, Mccarl BA, Glyer JD, Curry RB, Jones JW, Boote KJ, Allen LH (1990) Global climate change and United-States agriculture. Nature 345: 219-224
Altman A, Kaur-Sawhney R, Galston AW (1977) Stabilization of oat leaf protoplasts through polyamine-mediated inhibition of senescence. Plant Physiol 60: 570-574 Beltrano J, Carbone A, Montaldi ER, Guiamet JJ (1994) Ethylene as promoter of wheat-grain maturation and ear senescence. Plant Growth Regul 15: 107-112 Bui AQ, O'Neill SD (1998) Three 1-aminocyclopropane-1-carboxylate synthase genes regulated by primary and secondary pollination signals in orchid flowers. Plant Physiol 116: 419-428 Cecchetti V, Altamura MM, Falasca G, Costantino P, Cardarelli M (2008) Auxin regulates Arabidopsis anther dehiscence, pollen maturation, and filament elongation. Plant Cell 20: 1760-1774 Commuri PD, Jones RJ (1999) Ultrastructural characterization of maize (Zea mays L.) kernels exposed to high temperature during endosperm cell division. Plant Cell Environ 22: 375-385 Cuevas JC, Lopez-Cobollo R, Alcazar R, Zarza X, Koncz C, Altabella T, Salinas J, Tiburcio AF, Ferrando A (2008) Putrescine is involved in Arabidopsis freezing tolerance and cold acclimation by regulating abscisic acid levels in response to low temperature. Plant Physiol 148: 1094-1105 Duffus CM, Binnie J (1990) Sucrose relationships during endosperm and embryo development in wheat. Plant Physiol Biochem 28: 161-165 Durand R, Durand B (1990) Sexual determination and sexual-differentiation. CRC Crit Rev Plant Sci 9: 295-316 Flores HE, Galston AW (1982) Polyamines and plant stress: activation of putrescine biosynthesis by osmotic shock. Science 217: 1259-1261 Gallie DR, Young TE (2004) The ethylene biosynthetic and perception machinery is differentially expressed during endosperm and embryo development in maize. Mol Genet Genomics 271: 267-281 Galston AW, Sawhney RK (1990) Polyamines in plant physiology. Plant Physiol 94: 406-410 Hansen J, Sato M, Ruedy R, Lo K, Lea DW, Medina-Elizade M (2006) Global temperature change. Proc Natl Acad Sci U S A 103: 14288-14293 Hawker JS, Jenner CF (1993) High-temperature affects the activity of enzymes in the committed pathway of starch synthesis in developing wheat endosperm. Aust J Plant Physiol 20: 197-209 He GC, Kogure K, Suzuki H (1990) Development of endosperm and synthesis of starch in rice grain .3. starch property as affected by the temperature during grain development. Jpn J Crop Sci 59: 340-345 Heby O (1981) Role of polyamines in the control of cell proliferation and differentiation. Differentiation 19: 1-20 Herimer Y, Mizrahi Y (1979) Ornithine decarboxylase activity in rapidly proliferating plant cells FEBS Lett 104: 146-149 Imai A, Matsuyama T, Hanzawa Y, Akiyama T, Tamaoki M, Saji H, Shirano Y, Kato T, Hayashi H, Shibata D, Tabata S, Komeda Y, Takahashi T (2004) Spermidine synthase genes are essential for survival of Arabidopsis. Plant Physiol 135: 1565-1573 Ishiguro S, Kawai-Oda A, Ueda J, Nishida I, Okada K (2001) The DEFECTIVE IN ANTHER DEHISCIENCE gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. Plant Cell 13: 2191-2209 Iwai T, Miyasaka A, Seo S, Ohashi Y (2006) Contribution of ethylene biosynthesis for resistance to blast fungus infection in young rice plants. Plant Physiol 142: 1202-1215 Jimenez-Bremont JF, Ruiz OA, Rodriguez-Kessler M (2007) Modulation of spermidine and spermine levels in maize seedlings subjected to long-term salt stress. Plant Physiol Biochem 45: 812-821 Jones RJ, Roessler J, Ouattar S (1985) Thermal environment during endosperm cell-division in maize - effects on number of endosperm cells and starch granules. Crop Sci 25: 830-834 Kowles RV, Phillips RL (1985) DNA amplification patterns in maize endosperm nuclei during kernel development. Proc Natl Acad Sci U S A 82: 7010-7014 Liang YL, Lur HS (2002) Conjugated and free polyamine levels in normal and aborting maize kernels. Crop Sci 42: 1217-1224 Lin CJ (2008) The physiological pathway of high temperature effects on rice quality formation during grain-filling stage. Department of Agronomy National Taiwan University Master Thesis Lopes MA, Larkins BA (1993) Endosperm origin, development, and function. Plant Cell 5: 1383-1399 Lur HS, Setter TL (1993) Role of auxin in maize endosperm development (timing of nuclear DNA endoreduplication, zein expression, and cytokinin). Plant Physiol 103: 273-280 Lyakh VA, Kravchenko AN, Soroka AI, Dryuchina EN (1991) Effects of high-temperatures on mature pollen grains in wild and cultivated maize accessions. Euphytica 55: 203-207 Mascarenhas JP (1990) Gene activity during pollen development. Annu Rev Plant Physiol Plant Mol Biol 41: 317 Matsui T, Kobayasi K, Kagata H, Horie T (2005) Correlation between viability of pollination and length of basal dehiscence of the theca in rice under a hot-and-humid condition. Plant Prod Sci 8: 109-114 Matsui T, Omasa K, Horie T (1997) High temperature-induced spikelet sterility of japonica rice at flowering in relation to air temperature, humidity and wind velocity conditions. Japan J Crop Sci 66: 449-455 Mendelsohn R, Nordhaus WD, Shaw D (1994) The impact of global warming on agriculture: A ricardian analysis. Am Econ Rev 84: 753-771 Miller ME, Chourey PS (1992) The maize Invertase-Deficient miniature-1 seed mutation is associated with aberrant pedicel and endosperm development. Plant Cell 4: 297-305 Mohapatra PK, Patel R, Sahu SK (1993) Time of flowering affects grain quality and spikelet partitioning within the rice panicle. Aust J Plant Physiol 20: 231-241 Morgan JM (1980) Possible Role of Abscisic-Acid in Reducing Seed Set in Water-Stressed Wheat Plants. Nature 285: 655-657 Morita S, Shiratsuchi H, Takahashi J, Fujita K (2004) Effect of high temperature on grain ripening in rice plants —Analysis of the effects of high night and high day temperatures applied to the panicle and other parts of the plant—. Jpn. J. Crop Sci. 73: 77-83 Morita S, Yonemaru J, Takanashi J (2005) Grain growth and endosperm cell size under high night temperatures in rice (Oryza sativa L.). Ann Bot 95: 695-701 Nadeau P, Delaney S, Chouinard L (1987) Effects of cold hardening on the regulation of polyamine levels in wheat (Triticum aestivum L.) and alfalfa (Medicago sativa L.). Plant Physiol 84: 73-77 Naik PK, Mohapatra PK (1999) Ethylene inhibitors promote male gametophyte survival in rice. Plant Growth Regul 28: 29-39 Naik PK, Mohapatra PK (2000) Ethylene inhibitors enhanced sucrose synthase activity and promoted grain filling of basal rice kernels. Aust J Plant Physiol 27: 997-1008 Nicolas ME, Gleadow RM, Dalling MJ (1984) Effects of drought and high-temperature on grain-growth in wheat. Aust J Plant Physiol 11: 553-566 Osada A, Sasiprapa V, Rahong M (1973) Abnormal occurrence of empty grains of indica rice plants in the dry, hot season in Thailand. Proc. Crop Sci. Soc. Japan 42: 103-109 Pandey S, Ranade SA, Nagar PK, Kumar N (2000) Role of polyamines and ethylene as modulators of plant senescence. J Biosci 25: 291-299 Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM, Zhong X, Centeno GS, Khush GS, Cassman KG (2004) Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci U S A 101: 9971-9975 Peremarti A, Bassie L, Christou P, Capell T (2009) Spermine facilitates recovery from drought but does not confer drought tolerance in transgenic rice plants expressing Datura stramonium S-adenosylmethionine decarboxylase. Plant Mol Biol 70: 253-264 Pillai MA, Akiyama T (2004) Differential expression of an S-adenosyl-L-methionine decarboxylase gene involved in polyamine biosynthesis under low temperature stress in japonica and indica rice genotypes. Mol Genet Genomics 271: 141-149 Prasad PVV, Boote KJ, Allen LH (2006) Adverse high temperature effects on pollen viability, seed-set, seed yield and harvest index of grain-sorghum [Sorghum bicolor (L.) Moench] are more severe at elevated carbon dioxide due to higher tissue temperatures. Agricultural and Forest Meteorology 139: 237-251 Rieu I, Wolters-Arts M, Derksen J, Mariani C, Weterings K (2003) Ethylene regulates the timing of anther dehiscence in tobacco. Planta 217: 131-137 Sakai K (1943) Zytologisch-histologische untersuchungen uber die sterilitatserscheinungen bie reispflanzen nordnippons im Jahre 1941. Hokkaido Agr. Exp. Sta. Report 40: 1-17 Sanders PM, Lee PY, Biesgen C, Boone JD, Beals TP, Weiler EW, Goldberg RB (2000) The arabidopsis DELAYED DEHISCENCE1 gene encodes an enzyme in the jasmonic acid synthesis pathway. Plant Cell 12: 1041-1061 Satake T, Yoshida S (1978) High temperature-induced sterility in indica rices at flowering. Japan. Jour. Crop Sci. 47: 6-17 Sreenivasulu N, Radchuk V, Strickert M, Miersch O, Weschke W, Wobus U (2006) Gene expression patterns reveal tissue-specific signaling networks controlling programmed cell death and ABA- regulated maturation in developing barley seeds. Plant J 47: 310-327 Tang RS, Zheng JC, Jin ZQ, Zhang D, Huang H, Chen LG (2008) Possible correlation between high temperature-induced floret sterility and endogenous levels of IAA, GAs and ABA in rice (Oryza sativa L.). Plant Growth Regul 54: 37-43 Tashiro T, Wardlaw IF (1991) The effect of high-temperature on kernel dimensions and the type and occurrence of kernel damage in rice. Aust J Agric Res 42: 485-496 Tassoni A, Franceschetti M, Bagni N (2008) Polyamines and salt stress response and tolerance in Arabidopsis thaliana flowers. Plant Physiol Biochem 46: 607-613 Tiburcio AF, Masdeu MA, Dumortier FM, Galston AW (1986) Polyamine metabolism and osmotic stress. I. Relation to protoplast viability. Plant Physiol 82: 369-374 Urano K, Hobo T, Shinozaki K (2005) Arabidopsis ADC genes involved in polyamine biosynthesis are essential for seed development. FEBS Lett 579: 1557-1564 Wada T, Ito T, Ito M, Takeoka Y (1992) Light microscopic observations on pollen and anther in rice (Oryza-Sativa L) .2. stages from early microspore to mature pollen. Jpn J Crop Sci 61: 136-144 Wada T, Ogawa K, Ito T, Suzuki H, Takeoka Y (1990) Light microscopic observations on pollen and anther development in rice (Oryza-Sativa L) .1. stages from pollen mother cells to tetrads. Jpn J Crop Sci 59: 769-777 Wang Y, Kumar PP (2007) Characterization of two ethylene receptors PhERS1 and PhETR2 from petunia: PhETR2 regulates timing of anther dehiscence. J Exp Bot 58: 533-544 Wang Z, Liang Y, Li C, Xu Y, Lan L, Zhao D, Chen C, Xu Z, Xue Y, Chong K (2005) Microarray analysis of gene expression involved in anther development in rice (Oryza sativa L.). Plant Mol Biol 58: 721-737 Wang Z, Mambelli S, Setter TL (2002) Abscisic acid catabolism in maize kernels in response to water deficit at early endosperm development. Ann Bot (Lond) 90: 623-630 Wuriyanghan H, Zhang B, Cao WH, Ma B, Lei G, Liu YF, Wei W, Wu HJ, Chen LJ, Chen HW, Cao YR, He SJ, Zhang WK, Wang XJ, Chen SY, Zhang JS (2009) The ethylene receptor ETR2 delays floral transition and affects starch accumulation in rice. Plant Cell Yamakawa H, Hirose T, Kuroda M, Yamaguchi T (2007) Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray. Plant Physiol 144: 258-277 Yang J, Yunying C, Zhang H, Liu L, Zhang J (2008) Involvement of polyamines in the post-anthesis development of inferior and superior spikelets in rice. Planta 228: 137-149 Yang J, Zhang J, Liu K, Wang Z, Liu L (2006) Abscisic acid and ethylene interact in wheat grains in response to soil drying during grain filling. New Phytol 171: 293-303 Yang J, Zhang J, Liu K, Wang Z, Liu L (2007) Involvement of polyamines in the drought resistance of rice. J Exp Bot 58: 1545-1555 Yang J, Zhang J, Wang Z, Liu K, Wang P (2006) Post-anthesis development of inferior and superior spikelets in rice in relation to abscisic acid and ethylene. J Exp Bot 57: 149-160 Yoshida S (1981) Fundamentals of rice crop science. International Rice Research Institute, Los Baños, Laguna, Philippines Young TE, Gallie DR (1999) Analysis of programmed cell death in wheat endosperm reveals differences in endosperm development between cereals. Plant Mol Biol 39: 915-926 Young TE, Gallie DR, DeMason DA (1997) Ethylene-mediated programmed cell death during maize endosperm development of wild-type and shrunken2 genotypes. Plant Physiol 115: 737-751 Zhang H, Tan G, Yang L, Yang J, Zhang J, Zhao B (2009) Hormones in the grains and roots in relation to post-anthesis development of inferior and superior spikelets in japonica/indica hybrid rice. Plant Physiol Biochem 47: 195-204 Zhang XS, O'Neill SD (1993) Ovary and gametophyte development are coordinately regulated by auxin and ethylene following pollination. Plant Cell 5: 403-418 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8815 | - |
| dc.description.abstract | 為了瞭解在高溫下乙烯、多元胺對於穀粒發育的影響,本試驗採用栽培種台稉九號作為試驗材料,並區隔為上下穗位探討。對水稻抽穗前6天到開花後8天的各發育時期作4小時35/30℃(日/夜)高溫處理發現,在高溫處理下的開花期水稻乙烯釋放量均明顯提升,但在抽穗前3天的時期高溫處理結果,乙烯釋放量下降。另外也收取水稻在35/30℃高溫處理下生長的穗計算充實率,結果發現在高溫下水稻上下穗位的平均充實率均比上穗位下降。
在穀粒充實期方面,35/30℃高溫處理從水稻開花後第六天開始,水稻在高溫處理下,開花後第九天出現一個乙烯釋放量的高峰,而在第15天出現第二個高峰期,且全充實期乙烯釋放量均高於控制組。在25/20℃控制組下,在開花後15天和開花後18天出現乙烯釋放量的高峰,在穀粒的粒重方面,35/30℃高溫生長下的穀粒粒重較控制組輕。為了進一步了解乙烯的釋放量提早且提升是否對於穀粒的重量及品質造成影響,我們使用乙烯抑制劑及乙烯釋放劑對穀粒充實期中最敏感的時期開花後12天~開花後16天作處理。結果發現在25/20℃控制組中使用乙烯釋放劑ethephon會造成穀粒粒重下降,白堊質比例提升,而在35/30℃高溫對照組中使用乙烯抑制劑Ag(NO)3則會使穀粒白堊質的面積下降。 在35/30℃高溫下充實的穀粒,總多元胺的含量較25/20℃控制組低。35/30℃高溫下,Putrescine含量則是在開花後第12天達到高峰,之後急速下降,25/20℃控制組則是在開花後15天到達高峰,之後緩慢下降。Spermidine在35/30℃高溫下全充實期在穀粒內含量均低於25/20℃控制組。Spermine在35/30℃高溫下全充實期在穀粒內的含量均高於25/20℃控制組。這樣的情況在上下穗位中均有一致的結果。 綜合本研究結果發現,在高溫下水稻穀粒乙烯釋放量會增加且提早,而相對於乙烯,多元胺的含量則是下降,顯示高溫下乙烯與多元胺的濃度失衡,而造成穀粒充實不良而粒重下降且產生白堊質。因此,乙烯和多元胺在穀粒發育過程中的平衡對於能否正常發育有著相當的重要性。 | zh_TW |
| dc.description.abstract | Global warming is an important problem in this world. In Taiwan, the average temperature increased 1.1℃ in the past century. Rice is known to be sensitive to high temperature, especially during grain filling stage. Some research revealed that rice had lower filling spikelet rate and chalky appearance under high temperature. Plant hormones involve in regulation of grain development. Reports showed that high ethylene evolution leaded to grain abortion or abnormal grain. And polyamines, as precursor competitors of ethylene, also play an important role on the grain filling stage. Nevertheless, few documents have been dealing with the role of ethylene and polyamines during grain filling stage under high temperature. The objective of this study was to explore the correlation among ethylene, polyamines, and grain filling under high temperature.
Cultivar TK9 was used as plant material. Panicles were samples and separated into two groups, superior spikelets and inferior spikelets. Superior spikelets in general have higher grain yield and better quality than inferior spikelets. Physiological characteristics were determined and compared between superior and inferior spikelets under high temperature. First, the ethylene evolution rate was measured on booting stage to flowering stage under high temperature. Then we chose the panicles that was on the stage of 6 days before heading to 8 days after flowering, and transferred the plant material to 35/30℃ (day/night) for 4 hours. Plant materials were also chosen on the day of heading and transferred to 35/30℃ (day/night) until mature in order to count the filling spikelet rate. At the grain filling stage, panicles were chosen at the 6 day after flowering, and transferred to 35/30℃ (day/night) until mature. The results showed that spikelets fertility decreased under high temperature. During the stage of 6 days before heading to 8 days after flowering, ethylene evolution rate increased under high temperature. Superior spikelets and inferior spikelets behaved similarly. There was significant negative correlation between ethylene evolution rate and spikelets fertility under high temperature. At the grain filling stage, the results indicated that grain filling rate increased but stopped earlier under high temperature. Grain weight and grain quality also decreased under high temperature. In both superior spikelets and inferior spikelets ethylene evolution rate increased under high temperature. The result also showed significant negative correlation between ethylene evolution and grain yield. In order to clarify relationship between ethylene and grain yield, Ag(NO)3 (ethylene inhibit agent) was applied under high temperature and ethephon (ethylene release agent) was applied under control temperature for 5 days on the panicle at the 12 days after flowering. Application of Ag(NO)3 improved grains quality and increased weight, but application of ethephon decreased grains quality and weight. The results indicated that ethylene may have strong effect on the grain yield and quality under high temperature. Content of total polyamines were decreased under high temperature. Content of spermine increased under high temperature, while putrescine and spermidine decreased. The decrease in total polyamines content may induce negative effect on the grain yield and quality under high temperature. In conclusion, this study found that an increased ethylene evolution rate might be related to the spikelets sterility under high temperature at the booting to flowering stage. At the grain filling stage, ethylene evolution rate increased and total polyamines decreased and may negatively affect the grain yield and quality under high temperature. In conclusion, the change of ethylene had temporal correlation with that of polyamines, suggestion a correlative relationship in the regulation of caryopsis development under high temperature. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T20:01:53Z (GMT). No. of bitstreams: 1 ntu-98-R96621114-1.pdf: 899118 bytes, checksum: 2ddada6d3bd7f7143e3e7c8c73f67227 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 目錄
口試委員審定書...................................................................................................................... i 誌謝......................................................................................................................................... iii 中文摘要…………………………………………………………………………………………………………. vi Abstract………………………………………………………………………………………………………… viii 前言 11 前人研究 12 試驗推論 (Rationale) 18 材料與方法 20 結果 23 討論 50 結論 53 參考文獻 55 圖表目錄 圖 1. TK9水稻在開花期遭受高溫對於充實率的影響。 24 圖 2. 高溫處理對於水稻上下穗位乙烯釋放量的影響。 26 圖 3. 高溫對穀粒充實期間穎果充實速率的影響。 31 圖 4. 高溫對於劍葉SPAD值的影響。 32 圖 5. 高溫對穀粒充實期穗乙烯釋放量的影響。 34 圖 6. 高溫對上下穗位穀粒重量的影響。 35 圖 7. 處理乙烯抑制劑及釋放劑對穀粒重量的影響。 37 圖 8. 高溫對上下穗位穀粒外觀完整米與白堊質米比例的影響。 38 圖 9. 外加乙烯釋放劑和抑制劑對完整米率和白堊質米粒比例的影響。 40 圖 10. HPLC之Polyamines分析圖譜。 41 圖 11. 高溫對穀粒充實期總多元胺含量的影響。 43 圖 12. 高溫對穀粒充實期putrescine濃度的影響。 45 圖 13. 高溫對於穀粒充實期間spermidine濃度的影響。 47 圖 14. 高溫對於穀粒充實期間spermine濃度的影響。 49 | |
| dc.language.iso | zh-TW | |
| dc.title | 乙烯和多元胺對高溫下水稻穀粒發育的關係 | zh_TW |
| dc.title | Correlation among Ethylene, Polyamines, and Development of Rice Grains Growing under High Temperature | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 朱鈞(Chun Chu),陳宗禮(Chung-Li Chen),張素貞(Su-Jeng Chang),羅正宗(Jeng-Chung Lo) | |
| dc.subject.keyword | 台稉,9號,高溫,乙烯,充實率,穀粒品質,多元胺, | zh_TW |
| dc.subject.keyword | TK9,high temperature,ethylene,grain filling rate,grain quality,polyamines, | en |
| dc.relation.page | 61 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2009-10-09 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農藝學研究所 | zh_TW |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf | 878.04 kB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
