請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88121完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 駱尚廉 | zh_TW |
| dc.contributor.advisor | Shang-Lien Lo | en |
| dc.contributor.author | 鄭庭庭 | zh_TW |
| dc.contributor.author | Ting-Ting Cheng | en |
| dc.date.accessioned | 2023-08-08T16:23:30Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-08 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-07 | - |
| dc.identifier.citation | Azeumo, M. F., Germana, C., Ippolito, N. M., Franco, M., Luigi, P., and Settimio, S. (2019). "Photovoltaic module recycling, a physical and a chemical recovery process", Solar Energy Materials and Solar Cells, 193: 314-319.
BP-plc. bp Statistical Review of World Energy 2022. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2022-full-report.pdf (Jun. 2022.). Braga, A. F. B., Moreira, S. P., Zampieri, P. R., Bacchin, J. M. G., and Mei, P. R. (2008). "New processes for the production of solar-grade polycrystalline silicon: A review", Solar Energy Materials and Solar Cells, 92(4): 418-424. Breeze, P. (2014). Chapter 13 - Solar Power. In Paul Breeze (Ed.), Power Generation Technologies (Second Edition) (pp. 259-286). Newnes. https://doi.org/https://doi.org/10.1016/B978-0-08-098330-1.00013-2 BusinessAnalytiq. Potassium Hydroxide price index. https://businessanalytiq.com/procurementanalytics/index/potassium-hydroxide-price-index/ (Jun. 2023.). Bye, G., and Ceccaroli, B. (2014). "Solar grade silicon: Technology status and industrial trends", Solar Energy Materials and Solar Cells, 130: 634-646. ChemAnalyst. Chemical price trend. https://www.chemanalyst.com/ (Jun. 2023.). Chitra, Sah, D., Lodhi, K., Kant, C., Saini, P., and Kumar, S. (2020). "Structural composition and thermal stability of extracted EVA from silicon solar modules waste", Solar Energy, 211: 74-81. Chowdhury, M. S., Rahman, K. S., Chowdhury, T., Nuthammachot, N., Techato, K., Akhtaruzzaman, M., Tiong, S. K., Sopian, K., and Amin, N. (2020). "An overview of solar photovoltaic panels’ end-of-life material recycling", Energy Strategy Reviews, 27: 100431. Crist, B. V. The International XPS Database. https://xps-database.com/ (2019.). Deng, R., Chang, N. L., Ouyang, Z., and Chong, C. M. (2019). "A techno-economic review of silicon photovoltaic module recycling", Renewable and Sustainable Energy Reviews, 109: 532-550. Deng, R., Zhuo, Y., and Shen, Y. (2022). "Recent progress in silicon photovoltaic module recycling processes", Resources, Conservation and Recycling, 187: 106612. Dhilipan, J., Vijayalakshmi, N., Shanmugam, D. B., Jai Ganesh, R., Kodeeswaran, S., and Muralidharan, S. (2022). "Performance and efficiency of different types of solar cell material – A review", Materials Today: Proceedings, 66: 1295-1302. Dias, P., Javimczik, S., Benevit, M., and Veit, H. (2017). "Recycling WEEE: Polymer characterization and pyrolysis study for waste of crystalline silicon photovoltaic modules", Waste Management, 60: 716-722. Dias, P., Schmidt, L., Lunardi, M. M., Chang, N. L., Spier, G., Corkish, R., and Veit, H. (2021). "Comprehensive recycling of silicon photovoltaic modules incorporating organic solvent delamination – technical, environmental and economic analyses", Resources, Conservation and Recycling, 165: 105241. Dias, P. R., Benevit, M. G., and Veit, H. M. (2016). "Photovoltaic solar panels of crystalline silicon: Characterization and separation", Waste Management & Research, 34(3): 235-245. Doi, T., Tsuda, I., Unagida, H., Murata, A., Sakuta, K., and Kurokawa, K. (2001). "Experimental study on PV module recycling with organic solvent method", Solar Energy Materials and Solar Cells, 67(1): 397-403. Efaz, E. T., Rhaman, M. M., Imam, S. A., Bashar, K. L., Kabir, F., Mourtaza, M. D. E., Sakib, S. N., and Mozahid, F. A. (2021). "A review of primary technologies of thin-film solar cells", Engineering Research Express, 3(3): 032001. European Commission. Fourth list of critical raw materials (CRMs). https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52020DC0474&from=EN (Sep 3. 2020.). Granata, G., Pagnanelli, F., Moscardini, E., Havlik, T., and Toro, L. (2014). "Recycling of photovoltaic panels by physical operations", Solar Energy Materials and Solar Cells, 123: 239-248. Green, M. A., Dunlop, E. D., Hohl-Ebinger, J., Yoshita, M., Kopidakis, N., Bothe, K., Hinken, D., Rauer, M., and Hao, X. (2022). "Solar cell efficiency tables (Version 60)", Progress in Photovoltaics: Research and Applications, 30(7): 687-701. Green, M. A., Dunlop, E. D., Siefer, G., Yoshita, M., Kopidakis, N., Bothe, K., and Hao, X. (2023). "Solar cell efficiency tables (Version 61)", Progress in Photovoltaics: Research and Applications, 31(1): 3-16. Haque, A. (2016). Chapter 3 - Solar energy. In Muhammad H. Rashid (Ed.), Electric Renewable Energy Systems (pp. 40-59). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-804448-3.00003-7 HKEX. LME Aluminium Alloy Official Prices graph. Hong Kong Stock Exchange. https://www.lme.com/en/Metals/Non-ferrous/LME-Aluminium-Alloy#Price+graphs (Apr. 2023.). Hu, X., Ma, D., Zhang, G., Ling, M., Hu, Q., Liang, K., Lu, J., and Zheng, Y. (2023). "Microwave-assisted pyrolysis of waste plastics for their resource reuse: A technical review", Carbon Resources Conversion, 6(3): 215-228. Huang, W.-H., Shin, W. J., Wang, L., Sun, W.-C., and Tao, M. (2017). "Strategy and technology to recycle wafer-silicon solar modules", Solar Energy, 144: 22-31. Huang, Y.-F., Chiueh, P.-T., Kuan, W.-H., and Lo, S.-L. (2015). "Effects of lignocellulosic composition and microwave power level on the gaseous product of microwave pyrolysis", Energy, 89: 974-981. Ibn-Mohammed, T., Koh, S. C. L., Reaney, I. M., Acquaye, A., Schileo, G., Mustapha, K. B., and Greenough, R. (2017). "Perovskite solar cells: An integrated hybrid lifecycle assessment and review in comparison with other photovoltaic technologies", Renewable and Sustainable Energy Reviews, 80: 1321-1344. IEA. Snapshot of Global PV Markets 2023. International Energy Agency - Photovoltaic Power Systems Programme (IEA-PVPS). https://iea-pvps.org/wp-content/uploads/2023/04/IEA_PVPS_Snapshot_2023.pdf (Apr. 2023.). IRENA, I. End-of-life management: Solar Photovoltaic Panels. International Renewable Energy Agency (IRENA). https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2016/IRENA_IEAPVPS_End-of-Life_Solar_PV_Panels_2016.pdf (Jun. 2016.). ISE. PHOTOVOLTAICS REPORT. https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics-Report.pdf (Feb. 2023.). Jones, D. A., Lelyveld, T. P., Mavrofidis, S. D., Kingman, S. W., and Miles, N. J. (2002). "Microwave heating applications in environmental engineering—a review", Resources, Conservation and Recycling, 34(2): 75-90. Jung, B. J., Park, J. S., Seo, D. H., and Park, N. C. (2016). "Sustainable System for Raw-Metal Recovery from Crystalline Silicon Solar Panels: From Noble-Metal Extraction to Lead Removal", ACS Sustainable Chemistry & Engineering, 4(8): 4079-4083. Kang, S. M., Yoo, S. Y., Lee, J. N., Boo, B. H., and Ryu, H. J. (2012). "Experimental investigations for recycling of silicon and glass from waste photovoltaic modules", Renewable Energy, 47: 152-159. Kim, Y. J., and Lee, J. R. (2012). "Dissolution of ethylene vinyl acetate in crystalline silicon PV modules using ultrasonic irradiation and organic solvent", Solar Energy Materials and Solar Cells, 98: 317-322. Klugmann-Radziemska, E., and Ostrowski, P. (2010). "Chemical treatment of crystalline silicon solar cells as a method of recovering pure silicon from photovoltaic modules", Renewable Energy, 35(8): 1751-1759. Kuczyńska-Łażewska, A., Klugmann-Radziemska, E., Sobczak, Z., and Klimczuk, T. (2018). "Recovery of silver metallization from damaged silicon cells", Solar Energy Materials and Solar Cells, 176: 190-195. Letsrecycle. Glass prices 2023. https://www.letsrecycle.com/prices/glass/glass-prices-2023/ (Jun. 2023.). Lim, M. S. W., He, D., Tiong, J. S. M., Hanson, S., Yang, T. C. K., Tiong, T. J., Pan, G. T., and Chong, S. (2022). "Experimental, economic and life cycle assessments of recycling end-of-life monocrystalline silicon photovoltaic modules", Journal of Cleaner Production, 340: 130796. Luo, M., Liu, F., Zhou, Z., Jiang, L., Jia, M., Lai, Y., Li, J., and Zhang, Z. (2021). “A comprehensive hydrometallurgical recycling approach for the environmental impact mitigation of EoL solar cells ”, Journal of Environmental Chemical Engineering, 9(6): 106830. Maani, T., Celik, I., Heben, M. J., Ellingson, R. J., and Apul, D. (2020). "Environmental impacts of recycling crystalline silicon (c-SI) and cadmium telluride (CDTE) solar panels", Science of The Total Environment, 735: 138827. Mahmoudi, S., Huda, N., and Behnia, M. (2021). "Multi-levels of photovoltaic waste management: A holistic framework", Journal of Cleaner Production, 294: 126252. Moulder, J. F., Stickle, W. F., Sobol, P. E., and Bomben, K. D. Handbook of X-ray Photoelectron Spectroscopy. https://www.hic.ch.ntu.edu.tw/PES/file/%E5%8F%83%E8%80%83%E8%B3%87%E6%96%99/XPS%20handbook.pdf (1922.). Nakamura, M., Yamaguchi, K., Kimoto, Y., Yasaki, Y., Kato, T., and Sugimoto, H. (2019). "Cd-Free Cu(In,Ga)(Se,S)2 Thin-Film Solar Cell With Record Efficiency of 23.35%", IEEE Journal of Photovoltaics, 9(6): 1863-1867. Pagnanelli, F., Moscardini, E., Granata, G., Abo Atia, T., Altimari, P., Havlik, T., and Toro, L. (2017). "Physical and chemical treatment of end of life panels: An integrated automatic approach viable for different photovoltaic technologies", Waste Management, 59: 422-431. Park, J. S., Kim, W. O., Cho, N. J., Lee, H. S., and Park, N. C. (2016). "An eco-friendly method for reclaimed silicon wafers from a photovoltaic module: from separation to cell fabrication", Green Chemistry, 18(6): 1706-1714. Prasad, D. S., Sanjana, B., Kiran, D. S., Srinivasa Kumar, P. P., and Ratheesh, R. (2022). "Process optimization studies of essential parameters in the organic solvent method for the recycling of waste crystalline silicon photovoltaic modules", Solar Energy Materials and Solar Cells, 245: 111850. Rathore, N., Panwar, N. L., Yettou, F., and Gama, A. (2021). "A comprehensive review of different types of solar photovoltaic cells and their applications", International Journal of Ambient Energy, 42(10): 1200-1217. Saga, T. (2010). "Advances in crystalline silicon solar cell technology for industrial mass production", npg asia materials, 2(3): 96-102. Sah, D., Chitra, and Kumar, S. (2022).” Recovery and analysis of valuable materials from a discarded crystalline silicon solar module”, Solar Energy Materials and Solar Cells, 246: 111908. Sardi, B., Uno, I., Pasila, F., Altway, A., and Mahfud, M. (2023). "Low rank coal for fuel production via microwave-assisted pyrolysis: A review", FirePhysChem, 3(2): 106-120. Sharma, S., Jain, K. K., and Sharma, A. (2015). "Solar cells: in research and applications—a review", Materials Sciences and Applications, 6(12): 1145. Taiwan-EPA. Explanation of waste solar photovoltaic panel recycling plan. Taiwan-Environmental Protection Administration. https://pvis.epa.gov.tw/pvis/info/Plan (2023.). Taraba, M., Adamec, J., Danko, M., Drgona, P., and Urica, T. (2019). "Properties measurement of the thin film solar panels under adverse weather conditions", Transportation Research Procedia, 40: 535-540. Thirugnanasambandam, M., Iniyan, S., and Goic, R. (2010). "A review of solar thermal technologies", Renewable and Sustainable Energy Reviews, 14(1): 312-322. TPC. Electricity price table for the first half of 2023. Taiwan Power Company. https://www.taipower.com.tw/tc/page.aspx?mid=6635 (Jan. 2023.). Trading-Economics. Aluminum Price Trends. Trading Economics. https://tradingeconomics.com/commodity/aluminum (Jun. 2023.). Trading-Economics. Copper Price Trends. Trading Economics. https://tradingeconomics.com/commodity/copper (Jun. 2023.). Trading-Economics. Silver Price Trends. Trading Economics. https://tradingeconomics.com/commodity/silver (Jun. 2023.). TrandForce. PV Price Trends. https://www.trendforce.com/price/pv (Jun. 2023.). Tyagi, V. V., Rahim, N. A. A., Rahim, N. A., and Selvaraj, J. A. L. (2013). "Progress in solar PV technology: Research and achievement", Renewable and Sustainable Energy Reviews, 20: 443-461. U.S. Geological Survey. Mineral Commodity Summaries 2023. https://pubs.usgs.gov/periodicals/mcs2023/mcs2023.pdf (Jan 31. 2023.). VDMA. International Technology Roadmap for Photovoltaic (ITRPV) 2022 Results. Verband Deutscher Maschinen- und Anlagenbau. https://www.vdma.org/international-technology-roadmap-photovoltaic (Apr. 2023.). Wang, K., and Deng, Q. (2019). The Thermal and Mechanical Properties of Poly(ethylene-co-vinyl acetate) Random Copolymers (PEVA) and its Covalently Crosslinked Analogues (cPEVA). Polymers, 11(6). Wang, X., Tian, X., Chen, X., Ren, L., and Geng, C. (2022). "A review of end-of-life crystalline silicon solar photovoltaic panel recycling technology", Solar Energy Materials and Solar Cells, 248: 111976. Xu, Y., Li, J. H., Tan, Q. Y., Peters, A. L., and Yang, C. R. (2018). "Global status of recycling waste solar panels: A review", Waste Management, 75: 450-458. Yoshikawa, K., Yoshida, W., Irie, T., Kawasaki, H., Konishi, K., Ishibashi, H., Asatani, T., Adachi, D., Kanematsu, M., Uzu, H., and Yamamoto, K. (2017). "Exceeding conversion efficiency of 26% by heterojunction interdigitated back contact solar cell with thin film Si technology", Solar Energy Materials and Solar Cells, 173: 37-42. Zhang, C. F., Ma, Q., Cai, M. Y., Zhao, Z. Q., Xie, H. W., Ning, Z. Q., Wang, D. H., and Yin, H. Y. (2021). "Recovery of porous silicon from waste crystalline silicon solar panels for high-performance lithium-ion battery anodes", Waste Management, 135: 182-189. 吳育任,吳鎮國,林鴻,盧以昕,許仲成,陳欣卉。淺談太陽能電池的原理與應用。https://ee.ntu.edu.tw/upload/hischool/doc/2014.04.pdf(2014)。 周思伶(2017)。利用微波裂解回收廢印刷電路板之貴金屬。國立臺灣大學工學院環境工程研究所碩士論文,臺北市。 王勝遠(2017)。微波誘發裂解回收廢液晶顯示器之銦。國立臺灣大學工學院環境工程研究所碩士論文,臺北市。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88121 | - |
| dc.description.abstract | 隨著低碳排的目標,光伏技術正在迅速發展,全球的太陽能板安裝量呈指數增長,與此同時,世界正在應對廢棄太陽能板數量激增的問題。最早發展的技術為矽晶太陽能板,也是當前佔據市場的主要類型。矽晶太陽能板顧名思義光吸收層是由矽晶所構成,雖然矽是地球上數一數二豐富的資源,但隨著高科技發展,矽廣泛應用於半導體業,為促進生活便利不可或缺的材料,然而製造高純度的矽會導致環境污染。如果能有效回收矽,不僅可以節約自然資源也可以降低環境污染。
本研究使用微波裂解前處理方式,去除廢棄矽晶太陽能板中的黏著劑乙烯醋酸乙烯酯(ethylene vinyl acetate, EVA);接著使用兩階段濕式冶金法來依序回收鋁元素及銀元素;最後使用兩步驟化學蝕刻法,將矽晶上的反抗射塗層(anti-reflection coating, ARC)及發射極層(emitter)去除,回收高純度矽晶。 在微波裂解前處理程序中,以 150 W 功率下反應 40 分鐘,將廢棄矽晶太陽能板層與層間的 EVA 完全去除。於第一階段濕式冶金,利用 9 M 硫酸於反應溫度 70℃ 下將 92.33% 金屬鋁從矽晶上回收;而第二階段濕式冶金,使用 5 M 硝酸於常溫下將金屬銀完全從矽晶上回收,並進一步以鹽酸純化出氯化銀固體。最後化學蝕刻依序使用磷酸及氫氧化鉀,分別將 ARC 層及 emitter 層去除。 本研究成果顯示,使用微波裂解進行前處理能於更短時間內去除黏著劑,降低反應程序的能源消耗。兩步驟的濕式冶金,減低金屬回收間相互干擾,良好的分離鋁及銀。兩步驟的化學蝕刻,避免使用到氫氟酸,降低程序中的危險性。 | zh_TW |
| dc.description.abstract | With the benefits of greenhouse gas emission reduction global installation of solar panels using photovoltaic (PV) technology is growing exponentially. At the same time, the world needs to cope with a surge in the number of waste solar panels. The crystalline silicon solar panels are currently the dominant ones in the solar panel market. The absorbing layer of a crystalline silicon solar panel is composed of crystalline silicon. Silicon is one of the most abundant minerals on Earth and it is widely used in the semiconductor industry and is also an indispensable material in our daily lives. However, manufacturing high-purity silicon may cause environmental pollution. If we can recycle silicon, it not only conserves natural resources, but also reduces environmental pollution.
In this study, microwave pyrolysis (MP) pre-treatment was used to remove the adhesive ethylene vinyl acetate (EVA) from waste crystalline silicon solar panels. A two-stage hydrometallurgical process was sequentially used to recover aluminum and silver elements. Finally, a two-step chemical etching was used to remove the anti-reflection coating (ARC) and emitter layer on the crystal silicon. Consequently, high-purity silicon could be recovered. Removal of the EVA between the layers of a waste crystalline silicon solar panel was successfully achieved by MP at 150 W treat in 40 minutes. Sulfuric acid and nitric acid were used to hydrometallurgical by the waste crystalline silicon solar cell for aluminum and silver recovery. Using 9 M sulfuric acid at 70 ℃, 92.33 % of aluminum was recovered. Silver was completely recovered with 5 M nitric acid under room temperatures, and the solid silver chloride was purified using hydrochloric acid. Finally, chemical etching was conducted, using phosphoric acid and potassium hydroxide, to remove the ARC layer and the emitter layer. Results of this study show that using MP pre-treatment could remove EVA in a short period of time with less energy consumption. The two-step hydrometallurgical process avoided interferences between the aluminum and silver recovery and achieved a good separation of aluminum and silver. The two-step chemical etching avoided the use of hydrofluoric acid and minimize the health risk during the treatment process. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-08T16:23:30Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-08T16:23:30Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
致謝 II 摘要 III Abstract IV 目錄 VI 圖目錄 IX 表目錄 XI 第一章 緒論 1 1.1 研究緣起 1 1.2 研究目的 3 1.3 研究內容 3 第二章 文獻回顧 4 2.1 太陽能電池 4 2.2 太陽能電池的種類與發展 6 2.3 矽晶太陽能板 8 2.3.1 矽晶太陽能板組成 9 2.3.2 廢棄太陽能板現狀 11 2.3.3 廢棄矽晶太陽能板的危害 12 2.4 矽 13 2.4.1 矽的基本性質 13 2.4.2 矽在工業上之應用 14 2.5 矽晶太陽能板回收前處理 15 2.5.1 物理機械分離 15 2.5.2 熱裂解 16 2.5.3 有機溶劑分解 16 2.5.4 微波輔助裂解 17 2.5.5 超聲波 18 2.6 矽晶太陽能電池之金屬回收 19 2.6.1 濕式冶金 19 2.6.2 化學沉澱 21 2.6.3 金屬置換 22 2.6.4 電解提煉 22 2.7 矽晶太陽能電池之矽晶回收 23 2.7.1 化學蝕刻 23 2.7.2 機械研磨 24 2.8 小結 24 第三章 材料與方法 26 3.1 研究架構 26 3.2 實驗材料與設備 27 3.2.1 實驗樣品 27 3.2.3 實驗設備 28 3.2.2 實驗藥品 29 3.3 實驗儀器分析方法 29 3.3.1 熱重分析儀 29 3.3.2 高溫鍛燒爐 30 3.3.3 聚焦式微波加熱設備 30 3.3.4 感應耦合電漿原子發射光譜儀 33 3.3.5 微波消化儀 35 3.3.6 濕式冶金及化學蝕刻實驗 36 3.3.7 掃描式電子顯微鏡 36 3.3.8 X射線繞射分析儀 37 3.3.9 X射線光電子能譜儀 37 第四章 實驗結果與討論 39 4.1 前處理 39 4.1.1 矽晶電池之基本性質 40 4.1.2 矽晶太陽能板之近似分析 42 4.1.3 矽晶太陽能板之熱重分析 43 4.1.4 微波裂解 44 4.1.5 傳統裂解 50 4.1.6 前處理流程比較 53 4.2 元素分析及樣品製備 54 4.2.1 元素分析 55 4.2.2 樣品製備 57 4.3 第一階段濕式冶金:鋁回收 58 4.3.1 鋁回收分析 59 4.3.2 不同前處理方法之鋁回收效果 63 4.3.3 鋁浸出液成分分析 64 4.3.4 矽晶電池外觀分析 64 4.4 第二階段濕式冶金:銀回收 66 4.4.1 銀回收分析 67 4.4.2 銀浸出液成分分析 69 4.4.3 矽晶電池外觀分析 72 4.5 化學蝕刻:矽晶回收 74 4.5.1 抗反射塗層去除 74 4.5.2 發射極層去除 80 4.6 矽晶太陽能板回收程序成果 84 4.7 回收廢棄矽晶太陽能板之經濟分析 85 第五章 結論與建議 89 5.1結論 89 5.2 建議 90 參考文獻 92 附錄 98 附錄1 前處理後樣品元素含量分析 98 附錄2 150 W微波裂解前處理實驗結果記錄 100 附錄3 ICP之檢量線 103 附錄4 回收材料歷年價格 105 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 廢棄矽晶太陽能板 | zh_TW |
| dc.subject | 矽晶回收 | zh_TW |
| dc.subject | 金屬回收 | zh_TW |
| dc.subject | 微波裂解 | zh_TW |
| dc.subject | 濕式冶金 | zh_TW |
| dc.subject | Hydrometallurgical | en |
| dc.subject | Microwave pyrolysis | en |
| dc.subject | Waste crystalline silicon solar panels | en |
| dc.subject | Metal recycling | en |
| dc.subject | Silicon crystal recycling | en |
| dc.title | 廢棄矽晶太陽能板矽資源化 | zh_TW |
| dc.title | Recycling of Silicon from Waste Silicon Solar Panel | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 郭繼汾;黃于峯;李育輯 | zh_TW |
| dc.contributor.oralexamcommittee | Jeff Kuo;Yu-Fong Huang;Yu-Chi Lee | en |
| dc.subject.keyword | 廢棄矽晶太陽能板,微波裂解,濕式冶金,金屬回收,矽晶回收, | zh_TW |
| dc.subject.keyword | Waste crystalline silicon solar panels,Microwave pyrolysis,Hydrometallurgical,Metal recycling,Silicon crystal recycling, | en |
| dc.relation.page | 106 | - |
| dc.identifier.doi | 10.6342/NTU202301277 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-07-11 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 環境工程學研究所 | - |
| dc.date.embargo-lift | 2028-07-05 | - |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 24 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
