Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88113
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂聖元zh_TW
dc.contributor.advisorSheng-Yuan Liuen
dc.contributor.author李漢琮zh_TW
dc.contributor.authorHan-Tsung Leeen
dc.date.accessioned2023-08-08T16:21:28Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-08-
dc.date.issued2023-
dc.date.submitted2023-07-12-
dc.identifier.citationAñez-López, N., Busquet, G., Koch, P. M., et al. 2020, A&A, 644, A52, doi: 10.1051/ 0004-6361/202039152
André, P., Di Francesco, J., Ward-Thompson, D., et al. 2014, in Protostars and Planets VI, ed. H. Beuther, R. S. Klessen, C. P. Dullemond, & T. Henning, 27–51, doi: 10.2458/azu_uapress_9780816531240-ch002
Armijos-Abendaño, J., Banda-Barragán, W. E., Martín-Pintado, J., et al. 2020, MNRAS, 499, 4918, doi: 10.1093/mnras/staa3119
Balfour, S. K., Whitworth, A. P., & Hubber, D. A. 2017, MNRAS, 465, 3483, doi: 10.1093/mnras/stw2956
Beckwith, S. V. W., Sargent, A. I., Chini, R. S., & Guesten, R. 1990, AJ, 99, 924, doi: 10.1086/115385
Belloche, A. 2013, in EAS Publications Series, Vol. 62, EAS Publications Series, ed. P. Hennebelle & C. Charbonnel, 25–66, doi: 10.1051/eas/1362002
Beuther, H., Henning, T., Linz, H., et al. 2010, A&A, 518, L78, doi: 10.1051/0004-6361/201014532
Beuther, H., Ragan, S. E., Johnston, K., et al. 2015, A&A, 584, A67, doi: 10.1051/0004-6361/201527108
Beuther, H., Schilke, P., Menten, K. M., et al. 2002, ApJ, 566, 945, doi: 10.1086/338334
Beuther, H., & Steinacker, J. 2007, ApJL, 656, L85, doi: 10.1086/512363
Chandrasekhar, S., & Fermi, E. 1953, ApJ, 118, 116, doi: 10.1086/145732
Chapin, E. L., Berry, D. S., Gibb, A. G., et al. 2013, MNRAS, 430, 2545, doi: 10.1093/mnras/stt052
Chen, C.-Y., Mundy, L. G., Ostriker, E. C., Storm, S., & Dhabal, A. 2020, MNRAS, 494, 3675, doi: 10.1093/mnras/staa960
Chen, H.-R. V., Zhang, Q., Wright, M. C. H., et al. 2019, ApJ, 875, 24, doi: 10.3847/1538-4357/ab0f3e
Ching, T.-C., Lai, S.-P., Zhang, Q., et al. 2017, ApJ, 838, 121, doi: 10.3847/1538-4357/aa65cc
Clarke, S. D., Whitworth, A. P., Duarte-Cabral, A., & Hubber, D. A. 2017, MNRAS, 468, 2489, doi: 10.1093/mnras/stx637
Commerçon, B., Hennebelle, P., & Henning, T. 2011, ApJL, 742, L9, doi: 10.1088/2041-8205/742/1/L9
Cosentino, G., Jiménez-Serra, I., Henshaw, J. D., et al. 2018, MNRAS, 474, 3760, doi: 10.1093/mnras/stx3013
Cosentino, G., Jiménez-Serra, I., Henshaw, J. D., et al. 2020, MNRAS, 499, 1666, doi: 10.1093/mnras/staa2942
Crutcher, R. M., Nutter, D. J., Ward-Thompson, D., & Kirk, J. M. 2004, ApJ, 600, 279, doi: 10.1086/379705
Csengeri, T., Bontemps, S., Wyrowski, F., et al. 2017, A&A, 600, L10, doi: 10.1051/0004-6361/201629754
Davis, L. 1951, Physical Review, 81, 890, doi: 10.1103/PhysRev.81.890.2 Fallscheer, C., Beuther, H., Zhang, Q., Keto, E., & Sridharan, T. K. 2009, A&A, 504, 127, doi: 10.1051/0004-6361/200912307
Fontani, F., Commerçon, B., Giannetti, A., et al. 2018, A&A, 615, A94, doi: 10.1051/0004-6361/201832672
Fontani, F., Commerçon, B., Giannetti, A., et al. 2016, A&A, 593, L14, doi: 10.1051/0004-6361/201629442
Friberg, P., Bastien, P., Berry, D., et al. 2016, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 9914, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VIII, ed. W. S. Holland & J. Zmuidzinas, 991403, doi: 10.1117/12.2231943
Ginsburg, A., & Mirocha, J. 2011, PySpecKit: Python Spectroscopic Toolkit, Astrophysics Source Code Library, record ascl:1109.001. http://ascl.net/1109.001
Goldsmith, P. F., & Arquilla, R. 1985, in Protostars and Planets II, ed. D. C. Black & M. S. Matthews, 137–149
Hacar, A., Clark, S., Heitsch, F., et al. 2022, arXiv e-prints, arXiv:2203.09562, doi: 10.48550/arXiv.2203.09562
Hacar, A., Tafalla, M., & Alves, J. 2017, A&A, 606, A123, doi: 10.1051/0004-6361/201630348
Heitsch, F. 2013, ApJ, 769, 115, doi: 10.1088/0004-637X/769/2/115
Hennebelle, P., Commerçon, B., Joos, M., et al. 2011, A&A, 528, A72, doi: 10.1051/0004-6361/201016052
Hennebelle, P., Commerçon, B., Lee, Y.-N., & Chabrier, G. 2020, ApJ, 904, 194, doi: 10.3847/1538-4357/abbfab
Hildebrand, R. H., Dragovan, M., & Novak, G. 1984, ApJL, 284, L51, doi: 10.1086/184351
Houde, M., Vaillancourt, J. E., Hildebrand, R. H., Chitsazzadeh, S., & Kirby, L. 2009, ApJ, 706, 1504, doi: 10.1088/0004-637X/706/2/1504
Jiménez-Serra, I., Caselli, P., Tan, J. C., et al. 2010, MNRAS, 406, 187, doi: 10.1111/j.1365-2966.2010.16698.x
Kavak, Ü., Sánchez-Monge, Á., López-Sepulcre, A., et al. 2021, A&A, 645, A29, doi: 10.1051/0004-6361/202037652
Lazarian, A., & Hoang, T. 2007, MNRAS, 378, 910, doi: 10.1111/j.1365-2966.2007.11817.x
Levshakov, S. A., Reimers, D., & Henkel, C. 2016, A&A, 586, A126, doi: 10.1051/0004-6361/201527783
Li, H.-B., Yuen, K. H., Otto, F., et al. 2015, Nature, 520, 518, doi: 10.1038/nature14291
Lin, Y., Wyrowski, F., Liu, H. B., et al. 2022, A&A, 658, A128, doi: 10.1051/0004-6361/202142023
Liu, T., Evans, N. J., Kim, K.-T., et al. 2020, MNRAS, 496, 2790, doi: 10.1093/mnras/staa1577
Louvet, F., Motte, F., Gusdorf, A., et al. 2016, A&A, 595, A122, doi: 10.1051/0004-6361/201629077
Lu, X., Zhang, Q., Liu, H. B., Wang, J., & Gu, Q. 2014, ApJ, 790, 84, doi: 10.1088/0004-637X/790/2/84
Marsh, K. A., Whitworth, A. P., Lomax, O., et al. 2017, MNRAS, 471, 2730, doi: 10.1093/mnras/stx1723
Martin-Pintado, J., Bachiller, R., & Fuente, A. 1992, A&A, 254, 315
Mathew, S. S., & Federrath, C. 2021, MNRAS, 507, 2448, doi: 10.1093/mnras/stab2338
McKee, C. F., & Ostriker, E. C. 2007, ARA&A, 45, 565, doi: 10.1146/annurev.astro.45.051806.110602
Mouschovias, T. C., & Ciolek, G. E. 1999, in NATO Advanced Study Institute (ASI) Series C, Vol. 540, The Origin of Stars and Planetary Systems, ed. C. J. Lada & N. D. Kylafis, 305
Ostriker, E. C., Stone, J. M., & Gammie, C. F. 2001, ApJ, 546, 980, doi: 10.1086/318290
Palau, A., Zhang, Q., Girart, J. M., et al. 2021, ApJ, 912, 159, doi: 10.3847/1538-4357/abee1e
Peretto, N., & Fuller, G. A. 2010, ApJ, 723, 555, doi: 10.1088/0004-637X/723/1/555
Peretto, N., Gaudel, M., Louvet, F., et al. 2015, in EAS Publications Series, Vol. 75-76, EAS Publications Series, 167–170, doi: 10.1051/eas/1575029
Pineda, J. E., Arzoumanian, D., André, P., et al. 2022, arXiv e-prints, arXiv:2205.03935, doi: 10.48550/arXiv.2205.03935
Primiani, R. A., Young, K. H., Young, A., et al. 2016, Journal of Astronomical Instrumentation, 5, 1641006, doi: 10.1142/S2251171716410063
Ragan, S. E., Bergin, E. A., & Wilner, D. 2011, ApJ, 736, 163, doi: 10.1088/0004-637X/736/2/163
Rosolowsky, E. W., Pineda, J. E., Kauffmann, J., & Goodman, A. A. 2008, ApJ, 679, 1338, doi: 10.1086/587685
Russeil, D., Tigé, J., Adami, C., et al. 2016, A&A, 587, A135, doi: 10.1051/0004-6361/201424484
Sault, R. J., Teuben, P. J., & Wright, M. C. H. 1995, in Astronomical Society of the Pacific Conference Series, Vol. 77, Astronomical Data Analysis Software and Systems IV, ed. R. A. Shaw, H. E. Payne, & J. J. E. Hayes, 433. https://arxiv.org/abs/astro-ph/0612759
Schilke, P., Walmsley, C. M., Pineau des Forets, G., & Flower, D. R. 1997, A&A, 321, 293
Shepherd, D. S., Nürnberger, D. E. A., & Bronfman, L. 2004, ApJ, 602, 850, doi: 10.1086/381050
Sridharan, T. K., Beuther, H., Schilke, P., Menten, K. M., & Wyrowski, F. 2002, ApJ, 566, 931, doi: 10.1086/338332
Tackenberg, J., Beuther, H., Henning, T., et al. 2014, A&A, 565, A101, doi: 10.1051/0004-6361/201321555
Tang, Y.-W., Koch, P. M., Peretto, N., et al. 2019, ApJ, 878, 10, doi: 10.3847/1538-4357/ab1484
Tatematsu, K., Ohashi, S., Sanhueza, P., et al. 2016, PASJ, 68, 24, doi: 10.1093/pasj/psw002
Wang, J.-W., Koch, P. M., Tang, Y.-W., et al. 2022, ApJ, 931, 115, doi: 10.3847/1538-4357/ac6872
Williams, G. M., Peretto, N., Avison, A., Duarte-Cabral, A., & Fuller, G. A. 2018, A&A, 613, A11, doi: 10.1051/0004-6361/201731587
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88113-
dc.description.abstract本文使用JCMT和SMA望遠鏡的毫米及次毫米偏振光觀測進行對星際絲狀紅外暗雲SDC18.624-0.070的多尺度磁場研究。我們發現磁場總是垂直於各尺度結構(絲狀、分子雲團塊及分子雲核)的主軸。雖然平均磁場方向改變了不到10度,但磁場位置角的標準差隨著尺度變小而增大。從多解析度N2H+譜線觀測量到的速度梯度也垂直於絲狀結構的主軸。這些特徵符合磁場可以影響重力塌縮方向的強磁場模型的預測。我們根據觀測到的瀰漫SiO輻射以及角動量對轉動半徑的關係提出上述的磁場以及速度梯度可以由大尺度湍流的碰撞及絲狀結構的旋轉產生。經由測量重力,磁場及湍流在多尺度下的能量密度,我們發現重力,磁場及湍流的相對重要性與分子雲團塊的碎斷有關聯。呈現較少碎斷的SDC18-S相較於呈現較多碎斷的SDC18-N有更強的磁場強度,意味著更強的磁場可以抑制分子雲團塊的碎斷。zh_TW
dc.description.abstractWe present a multiscale study of the magnetic field toward the filamentary infrared dark cloud SDC18.624-0.070 using dust polarization continuum observations at 850 μm and 1.3 mm with various resolutions from the JCMT and the SMA. Our observations cover filament (~10 pc), filament-embedded clump (~1 pc), isolated clump (~0.1 pc), and clump-embedded core (~0.01 pc) scales, which are central to investigate the impact of the magnetic field on fragmentation. We find a magnetic field which is predominantly perpendicular to the major axes of all structures (filament, clumps, and cores). While its mean orientation is preserved within about 10 degree, a systematically increasing field dispersion toward smaller scales indicates a growing impact of gravity. Velocity gradients traced with N2H+ with resolutions similar to the polarization observations are also perpendicular to the filament's major axis. All these features suggest that the magnetic field constrains the direction of accretion and initial contraction as predicted by strong-field models. We argue that the observed magnetic field and velocity gradient can result from a combination of converging flows, based on a detected SiO component along the filament, and rotation, based on the measured N2H+ specific angular momentum profile. A multiscale energy analysis of gravity, magnetic field, and turbulence quantifying their relative importance shows that SDC18-S, displaying less fragmentation, has a larger field strength than SDC18-N which harbors more fragments. A faster (SDC18-N) and slower transition (SDC18-S) to a gravity-dominated regime is found to explain the different fragmentation at clump-embedded core scale, with the stronger magnetic field in SDC18-S suppressing fragmentation more.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-08T16:21:28Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-08T16:21:28Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements i
摘要 ii
Abstract iii
Contents v
List of Figures vii
List of Tables viii
Chapter 1 Introduction 1
Chapter 2 Observations and Data Reduction 5
2.1 JCMT/POL-2 polarization observation 5
2.2 SMA polarization observation 7
2.3 Molecular line data 8
Chapter 3 Results 10
3.1 JCMT Dust Continuum and Polarized Emission – Filament and Filament-embedded Clumps 10
3.2 SMA Dust Continuum and Polarized Emission – Isolated Clumps and Clump-embedded Cores 11
3.3 Gas Kinematics across Multiple Scales 14
3.4 Extended SiO Emission along the 10pc Filament 17
Chapter 4 Analyses and Discussion 19
4.1 Filament Formation Mechanism and Dynamics 19
4.1.1 Observational evidences of converging flow models 19
4.1.2 Rotation signature and converging flows with non-zero impact parameter 21
4.2 Magnetic Field Strength – Density Scaling: From Embedded to Isolated and Fragmenting Clumps 24
4.3 Evolution of Magnetic Field Morphologies across Scales – Strong Magnetic Field from Filament to Clumps and to Cores 28
4.4 Relative Importance of Magnetic Field, Gravity, and Turbulence from Filament to Clumps and to Cores 31
Chapter 5 Conclusions 39
References 42
Appendix A — Polarization 49
-
dc.language.isoen-
dc.subject星際磁場zh_TW
dc.subject星際介質zh_TW
dc.subject偏振測量zh_TW
dc.subject恆星形成zh_TW
dc.subject星際絲狀結構zh_TW
dc.subject分子雲zh_TW
dc.subject紅外暗雲zh_TW
dc.subjectMolecular cloudsen
dc.subjectInfrared dark cloudsen
dc.subjectInterstellar filamentsen
dc.subjectInterstellar magnetic fieldsen
dc.subjectInterstellar mediumen
dc.subjectPolarimetryen
dc.subjectStar formationen
dc.title對星際絲狀紅外暗雲SDC18的碎斷與磁場的多尺度研究zh_TW
dc.titleA Multiscale Study of Fragmentation and Magnetic Field to the Filamentary Infrared Dark Cloud SDC18en
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.coadvisor湯雅雯zh_TW
dc.contributor.coadvisorYa-Wen Tangen
dc.contributor.oralexamcommittee陳文屏;賴詩萍;平野尚美zh_TW
dc.contributor.oralexamcommitteeWen-Ping Chen;Shih-Ping Lai;Naomi Hiranoen
dc.subject.keyword紅外暗雲,分子雲,星際絲狀結構,星際磁場,星際介質,偏振測量,恆星形成,zh_TW
dc.subject.keywordInfrared dark clouds,Molecular clouds,Interstellar filaments,Interstellar magnetic fields,Interstellar medium,Polarimetry,Star formation,en
dc.relation.page51-
dc.identifier.doi10.6342/NTU202301478-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-07-13-
dc.contributor.author-college理學院-
dc.contributor.author-dept物理學系-
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
5.37 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved