請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88136
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李世光 | zh_TW |
dc.contributor.advisor | Chih-Kung Lee | en |
dc.contributor.author | 蕭原澧 | zh_TW |
dc.contributor.author | Yuan-Li Xiao | en |
dc.date.accessioned | 2023-08-08T16:27:40Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-08-08 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-07-19 | - |
dc.identifier.citation | [1] K. Yüksel, J. Jason, E. B. Kocal, M. L. A. Sainz, and M. Wuilpart, "An Overview of the Recent Advances in FBG-Assisted Phase-Sensitive OTDR Technique and its Applications," in 2020 22nd International Conference on Transparent Optical Networks (ICTON), 19-23 July 2020 2020, pp. 1-7, doi: 10.1109/ICTON51198.2020.9203322.
[2] ASCE, "2005 report card for America's infrastructure," 2005: American Society of Civil Engineers. [3] P. S. R. Z. Nikhil A. Khadse, "Modal Analysis of Aircraft Wing using Ansys Workbench Software Package," INTERNATIONAL JOURNAL OF ENGINEERING RESEARCH & TECHNOLOGY (IJERT) Volume 04, Issue 07 (July 2015), 2015, doi: http://dx.doi.org/10.17577/IJERTV4IS070291. [4] S. Dou et al., "Distributed acoustic sensing for seismic monitoring of the near surface: A traffic-noise interferometry case study," Scientific reports, vol. 7, no. 1, p. 11620, 2017. [5] H. Liu, J. Ma, T. Xu, W. Yan, L. Ma, and X. Zhang, "Vehicle detection and classification using distributed fiber optic acoustic sensing," IEEE Transactions on Vehicular Technology, vol. 69, no. 2, pp. 1363-1374, 2019. [6] S. Xu, Z. Qin, W. Zhang, and X. Xiong, "Monitoring vehicles on highway by dual-channel φ-OTDR," Applied Sciences, vol. 10, no. 5, p. 1839, 2020. [7] F. Peng, N. Duan, Y.-J. Rao, and J. Li, "Real-time position and speed monitoring of trains using phase-sensitive OTDR," IEEE Photonics Technology Letters, vol. 26, no. 20, pp. 2055-2057, 2014. [8] A. V. TIMOFEEV, "a Dmitry V. EGOROV. The Rail Traffic Management with Usage of C-OTDR Monitoring Systems," in ICCAR 2015: 17th International Conference on Control, Automation and Robotics, 2015. [9] S. Kepak et al., "Fibre optic track vibration monitoring system," Optical and Quantum Electronics, vol. 48, pp. 1-10, 2016. [10] Z. Qin, T. Zhu, L. Chen, and X. Bao, "High Sensitivity Distributed Vibration Sensor Based on Polarization-Maintaining Configurations of Phase-OTDR," IEEE Photonics Technology Letters, vol. 23, no. 15, pp. 1091-1093, 2011, doi: 10.1109/LPT.2011.2157337. [11] Z. Pan, K. Liang, J. Zhou, Q. Ye, H. Cai, and R. Qu, Interference-fading-free phase-demodulated OTDR system (OFS2012 22nd International Conference on Optical Fiber Sensor). SPIE, 2012. [12] G. Yang, X. Fan, S. Wang, B. Wang, Q. Liu, and Z. He, "Long-range distributed vibration sensing based on phase extraction from phase-sensitive OTDR," IEEE Photonics Journal, vol. 8, no. 3, pp. 1-12, 2016. [13] Y. Lu, T. Zhu, L. Chen, and X. Bao, "Distributed vibration sensor based on coherent detection of phase-OTDR," Journal of lightwave Technology, vol. 28, no. 22, pp. 3243-3249, 2010. [14] S. Feng, T. Xu, J. Huang, Y. Yang, L. Ma, and F. Li, "Sub-Meter Spatial Resolution Phase-Sensitive Optical Time-Domain Reflectometry System Using Double Interferometers," Applied Sciences, vol. 8, no. 10, p. 1899, 2018. [Online]. Available: https://www.mdpi.com/2076-3417/8/10/1899. [15] L. Marcon et al., Boosting the spatial resolution in chirped pulse ϕ-OTDR using sub-band processing (Seventh European Workshop on Optical Fibre Sensors). SPIE, 2019. [16] A. Barrias, J. R. Casas, and S. Villalba, "A Review of Distributed Optical Fiber Sensors for Civil Engineering Applications," Sensors, vol. 16, no. 5, doi: 10.3390/s16050748. [17] Z. Weiwen, L. Xin, and C. Jianping, "Brillouin Scattering in Optical Fibers and Its Application to Distributed Sensors," in Advances in Optical Fiber Technology, Y. Moh, A. Hamzah, and H. Sulaiman Wadi Eds. Rijeka: IntechOpen, 2015, p. Ch. 1. [18] C. Du, S. Dutta, P. Kurup, T. Yu, and X. Wang, "A review of railway infrastructure monitoring using fiber optic sensors," Sensors and Actuators A: Physical, vol. 303, p. 111728, 2020/03/01/ 2020, doi: https://doi.org/10.1016/j.sna.2019.111728. [19] H. Qiu, F. Min, and Y. Yang, "Fiber optic sensing technologies potentially applicable for hypersonic wind tunnel harsh environments," Advances in Aerodynamics, vol. 2, no. 1, p. 10, 2020/04/24 2020, doi: 10.1186/s42774-020-00033-y. [20] X. Zhong, S. Zhao, H. Deng, J. Zhang, and M. Ma, "Review of research on Φ-OTDR system based on pulse modulation," vol. 49, no. 10, p. 20200166, 2020, doi: 10.3788/irla20200166. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88136 | - |
dc.description.abstract | 本研究以光纖感測技術為基礎,探討結構環境振動監測等應用,並提出光纖布拉格光柵系統(FBG)及相位光時域反射儀系統(Phi-OTDR),並搭配自製光纖雷射放大器以實現結構健康監測,同時針對光纖區域所存在之外部擾動進行評估,由於一般大型客機自然頻率介於 16 Hz 至 934 Hz,為了獲得實時結構擾動狀況以降低共振頻率所造成之風險,透過光纖感測系統提供實時結構振動訊號,此系統之應用可結合於地震監測、大型土木結構及離岸風電等領域。
首先研究使用光纖布拉格光柵針對結構靜態載重進行量測,布拉格光柵具有高靈敏度和抗干擾能力,能夠對結構物進行高精度監測。透過不同載重變化導致反射波長產生偏移現象,除了探討外力所產生之波長偏移變化外,更說明光柵在結構監測上之應用情境,以及量測上之限制與瓶頸。 其次,研究使用傳統光時域反射儀原理延伸至相位光時域反射儀並檢測結構表面振動所引起的光纖纖芯變化,系統透過由光纖單一端產生之瑞利背向散射進行分析,由纖芯變化所引起相位的改變,可獲得結構振動頻率等重要參數,實驗中藉由光時域反射儀針對弱反射點進行探測,以獲得 4.2 公尺之空間分辨率,後者則透過接收瑞利背向散射訊號,將訊號切割與重建,並由後端訊號處理以獲得光纖區段之頻率響應,並量測將近 800Hz之頻率擾動。 研究中存在光功率不足等問題,為了提升光強度,開發光纖雷射共振腔系統以放大光信號,透過系統內部之摻鉺光纖在系統中來回傳遞反覆增益並將信號光訊號大幅提升至 13.4dbm,並探討系統內部相關元件對於系統效能的提升及系統模擬,增強後之光訊號結合相位光時域反射儀系統同時提升實驗上之低信噪比問題,並將信噪比提升至 7.8db,藉由信噪比的提升增加系統穩定度,以及減少雜訊所帶來之干擾,並針對光纖區域所存在之外部擾動進行評估。 | zh_TW |
dc.description.abstract | This study investigates the applications of fiber optic sensing technology in structural vibration monitoring and proposes the use of Fiber Bragg Grating (FBG) and Phase-Sensitive Optical Time-Domain Reflectometry (Phi-OTDR) systems, combined with a homemade fiber laser amplifier for structural health monitoring. The study focuses on evaluating external disturbances in the fiber optic region. The research aims to achieve real-time monitoring of structural vibrations to decrease the risks associated with resonance frequencies, considering that the natural frequencies of large aircraft range from 16 Hz to 934 Hz. The fiber optic sensing system provides real-time structural vibration signals and can be applied in areas such as earthquake monitoring, large-scale civil structures, and offshore wind power.
The study first utilizes fiber Bragg gratings to measure static loading on structures. FBGs offer high sensitivity and interference resistance, enabling precise monitoring of structures. By analyzing the wavelength shift caused by different load variations, the study examines the wavelength shift induced by external forces, as well as the application scenarios, limitations, and bottlenecks of using gratings in structural monitoring. Next, the study extends the principles of conventional optical time-domain reflectometry to Phi-OTDR and detects changes in the fiber core caused by surface vibrations of the structure. By analyzing the Rayleigh backscattering generated at a single end of the fiber, the system measures important parameters such as structural vibration frequency based on the phase change caused by core variation. The experiment detects weak reflection points using optical time-domain reflectometry to achieve a spatial resolution of 4.2 meters. For Phi-OTDR, the study receives the Rayleigh backscattering signals, segments and reconstructs them and processes the signals to obtain the frequency response of the fiber section, measuring frequency disturbances of nearly 800 Hz. The study encounters issues such as insufficient optical power. To enhance the optical intensity, a fiber laser resonator system is developed to amplify the optical signal. By utilizing an erbium-doped fiber within the system to repeatedly amplify the signal, the signal power is significantly increased to 13.4 dBm. The study investigates the improvement of system performance by incorporating relevant components and conducting system simulations. The enhanced optical signal, combined with the Phi-OTDR system, addresses the low signal-to-noise ratio issue in experiments, increasing the signal-to-noise ratio to 7.8 dB. The improved signal-to-noise ratio enhances system stability, reduces interference from noise, and evaluates external disturbances in the fiber optic region. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-08T16:27:40Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-08-08T16:27:40Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 致謝 i
中文摘要 ii Abstract iii 目錄 v 圖目錄 vii 表目錄 ix 第1章 緒論 1 1.1 前言 1 1.2 研究動機 1 1.3 文獻回顧 3 1.4 研究目標 5 1.5 論文架構 5 第2章 研究原理 7 2.1 光纖傳感技術 7 2.2 光纖傳播散射概述 8 2.3 散射應用比較 9 2.4 光纖布拉格光柵技術 (Optical Fiber Bragg Grating) 10 2.5 相位光時域反射儀傳感理論 12 2.5.1 傳統光時域反射儀原理(OTDR) 12 2.5.2 Phase-Optical Time Domain Reflectometer基本原理 14 2.6 高同調性脈衝雷射理論分析 15 2.7 光時域反射儀定位機制 16 2.8 相干原理及訊號處理 17 2.9 光源系統影響參數及性能指標 19 2.9.1 OTDR定位換算 19 2.9.2 脈衝光探測距離限制 19 2.9.3 空間分辨率 20 2.9.4 脈衝重複率 21 2.9.5 頻率響應限制 22 2.9.6 信號噪聲比概況 22 2.9.7 消光比概論 23 2.10 摻鉺光纖放大原理 24 2.11 本章小節 26 第3章 系統架設 27 3.1 Optical Fiber Bragg Grating實驗架設 27 3.2 Phase-Optical Time Domain Reflectometer實驗架設 27 3.3 Erbium-doped Optical Fiber Amplifier Simulation 30 第4章 實驗與結果 37 4.1 Fiber Bragg Grating靜態載重量測 37 4.2 OTDR(Optical Time Domain Reflectometer)量測 40 4.3 壓電環與驅動電壓之關係 41 4.3.1 電壓變化與相位變化關係 41 4.3.2 壓電環振動量測 43 4.4 實驗架設 45 4.4.1 1km裸光纖弱反射點探測 45 4.4.2 單擾動探測 49 4.4.3 雙擾動探測 55 4.5 EDFA光纖雷射系統架設 58 4.6 以光纖雷射建構相位光時域反射系統 61 第5章 結論及未來展望 64 5.1 結論 64 5.2 未來展望 65 參考文獻 66 | - |
dc.language.iso | zh_TW | - |
dc.title | 以光纖雷射建構相位光時域反射儀以供全域結構震動檢測 | zh_TW |
dc.title | Construction of Phase Optical Time Domain Reflectometer with Fiber Laser for Global Structural Vibration Detection | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 黃君偉;李舒昇;李翔傑 | zh_TW |
dc.contributor.oralexamcommittee | Jiun-Woei Huang;Shu-Sheng Lee;Hsiang-Chieh Lee | en |
dc.subject.keyword | 相位光時域反射儀,頻率振動檢測,光纖雷射放大器,FBG 光纖檢測, | zh_TW |
dc.subject.keyword | Phase Optical Time Domain Reflectometer,Frequency Vibration Detection,Fiber Laser Amplifier,FBG Fiber Detection, | en |
dc.relation.page | 67 | - |
dc.identifier.doi | 10.6342/NTU202301657 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2023-07-19 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 應用力學研究所 | - |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 目前未授權公開取用 | 7.56 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。