請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88154
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 卿建業 | zh_TW |
dc.contributor.advisor | Jian-Ye Ching | en |
dc.contributor.author | 涂育彰 | zh_TW |
dc.contributor.author | Yu-Jhang Tu | en |
dc.date.accessioned | 2023-08-08T16:32:25Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-08-08 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-07-18 | - |
dc.identifier.citation | Andrus, R. D., Chung, R. M., Juang, C. H., & Stokoe, K. (2003). Guidelines for evaluating liquefaction resistance using shear wave velocity measurement and simplified procedures. US Department of Commerce, National Institute of Standards and Technology.
Andrus, R. D., & Stokoe II, K. H. (2000). Liquefaction resistance of soils from shear-wave velocity. Journal of Geotechnical and Geoenvironmental Engineering, 126(11), 1015-1025. Andrus, R. D., & Stokoe, K. H. (1999). Liquefaction resistance based on shear wave velocity. Bolton Seed, H., Tokimatsu, K., Harder, L., & Chung, R. M. (1985). Influence of SPT procedures in soil liquefaction resistance evaluations. Journal of Geotechnical engineering, 111(12), 1425-1445. Boulanger, R. W., & Idriss, I. (2014). CPT and SPT based liquefaction triggering procedures. Report No. UCD/CGM.-14, 1. Boulanger, R. W., & Idriss, I. (2016). CPT-based liquefaction triggering procedure. Journal of Geotechnical and Geoenvironmental Engineering, 142(2), 04015065. Boulanger, R. W., Mejia, L. H., & Idriss, I. M. (1997). Liquefaction at moss landing during Loma Prieta earthquake. Journal of Geotechnical and Geoenvironmental Engineering, 123(5), 453-467. Ching, J., & Phoon, K.-K. (2014). Correlations among some clay parameters—the multivariate distribution. Canadian Geotechnical Journal, 51(6), 686-704. Ching, J., & Phoon, K.-K. (2015). Constructing multivariate distributions for soil parameters. Risk and reliability in geotechnical engineering, 3-76. Ching, J., & Phoon, K.-K. (2019). Constructing site-specific multivariate probability distribution model using Bayesian machine learning. Journal of Engineering Mechanics, 145(1), 04018126. Ching, J., Wu, S., & Phoon, K.-K. (2021). Constructing quasi-site-specific multivariate probability distribution using hierarchical Bayesian model. Journal of Engineering Mechanics, 147(10), 04021069. Foti, S. (2000). Multistation methods for geotechnical characterization using surface waves. Hoffman, M. D., & Gelman, A. (2014). The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. J. Mach. Learn. Res., 15(1), 1593-1623. Hu, J., & Liu, H. (2019). Bayesian network models for probabilistic evaluation of earthquake-induced liquefaction based on CPT and Vs databases. Engineering Geology, 254, 76-88. Huang, A., & Wand, M. P. (2013). Simple marginally noninformative prior distributions for covariance matrices. Hwang, J.-H., Khoshnevisan, S., Juang, C. H., & Lu, C.-C. (2021). Soil liquefaction potential evaluation–An update of the HBF method focusing on research and practice in Taiwan. Engineering Geology, 280, 105926. Idriss, I., & Boulanger, R. (2008 ). Soil liquefaction during earthquakes. Earthq. Eng. Res. Inst, 160, 43. Iwasaki, T. (1978). A practical method for assessing soil liquefaction potential based on case studies at various sites in Japan. Proc. of 2nd Int. National Conf. on Microzonation, 1978, Juang, C. H., Yuan, H., Lee, D.-H., & Lin, P.-S. (2003). Simplified cone penetration test-based method for evaluating liquefaction resistance of soils. Journal of Geotechnical and Geoenvironmental Engineering, 129(1), 66-80. Kayen, R., Moss, R., Thompson, E., Seed, R., Cetin, K., Kiureghian, A. D., Tanaka, Y., & Tokimatsu, K. (2013). Shear-wave velocity–based probabilistic and deterministic assessment of seismic soil liquefaction potential. Journal of Geotechnical and Geoenvironmental Engineering, 139(3), 407-419. Kayen, R. E., Mitchell, J. K., Seed, R., Lodge, A., Nishio, S. y., & Coutinho, R. (1992). Evaluation of SPT-, CPT-, and shear wave-based methods for liquefaction potential assessment using Loma Prieta data. Proceedings of the 4th Japan-US Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures for Soil Liquefaction, Hamada, M. and O’Rourke, TD, eds, Ku, C.-S., & Juang, C. (2012). Liquefaction and cyclic softening potential of soils–a unified piezocone penetration testing-based approach. Geotechnique, 62(5), 457-461. Liao, S. S., Veneziano, D., & Whitman, R. V. (1988). Regression models for evaluating liquefaction probability. Journal of Geotechnical engineering, 114(4), 389-411. Liao, S. S., & Whitman, R. V. (1986). Overburden correction factors for SPT in sand. Journal of Geotechnical engineering, 112(3), 373-377. Moss, R., Seed, R. B., Kayen, R. E., Stewart, J. P., Der Kiureghian, A., & Cetin, K. O. (2006). CPT-based probabilistic and deterministic assessment of in situ seismic soil liquefaction potential. Journal of Geotechnical and Geoenvironmental Engineering, 132(8), 1032-1051. Obermeier, S. F. (1996). Use of liquefaction-induced features for paleoseismic analysis—an overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the location and strength of Holocene paleo-earthquakes. Engineering Geology, 44(1-4), 1-76. Robertson, P., Woeller, D., & Finn, W. (1992). Seismic cone penetration test for evaluating liquefaction potential under cyclic loading. Canadian Geotechnical Journal, 29(4), 686-695. Robertson, P. K. (1990). Soil classification using the cone penetration test. Canadian Geotechnical Journal, 27(1), 151-158. Robertson, P. K. (2009). Interpretation of cone penetration tests—a unified approach. Canadian Geotechnical Journal, 46(11), 1337-1355. Robertson, P. K., & Wride, C. (1998). Evaluating cyclic liquefaction potential using the cone penetration test. Canadian Geotechnical Journal, 35(3), 442-459. Shibata, T., & Teparaksa, W. (1988). Evaluation of liquefaction potentials of soils using cone penetration tests. Soils and Foundations, 28(2), 49-60. Skempton, A. (1986). Standard penetration test procedures and the effects in sands of overburden pressure, relative density, particle size, ageing and overconsolidation. Geotechnique, 36(3), 425-447. Slifker, J. F., & Shapiro, S. S. (1980). The Johnson system: selection and parameter estimation. Technometrics, 22(2), 239-246. Stark, T. D., & Olson, S. M. (1995). Liquefaction resistance using CPT and field case histories. Journal of Geotechnical engineering, 121(12), 856-869. Tokimatsu, K., & Yoshimi, Y. (1983). Empirical correlation of soil liquefaction based on SPT N-value and fines content. Soils and Foundations, 23(4), 56-74. Vos, J. (1982). The practical use of CPT in soil profiling. Proceedings of the Second European Symposium on Penetration Testing, ESOPT-2, Amsterdam, May, Youd, T. L. (1984). Geologic effects-liquefaction and associated ground failure. Proceedings of the Geologic and Hydraulic Hazards Training Program, 210-232. Youd, T., Idriss, I., Andrus, R.D., Arango, I., Castro, G., Christian, J.T., Dobry, R., Finn, W.L., Harder Jr., L.F., Hynes, M.E., Ishihara, K., Koester, J., Liao, S., Marcuson III, W., Martin, G.R., Mitchell, J.K., Moriwaki, Y., Power, M.S., Robertson, P.K., Seed, R.B., Stokoe, K.H. (2001). Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. Journal of Geotechnical and Geoenvironmental Engineering, 127(4), 297-313. 袁士翔.(2020). 以大數據分析黏土深開挖過程中的牆變形.國立臺灣大學. 臺北 李芯茹.(2022). 垂直載重下淺基礎行為的數據驅動預測.國立臺灣大學. 臺北 郭明杰.(2020). 土壤參數的大數據分析-著重於模數和靜止土壓力係數.國立臺灣大學. 臺北 游易宸.(2021). 基於全球資料庫的土壤動力參數估算.國立臺灣大學. 臺北 黃朋盛.(2022). 基於全球資料庫的飽和黏土滲透係數估算.國立臺灣大學. 臺北 Andrus, R. D., Chung, R. M., Juang, C. H., & Stokoe, K. (2003). Guidelines for evaluating liquefaction resistance using shear wave velocity measurement and simplified procedures. US Department of Commerce, National Institute of Standards and Technology. Boulanger, R. W., & Idriss, I. (2014). CPT and SPT based liquefaction triggering procedures. Report No. UCD/CGM.-14, 1. Boulanger, R. W., Mejia, L. H., & Idriss, I. M. (1997). Liquefaction at moss landing during Loma Prieta earthquake. Journal of Geotechnical and Geoenvironmental Engineering, 123(5), 453-467. Cai, G., Liu, S., & Puppala, A. J. (2012). Liquefaction assessments using seismic piezocone penetration (SCPTU) test investigations in Tangshan region in China. Soil Dynamics and Earthquake Engineering, 41, 141-150. Cao, Z., Youd, T. L., & Yuan, X. (2011). Gravelly soils that liquefied during 2008 Wenchuan, China earthquake, Ms= 8.0. Soil Dynamics and Earthquake Engineering, 31(8), 1132-1143. Cetin, K. O., Seed, R. B., Der Kiureghian, A., Tokimatsu, K., Harder Jr, L. F., Kayen, R. E., & Moss, R. E. (2004). Standard penetration test-based probabilistic and deterministic assessment of seismic soil liquefaction potential. Journal of Geotechnical and Geoenvironmental Engineering, 130(12), 1314-1340. Cetin, K. O., Seed, R. B., Moss, R. E., Der Kiureghian, A., Tokimatsu, K., Harder Jr, L. F., & Kayen, R. E. (2000). Field case histories for SPT-based in situ liquefaction potential evaluation. Geotechnical engineering research report No. UCB/GT-2000/09. Chen, L., Yuan, X., Cao, Z., Sun, R., Wang, W., & Liu, H. (2018). Characteristics and triggering conditions for naturally deposited gravelly soils that liquefied following the 2008 Wenchuan Mw 7.9 earthquake, China. Earthquake Spectra, 34(3), 1091-1111. Hwang, J.-H., Khoshnevisan, S., Juang, C. H., & Lu, C.-C. (2021). Soil liquefaction potential evaluation–An update of the HBF method focusing on research and practice in Taiwan. Engineering Geology, 280, 105926. Juang, C. H., Yuan, H., Lee, D.-H., & Lin, P.-S. (2003). Simplified cone penetration test-based method for evaluating liquefaction resistance of soils. Journal of Geotechnical and Geoenvironmental Engineering, 129(1), 66-80. Kayen, R., Moss, R., Thompson, E., Seed, R., Cetin, K., Kiureghian, A. D., Tanaka, Y., & Tokimatsu, K. (2013). Shear-wave velocity–based probabilistic and deterministic assessment of seismic soil liquefaction potential. Journal of Geotechnical and Geoenvironmental Engineering, 139(3), 407-419. Ku, C.-S., Lee, D.-H., & Wu, J.-H. (2004). Evaluation of soil liquefaction in the Chi-Chi, Taiwan earthquake using CPT. Soil Dynamics and Earthquake Engineering, 24(9-10), 659-673. Lai, S.-Y., Hsu, S.-C., & Hsieh, M.-J. (2004). Discriminant model for evaluating soil liquefaction potential using cone penetration test data. Journal of Geotechnical and Geoenvironmental Engineering, 130(12), 1271-1282. Moss, R., Seed, R. B., Kayen, R. E., Stewart, J. P., Der Kiureghian, A., & Cetin, K. O. (2006). CPT-based probabilistic and deterministic assessment of in situ seismic soil liquefaction potential. Journal of Geotechnical and Geoenvironmental Engineering, 132(8), 1032-1051. Shen, M., Chen, Q., Zhang, J., Gong, W., & Hsein Juang, C. (2016). Predicting liquefaction probability based on shear wave velocity: an update. Bulletin of Engineering Geology and the Environment, 75, 1199-1214. Shibata, T., & Teparaksa, W. (1988). Evaluation of liquefaction potentials of soils using cone penetration tests. Soils and Foundations, 28(2), 49-60. Stark, T. D., & Olson, S. M. (1995). Liquefaction resistance using CPT and field case histories. Journal of Geotechnical engineering, 121(12), 856-869. Tokimatsu, K., & Yoshimi, Y. (1983). Empirical correlation of soil liquefaction based on SPT N-value and fines content. Soils and Foundations, 23(4), 56-74. Toprak, S., Holzer, T., Bennett, M. J., & Tinsley III, J. C. (1999). CPT-and SPT-based probabilistic assessment of liquefaction. Proc., 7th US–Japan Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures against Liquefaction. Zhou, Y.-G., Xia, P., Ling, D.-S., & Chen, Y.-M. (2020). Datasets for liquefaction case studies of gravelly soils during the 2008 Wenchuan earthquake. Data in Brief, 32, 106308. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88154 | - |
dc.description.abstract | 在大地工程領域中,土壤液化是相當重要的議題,工程師在設計時必須評估土壤液化潛能,因此有許多的學者提出預測模型來預測土壤液化潛能,然而這些預測模型都將全球的液化數據視為同一群體進行分析,但土壤液化應該受各區域以及土壤性質所影響,不應將全球的液化數據視為同一群體進行分析。近年來大數據分析和機器學習在各領域的應用上皆有一定的發展,因此本研究希望透過大數據分析建立出可以準確地預測土壤液化潛能之模型,且此模型需保有各區域的特性。
首先,會先回顧前人有關土壤液化的文獻,了解預測土壤液化潛能的各種方法,以及通常都運用哪些土壤參數進行分析,本研究會收集較具代表性的土壤參數,包括總應力與有效應力比值(σ_v⁄(σ_v^' ))、正規化N值((N_1)_60)、正規化q_c值(q_c1N)、土壤類型因子(I_c)、正規化V_s 值(V_s1)和細粒料含量(FC),並代入前人的預測模型檢驗資料的正確性。 接著利用改良式層級貝氏模型(RHBM)進行分析,過程中會使用Johnson分布系統將參數轉換至標準常態空間,接著搭配吉普森取樣及貝氏分析中的共軛條件來學習參數間的相關性,且同時學習資料庫中各區域的行為特性,並將資料庫中的空缺資料填補,搭配目標區域中有限的已知資訊來推估未知資料的分布,推估出資料後即可運用此資料進行土壤液化機率的計算。 | zh_TW |
dc.description.abstract | In geotechnical engineering, soil liquefaction is very important problem. Engineers must evaluate soil liquefaction potential when designing. Therefore, many scholars have proposed prediction models to predict soil liquefaction potential. However, these prediction models all regard global liquefaction data as the same group for analysis, but soil liquefaction should be affected by various regions and soil properties, liquefaction data should not be analyzed as the same group. In recent years, the application of big data analysis and machine learning in various fields has developed to a certain extent. Therefore, this study hopes to establish a model that can accurately predict the potential of soil liquefaction through big data analysis, and this model have to maintain the characteristics of each region.
First of all, we will review the previous literature on soil liquefaction, understand various methods for predicting the potential of soil liquefaction, and what soil parameters are usually used for analysis. This study will collect more representative soil parameters, including the ratio of total stress to effective stress (σ_v⁄(σ_v^' )), normalized N value ((N_1)_60), Normalization q_c value q_c1N, soil type factor (I_c), normalized V_s value (V_s1) and fines content (FC) were substituted into previous prediction models to verify the accuracy of the data. Then the revised hierarchical bayesian model (RHBM) is used for analysis. In the process, the Johnson distribution system will be used to convert the parameters to the standard normal distribution, and then the gibbs sampling and conjugate conditions in bayesian analysis will be used to learn the correlation between the parameters. At the same time, the behavior characteristics of each region in the database will be learned, and the unknown data will be estimated with the limited known information in the target region, the data can be used to calculate the probability of soil liquefaction. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-08T16:32:25Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-08-08T16:32:25Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii 目錄 v 圖目錄 ix 表目錄 xiii 第一章 前言 1 1.1 研究背景與動機 1 1.2 研究方法 2 1.3 研究流程 3 1.4 本文內容 4 第二章 文獻回顧 5 2.1 土壤液化介紹 5 2.1.1土壤液化發生過程 5 2.1.2土壤液化破壞類型 6 2.2 評估液化潛能之室內試驗 8 2.2.1 動力三軸試驗 8 2.2.2 反覆單剪試驗 8 2.3 評估液化潛能之數值分析法 8 2.4 評估液化潛能之應力法-現地試驗 9 2.4.1 標準貫入試驗(Standard Penetration Test, SPT) 9 2.4.2 圓錐貫入試驗(Cone Penetration Test, CPT) 10 2.4.3 跨孔式試驗(Cross-hole Seismic Test) 11 2.4.4 下孔式試驗(Downhole Test) 12 2.4.5 表面波譜法(Spectral Analysis of Surface Waves, SASW) 12 2.5 評估液化潛能之應力法-Critical layer 13 2.5.1 Seed et al. (1985) 14 2.5.2 Moss et al. (2006) 14 2.5.3 Hu and Liu (2019) 15 2.5.4 Hwang et al. (2021) 15 2.6 評估液化潛能之應力法經驗式 16 2.6.1 Seed et al. (1985) 16 2.6.2 Tokimatsu and Yoshimi (1983) 18 2.6.3 AIJ法(2001) 19 2.6.4日本道路協會(JRA1990法) 20 2.6.5 NCEER (1997) 21 2.6.6 NCEER (2001) 22 2.6.7 Shibata and Teparaksa (1988) 22 2.6.8 NCEER(1997) 23 2.6.9 NCEER (2001) 24 2.6.10 Juang et al. (2003) 24 2.6.11 Boulanger and Idriss (2016) 25 2.6.12 Ku and Juang (2012) 26 2.6.13 NCEER (1997) 27 2.6.14 NCEER (2001) 28 2.6.15 Kayen et al. (2013) 29 2.7 Generic model 30 2.8 HBM的應用 31 第三章 資料庫建構 32 3.1 資料庫介紹 33 3.2 資料蒐集方法 39 3.3 檢核資料庫的正確性 39 3.4 資料庫參數計算之假設 40 3.5 本研究資料庫資料與前人預測模型比對 42 3.6 本研究選用之預測模型 60 第四章 層級貝氏模型(HBM) 62 4.1 簡介 62 4.2 資料前處理 63 4.2.1 取自然對數 63 4.2.2 Johnson分布系統 64 4.3 HBM架構 71 4.4 RHBM架構 72 4.4.1 貝氏分析(Bayesian analysis) 72 4.4.2 封閉型式下的條件機率 73 4.4.3 學習階段(Learning stage) 75 4.4.4 推論階段(Inference stage) 80 第五章 模擬結果與案例驗證 82 5.1 超參數模擬結果 82 5.2 通用液化預測表現的比較 92 5.3特定地區場址液化預測表現的比較 95 第六章 結論與未來建議 107 6.1 結論 107 6.2 未來建議 108 參考文獻 109 附錄I 「Liquefaction /6/2759」資料庫 112 資料庫參考文獻 118 附錄II 口試問答紀錄 120 | - |
dc.language.iso | zh_TW | - |
dc.title | 基於全球資料庫的地區性土壤液化潛能預測 | zh_TW |
dc.title | Prediction for Regional Soil Liquefaction Potential Based on Global Database | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 王瑞斌;劉家男 | zh_TW |
dc.contributor.oralexamcommittee | Jui-Pin Wang;Chia-Nan Liu | en |
dc.subject.keyword | 大數據分析,改良式層級貝氏模型,Johnson 分布系統,土壤液化,全球資料庫,吉普森取樣法, | zh_TW |
dc.subject.keyword | Big data analysis,Revised Hierarchical Bayesian model,Johnson distribution system,Soil liquefaction,Global database,Gibbs sampler, | en |
dc.relation.page | 121 | - |
dc.identifier.doi | 10.6342/NTU202301693 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-07-19 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 土木工程學系 | - |
顯示於系所單位: | 土木工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf | 4.74 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。