Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88089
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林裕彬zh_TW
dc.contributor.advisorYu-Pin Linen
dc.contributor.authorAndrianto Ansarizh_TW
dc.contributor.authorAndrianto Ansarien
dc.date.accessioned2023-08-08T16:14:54Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-08-
dc.date.issued2023-
dc.date.submitted2023-07-12-
dc.identifier.citationAbalos, D., Recous, S., Butterbach-Bahl, K., De Notaris, C., Rittl, T.F., Topp, C.F.E., Petersen, S.O., Hansen, S., Bleken, M.A., Rees, R.M., Olesen, J.E., 2022. A review and meta-analysis of mitigation measures for nitrous oxide emissions from crop residues. Sci. Total Environ. 828. https://doi.org/10.1016/j.scitotenv.2022.154388
Abdalla, M., Jones, M., Smith, P., Williams, M., 2009. Nitrous oxide fluxes and denitrification sensitivity to temperature in Irish pasture soils. Soil Use Manag. 25, 376–388. https://doi.org/10.1111/j.1475-2743.2009.00237.x
Akiyama, H., Yagi, K., Yan, X., 2005. Direct N2O emissions from rice paddy fields: Summary of available data. Global Biogeochem. Cycles 19, 1–10. https://doi.org/10.1029/2004GB002378
Albina, P., Durban, N., Bertron, A., Albrecht, A., Robinet, J.-C., Erable, B., 2019. Influence of hydrogen electron donor, alkaline pH, and high nitrate concentrations on microbial denitrification: a review. Int. J. Mol. Sci. 20, 5163.
Alster, C.J., Baas, P., Wallenstein, M.D., Johnson, N.G., Von Fischer, J.C., 2016. Temperature sensitivity as a microbial trait using parameters from macromolecular rate theory. Front. Microbiol. 7, 1821.
Alster, C.J., Weller, Z.D., von Fischer, J.C., 2018. A meta‐analysis of temperature sensitivity as a microbial trait. Glob. Chang. Biol. 24, 4211–4224.
Alves de Oliveira, B.F., Bottino, M.J., Nobre, P., Nobre, C.A., 2021. Deforestation and climate change are projected to increase heat stress risk in the Brazilian Amazon. Commun. Earth Environ. 2, 1–8.
Annavajhala, M.K., Kapoor, V., Santo-Domingo, J., Chandran, K., 2018. Comammox Functionality Identified in Diverse Engineered Biological Wastewater Treatment Systems. Environ. Sci. Technol. Lett. 5, 110–116. https://doi.org/10.1021/acs.estlett.7b00577
Babu, Y.J., Li, C., Frolking, S., Nayak, D.R., Adhya, T.K., 2006. Field validation of DNDC model for methane and nitrous oxide emissions from rice-based production systems of India. Nutr. Cycl. Agroecosystems 74, 157–174.
Baggs, E.M., 2011. Soil microbial sources of nitrous oxide: recent advances in knowledge, emerging challenges and future direction. Curr. Opin. Environ. Sustain. 3, 321–327. https://doi.org/https://doi.org/10.1016/j.cosust.2011.08.011
Bardgett, R.D., Van Der Putten, W.H., 2014. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511.
Barrena, I., Menéndez, S., Correa-Galeote, D., Vega-Mas, I., Bedmar, E.J., González-Murua, C., Estavillo, J.M., 2017. Soil water content modulates the effect of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on nitrifying and denitrifying bacteria. Geoderma 303, 1–8. https://doi.org/10.1016/j.geoderma.2017.04.022
Barth, G., Von Tucher, S., Schmidhalter, U., 2001. Influence of soil parameters on the effect of 3, 4-dimethylpyrazole-phosphate as a nitrification inhibitor. Biol. Fertil. Soils 34, 98–102.
Beeckman, F., Motte, H., Beeckman, T., 2018. Nitrification in agricultural soils: impact, actors and mitigation. Curr. Opin. Biotechnol. 50, 166–173. https://doi.org/10.1016/j.copbio.2018.01.014
Beheydt, D., Boeckx, P., Sleutel, S., Li, C., Van Cleemput, O., 2007. Validation of DNDC for 22 long-term N2O field emission measurements. Atmos. Environ. 41, 6196–6211.
Belser, L.W., Mays, E.L., 1980. Specific inhibition of nitrite oxidation by chlorate and its use in assessing nitrification in soils and sediments. Appl. Environ. Microbiol. 39, 505–510.
Benckiser, G., Christ, E., Herbert, T., Weiske, A., Blome, J., Hardt, M., 2013. The nitrification inhibitor 3, 4-dimethylpyrazole-phosphat (DMPP)-quantification and effects on soil metabolism. Plant Soil 371, 257–266.
Bennett, M.R., Brown, G.M., Maya, L., Posey, F.A., 1982. Oxidation of Hydroxylamine by Nitrous and Nitric Acids. Inorg. Chem. 21, 2461–2468. https://doi.org/10.1021/ic00136a066
Benoit, M., Garnier, J., Billen, G., 2015. Temperature dependence of nitrous oxide production of a luvisolic soil in batch experiments. Process Biochem. 50, 79–85. https://doi.org/10.1016/j.procbio.2014.10.013
Bentzon‐Tilia, M., Sonnenschein, E.C., Gram, L., 2016. Monitoring and managing microbes in aquaculture–Towards a sustainable industry. Microb. Biotechnol. 9, 576–584.
Bernhard, A., 2010. The nitrogen cycle: processes. Play. Hum.
Bilek, R.S., Tyler, S.C., Sass, R.L., Fisher, F.M., 1999. Differences in CH4 oxidation and pathways of production between rice cultivars deduced from measurements of CH4 flux and δ13C of CH4 and CO2. Global Biogeochem. Cycles 13, 1029–1044.
Black, A., Hsu, P.C.L., Hamonts, K.E., Clough, T.J., Condron, L.M., 2016. Influence of copper on expression of nirS, norB and nosZ and the transcription and activity of NIR, NOR and N2OR in the denitrifying soil bacteria Pseudomonas stutzeri. Microb. Biotechnol. 9, 381–388. https://doi.org/10.1111/1751-7915.12352
Bodelier, P.L.E., Laanbroek, H.J., 2004. Nitrogen as a regulatory factor of methane oxidation in soils and sediments. FEMS Microbiol. Ecol. 47, 265–277.
Boulêtreau, S., Salvo, E., Lyautey, E., Mastrorillo, S., Garabetian, F., 2012. Temperature dependence of denitrification in phototrophic river biofilms. Sci. Total Environ. 416, 323–328.
Bremner, J.M., 1997. Sources of nitrous oxide in soils. Nutr. Cycl. Agroecosystems 49, 7–16. https://doi.org/10.1023/a:1009798022569
Bremner, J.M., Shaw, K., 1958. Denitrification in soil. II. Factors affecting denitrification. J. Agric. Sci. 51, 40–52.
Brenzinger, K., Dörsch, P., Braker, G., 2015. pH-driven shifts in overall and transcriptionally active denitrifiers control gaseous product stoichiometry in growth experiments with extracted bacteria from soil. Front. Microbiol. 6, 1–11. https://doi.org/10.3389/fmicb.2015.00961
Brienen, R.J.W., Phillips, O.L., Feldpausch, T.R., Gloor, E., Baker, T.R., Lloyd, J., Lopez-Gonzalez, G., Monteagudo-Mendoza, A., Malhi, Y., Lewis, S.L., 2015. Long-term decline of the Amazon carbon sink. Nature 519, 344–348.
Briones, A.M., Okabe, S., Umemiya, Y., Ramsing, N.-B., Reichardt, W., Okuyama, H., 2003. Ammonia-oxidizing bacteria on root biofilms and their possible contribution to N use efficiency of different rice cultivars. Plant Soil 250, 335–348.
Bryan-Brown, D.N., Connolly, R.M., Richards, D.R., Adame, F., Friess, D.A., Brown, C.J., 2020. Global trends in mangrove forest fragmentation. Sci. Rep. 10, 1–8.
Buessecker, S., Sarno, A.F., Reynolds, M.C., Chavan, R., Park, J., Fontánez Ortiz, M., Pérez-Castillo, A.G., Panduro Pisco, G., Urquiza-Muñoz, J.D., Reis, L.P., Ferreira-Ferreira, J., Furtunato Maia, J.M., Holbert, K.E., Penton, C.R., Hall, S.J., Gandhi, H., Boëchat, I.G., Gücker, B., Ostrom, N.E., Cadillo-Quiroz, H., 2022. Coupled abiotic-biotic cycling of nitrous oxide in tropical peatlands. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01892-y
Buessecker, S., Tylor, K., Nye, J., Holbert, K.E., Muñoz, J.D.U., Glass, J.B., Hartnett, H.E., Cadillo-Quiroz, H., 2019. Effects of sterilization techniques on chemodenitrification and N2O production in tropical peat soil microcosms. Biogeosciences 16, 4601–4612. https://doi.org/10.5194/bg-16-4601-2019
Butterbach-Bahl, K., Baggs, E.M., Dannenmann, M., Kiese, R., Zechmeister-Boltenstern, S., 2013. Nitrous oxide emissions from soils: How well do we understand the processes and their controls? Philos. Trans. R. Soc. B Biol. Sci. 368. https://doi.org/10.1098/rstb.2013.0122
Butterbach-Bahl, K., Dannenmann, M., 2011. Denitrification and associated soil N2O emissions due to agricultural activities in a changing climate. Curr. Opin. Environ. Sustain. 3, 389–395. https://doi.org/https://doi.org/10.1016/j.cosust.2011.08.004
Cai, Z., Shan, Y., Xu, H., 2007. Effects of nitrogen fertilization on CH4 emissions from rice fields. Soil Sci. Plant Nutr. 53, 353–361.
Cantarella, H., Otto, R., Soares, J.R., Silva, A.G. de B., 2018. Agronomic efficiency of NBPT as a urease inhibitor: A review. J. Adv. Res. 13, 19–27. https://doi.org/10.1016/j.jare.2018.05.008
Cao, Y., Wang, X., Zhang, X., Misselbrook, T., Bai, Z., Ma, L., 2021. Nitrifier denitrification dominates nitrous oxide production in composting and can be inhibited by a bioelectrochemical nitrification inhibitor. Bioresour. Technol. 341, 125851. https://doi.org/10.1016/j.biortech.2021.125851
Cassman, N.A., Soares, J.R., Pijl, A., Lourenço, K.S., van Veen, J.A., Cantarella, H., Kuramae, E.E., 2019. Nitrification inhibitors effectively target N 2 O-producing Nitrosospira spp. in tropical soil. Environ. Microbiol. 21, 1241–1254. https://doi.org/10.1111/1462-2920.14557
Chalk, P.M., Smith, C.J., 2020. The role of agroecosystems in chemical pathways of N2O production. Agric. Ecosyst. Environ. 290, 106783. https://doi.org/10.1016/j.agee.2019.106783
Chen, Q., Qi, L., Bi, Q., Dai, P., Sun, D., Sun, C., Liu, W., Lu, L., Ni, W., Lin, X., 2015. Comparative effects of 3, 4-dimethylpyrazole phosphate (DMPP) and dicyandiamide (DCD) on ammonia-oxidizing bacteria and archaea in a vegetable soil. Appl. Microbiol. Biotechnol. 99, 477–487. https://doi.org/10.1007/s00253-014-6026-7
Chen, X., Zhu, Y., Xia, Y., Shen, J., He, J., 2008. Ammonia‐oxidizing archaea: important players in paddy rhizosphere soil? Environ. Microbiol. 10, 1978–1987.
Cheng, C., Gao, X., Feng, B., Sheen, J., Shan, L., He, P., 2013. Plant immune response to pathogens differs with changing temperatures. Nat. Commun. 4, 1–9.
Cheng, C., Zhang, J., He, Q., Wu, H., Chen, Y., Xie, H., Pavlostathis, S.G., 2021. Exploring simultaneous nitrous oxide and methane sink in wetland sediments under anoxic conditions. Water Res. 194. https://doi.org/10.1016/j.watres.2021.116958
Chien, S.H., Prochnow, L.I., Cantarella, a H., 2009. Recent developments of fertilizer production and use to improve nutrient efficiency and minimize environmental impacts. Adv. Agron. 102, 267–322.
Christensen, S., Tiedje, J.M., 1988. Sub-parts-per-billion nitrate method: Use of an N2O-producing denitrifier to convert NO3− or 15NO3− to N2O. Appl. Environ. Microbiol. 54, 1409–1413.
Clark, I.M., Hughes, D.J., Fu, Q., Abadie, M., Hirsch, P.R., 2021. Metagenomic approaches reveal differences in genetic diversity and relative abundance of nitrifying bacteria and archaea in contrasting soils. Sci. Rep. 11. https://doi.org/10.1038/s41598-021-95100-9
Corrochano-Monsalve, M., Bozal-Leorri, A., Sánchez, C., González-Murua, C., Estavillo, J.-M., 2021. Joint application of urease and nitrification inhibitors to diminish gaseous nitrogen losses under different tillage systems. J. Clean. Prod. 289, 125701.
Cowan, N., Bhatia, A., Drewer, J., Jain, N., Singh, R., Tomer, R., Kumar, V., Kumar, O., Prasanna, R., Ramakrishnan, B., Kumar, D., Bandyopadhyay, S.K., Sutton, M., Pathak, H., 2021. Agriculture , Ecosystems and Environment Experimental comparison of continuous and intermittent flooding of rice in relation to methane , nitrous oxide and ammonia emissions and the implications for nitrogen use efficiency and yield. Agric. Ecosyst. Environ. 319, 107571. https://doi.org/10.1016/j.agee.2021.107571
Cowan, N., Levy, P., Moring, A., Simmons, I., Bache, C., Stephens, A., Marinheiro, J., Brichet, J., Song, L., Pickard, A., 2019. Nitrogen use efficiency and N 2 O and NH 3 losses attributed to three fertiliser types applied to an intensively managed silage crop. Biogeosciences 16, 4731–4745.
Čuhel, J., Šimek, M., 2011. Proximal and distal control by pH of denitrification rate in a pasture soil. Agric. Ecosyst. Environ. 141, 230–233.
Cui, B., Yang, Q., Liu, X., Huang, S., Yang, Y., Liu, Z., 2020. The effect of dissolved oxygen concentration on long-term stability of partial nitrification process. J. Environ. Sci. (China) 90, 343–351. https://doi.org/10.1016/j.jes.2019.12.012
Daebeler, A., Bodelier, P.L.E., Hefting, M.M., Laanbroek, H.J., 2015. Ammonia-limited conditions cause of Thaumarchaeal dominance in volcanic grassland soil. FEMS Microbiol. Ecol. 91, 1–7. https://doi.org/10.1093/femsec/fiv014
Dai, Y., Di, H.J., Cameron, K.C., He, J.Z., 2013. Effects of nitrogen application rate and a nitrification inhibitor dicyandiamide on ammonia oxidizers and N2O emissions in a grazed pasture soil. Sci. Total Environ. 465, 125–135. https://doi.org/10.1016/j.scitotenv.2012.08.091
Daims, H., Lebedeva, E. V, Pjevac, P., Han, P., Herbold, C., Albertsen, M., Jehmlich, N., Palatinszky, M., Vierheilig, J., Bulaev, A., others, 2015. Complete nitrification by Nitrospira bacteria. Nature 528, 504–509.
Daims, H., Lücker, S., Wagner, M., 2016. A new perspective on microbes formerly known as nitrite-oxidizing bacteria. Trends Microbiol. 24, 699–712.
De Boer, W., Gunnewiek, P.J.A.K., Veenhuis, M., Bock, E., Laanbroek, H.J., 1991. Nitrification at low pH by aggregated chemolithotrophic bacteria. Appl. Environ. Microbiol. 57, 3600–3604.
Delgado‐Baquerizo, M., Gallardo, A., Covelo, F., Prado‐Comesaña, A., Ochoa, V., Maestre, F.T., 2015. Differences in thallus chemistry are related to species‐specific effects of biocrust‐forming lichens on soil nutrients and microbial communities. Funct. Ecol. 29, 1087–1098.
Di Capua, F., Pirozzi, F., Lens, P.N.L., Esposito, G., 2019. Electron donors for autotrophic denitrification. Chem. Eng. J. 362, 922–937. https://doi.org/10.1016/j.cej.2019.01.069
Di, H.J., Cameron, K.C., Shen, J.-P., Winefield, C.S., O’Callaghan, M., Bowatte, S., He, J.-Z., 2009. Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils. Nat. Geosci. 2, 621–624.
Dimkpa, C.O., Fugice, J., Singh, U., Lewis, T.D., 2020. Development of fertilizers for enhanced nitrogen use efficiency – Trends and perspectives. Sci. Total Environ. 731, 139113. https://doi.org/10.1016/j.scitotenv.2020.139113
Dlugokencky, E.J., Nisbet, E.G., Fisher, R., Lowry, D., 2011. Global atmospheric methane: Budget, changes and dangers. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 369, 2058–2072. https://doi.org/10.1098/rsta.2010.0341
Domingo-Félez, C., Smets, B.F., 2018. Modelling N2O dynamics of activated sludge biomass under nitrifying and denitrifying conditions: pathway contributions and uncertainty analysis.
Dong, D., Yang, W., Sun, H., Kong, S., Xu, H., 2021. Nitrous oxide emissions in response to long-term application of the nitrification inhibitor DMPP in an acidic luvisol. Appl. Soil Ecol. 159, 103861. https://doi.org/10.1016/j.apsoil.2020.103861
Dreyer, M., Wichmann, M., Rischen, M., Görlach, B.M., Ehmke, A., Pitann, B., Mühling, K.H., 2020. Ammonium‐driven nitrification plays a key role in increasing Mn availability in calcareous soils. J. Plant Nutr. Soil Sci. 183, 389–396.
Du, C., Yi, H., Tang, X., Zhao, S., Gao, F., Yu, Q., Yang, Z., Yang, K., Xie, X., Ma, Y., 2020. Desulfurization and denitrification experiments in SDA system: A new high-efficient semi-dry process by NaClO2. Sep. Purif. Technol. 230. https://doi.org/10.1016/j.seppur.2019.115873
Duan, P., Fan, C., Zhang, Q., Xiong, Z., 2019a. Overdose fertilization induced ammonia-oxidizing archaea producing nitrous oxide in intensive vegetable fields. Sci. Total Environ. 650, 1787–1794. https://doi.org/10.1016/j.scitotenv.2018.09.341
Duan, P., Shen, H., Jiang, X., Yan, X., Xiong, Z., 2020a. The contributions of hydroxylamine and nitrite to NO and N 2 O production in alkaline and acidic vegetable soils. J. Soils Sediments 20, 2903–2911.
Duan, P., Wu, Z., Zhang, Q., Fan, C., Xiong, Z., 2018. Thermodynamic responses of ammonia-oxidizing archaea and bacteria explain N2O production from greenhouse vegetable soils. Soil Biol. Biochem. 120, 37–47. https://doi.org/10.1016/j.soilbio.2018.01.027
Duan, P., Xiao, K., Jiang, Y., Li, D., 2022. Mechanisms underlying the responses of soil N2O production by ammonia oxidizers to nitrogen addition are mediated by topography in a subtropical forest. Geoderma 425, 116036.
Duan, P., Zhang, Q., Xiong, Z., 2020b. Temperature decouples ammonia and nitrite oxidation in greenhouse vegetable soils. Sci. Total Environ. 733, 139391.
Duan, P., Zhang, Q., Zhang, X., Xiong, Z., 2019b. Mechanisms of mitigating nitrous oxide emissions from vegetable soil varied with manure, biochar and nitrification inhibitors. Agric. For. Meteorol. 278, 107672. https://doi.org/10.1016/j.agrformet.2019.107672
Duan, Y.F., Kong, X.W., Schramm, A., Labouriau, R., Eriksen, J., Petersen, S.O., 2017. Microbial N Transformations and N2O Emission after Simulated Grassland Cultivation : Effects of the Nitrification. Appl. Environ. Microbiol. 83, 1–17. https://doi.org/10.1016/j.tetasy.2008.05.028
Eller, G., Krüger, M., Frenzel, P., 2005. Comparing field and microcosm experiments: a case study on methano-and methylo-trophic bacteria in paddy soil. FEMS Microbiol. Ecol. 51, 279–291.
Erisman, J.W., Grennfelt, P., Sutton, M., 2003. The European perspective on nitrogen emission and deposition. Environ. Int. 29, 311–325. https://doi.org/10.1016/S0160-4120(02)00162-9
Fan, L., Dippold, M.A., Ge, T., Wu, J., Thiel, V., Kuzyakov, Y., Dorodnikov, M., 2020. Anaerobic oxidation of methane in paddy soil : Role of electron acceptors and fertilization in mitigating CH 4 fluxes. Soil Biol. Biochem. 141, 107685. https://doi.org/10.1016/j.soilbio.2019.107685
Feng, L., Shi, X., Chen, Y., Tang, H., Wang, L., 2021. Effects of temperature on the nitrate reductase activity and growth of Ulva prolifera. J. Phycol. 57, 955–966.
Feng, Y., Zeng, Z., Searchinger, T.D., Ziegler, A.D., Wu, J., Wang, D., He, X., Elsen, P.R., Ciais, P., Xu, R., 2022. Doubling of annual forest carbon loss over the tropics during the early twenty-first century. Nat. Sustain. 5, 444–451.
Firestone, M.K., Davidson, E.A., 1989. Microbiological basis of NO and N2O production and consumption in soil. Exch. trace gases between Terr. Ecosyst. Atmos. 47, 7–21.
Fowler, D., Coyle, M., Skiba, U., Sutton, M.A., Cape, J.N., Reis, S., Sheppard, L.J., Jenkins, A., Grizzetti, B., Galloway, J.N., 2013. The global nitrogen cycle in the twenty-first century. Philos. Trans. Biol. Sci. 368, 1–13. https://doi.org/10.1038/nature11069
Fu, Q., Xi, R., Zhu, J., Hu, H., Xing, Z., Zuo, J., 2020. The relative contribution of ammonia oxidizing bacteria and archaea to N2O emission from two paddy soils with different fertilizer N sources: A microcosm study. Geoderma 375, 114486. https://doi.org/https://doi.org/10.1016/j.geoderma.2020.114486
Fujitani, H., Kumagai, A., Ushiki, N., Momiuchi, K., Tsuneda, S., 2015. Selective isolation of ammonia-oxidizing bacteria from autotrophic nitrifying granules by applying cell-sorting and sub-culturing of microcolonies. Front. Microbiol. 6, 1159.
Gaihre, Y.K., Singh, U., Bible, W.D., Fugice, J., Sanabria, J., 2020. Mitigating N2O and NO Emissions from Direct-Seeded Rice with Nitrification Inhibitor and Urea Deep Placement. Rice Sci. 27, 434–444. https://doi.org/10.1016/j.rsci.2020.03.005
Galloway, J.N., Townsend, A.R., Erisman, J.W., Bekunda, M., Cai, Z., Freney, J.R., Martinelli, L.A., Seitzinger, S.P., Sutton, M.A., 2008. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science (80-. ). 320, 889–892.
Gebremichael, A.W., Wall, D.P., O’Neill, R.M., Krol, D.J., Brennan, F., Lanigan, G., Richards, K.G., 2022. Effect of contrasting phosphorus levels on nitrous oxide and carbon dioxide emissions from temperate grassland soils. Sci. Rep. 12, 1–13.
Giguere, A.T., Taylor, A.E., Myrold, D.D., Bottomley, P.J., 2015. Nitrification Responses of Soil Ammonia‐Oxidizing Archaea and Bacteria to Ammonium Concentrations. Soil Sci. Soc. Am. J. 79, 1366–1374.
Giguere, A.T., Taylor, A.E., Suwa, Y., Myrold, D.D., Bottomley, P.J., 2017. Uncoupling of ammonia oxidation from nitrite oxidation: impact upon nitrous oxide production in non-cropped Oregon soils. Soil Biol. Biochem. 104, 30–38.
Gilhespy, S.L., Anthony, S., Cardenas, L., Chadwick, D., del Prado, A., Li, C., Misselbrook, T., Rees, R.M., Salas, W., Sanz-Cobena, A., 2014. First 20 years of DNDC (DeNitrification DeComposition): model evolution. Ecol. Modell. 292, 51–62.
Gilsanz, C., Báez, D., Misselbrook, T.H., Dhanoa, M.S., Cárdenas, L.M., 2016. Development of emission factors and efficiency of two nitrification inhibitors, DCD and DMPP. Agric. Ecosyst. Environ. 216, 1–8. https://doi.org/10.1016/j.agee.2015.09.030
Giltrap, D.L., Li, C., Saggar, S., 2010. DNDC: A process-based model of greenhouse gas fluxes from agricultural soils. Agric. Ecosyst. Environ. 136, 292–300. https://doi.org/https://doi.org/10.1016/j.agee.2009.06.014
Gödde, M., Conrad, R., 2000. Influence of soil properties on the turnover of nitric oxide and nitrous oxide by nitrification and denitrification at constant temperature and moisture. Biol. Fertil. Soils 32, 120–128. https://doi.org/10.1007/s003740000247
Goodroad, L.L., Keeney, D.R., 1984. Nitrous oxide production in aerobic soils under varying pH, temperature and water content. Soil Biol. Biochem. 16, 39–43. https://doi.org/10.1016/0038-0717(84)90123-8
Groffman, P.M., Butterbach-Bahl, K., Fulweiler, R.W., Gold, A.J., Morse, J.L., Stander, E.K., Tague, C., Tonitto, C., Vidon, P., 2009. Challenges to incorporating spatially and temporally explicit phenomena (hotspots and hot moments) in denitrification models. Biogeochemistry 93, 49–77.
Gruber, N., 2008. The Marine Nitrogen Cycle: Overview and Challenges, Nitrogen in the Marine Environment. https://doi.org/10.1016/B978-0-12-372522-6.00001-3
Gruber, N., Galloway, J.N., 2008. An Earth-system perspective of the global nitrogen cycle. Nature 451, 293–296. https://doi.org/10.1038/nature06592
Grundmann, G.L., Renault, P., Rosso, L., Bardin, R., 1995. Differential Effects of Soil Water Content and Temperature on Nitrification and Aeration. Soil Sci. Soc. Am. J. 59, 1342–1349. https://doi.org/10.2136/sssaj1995.03615995005900050021x
Gu, B., Chang, J., Min, Y., Ge, Y., Zhu, Q., Galloway, J.N., Peng, C., 2013. The role of industrial nitrogen in the global nitrogen biogeochemical cycle. Sci. Rep. 3. https://doi.org/10.1038/srep02579
Gu, J., Nie, H., Guo, H., Xu, H., Gunnathorn, T., 2019. Nitrous oxide emissions from fruit orchards: A review. Atmos. Environ. 201, 166–172. https://doi.org/10.1016/j.atmosenv.2018.12.046
Guardia, G., Marsden, K.A., Vallejo, A., Jones, D.L., Chadwick, D.R., 2018. Determining the influence of environmental and edaphic factors on the fate of the nitrification inhibitors DCD and DMPP in soil. Sci. Total Environ. 624, 1202–1212. https://doi.org/10.1016/j.scitotenv.2017.12.250
Gubry-Rangin, C., Hai, B., Quince, C., Engel, M., Thomson, B.C., James, P., Schloter, M., Griffiths, R.I., Prosser, J.I., Nicol, G.W., 2011. Niche specialization of terrestrial archaeal ammonia oxidizers. Proc. Natl. Acad. Sci. 108, 21206–21211.
Gubry-Rangin, C., Novotnik, B., Mandič-Mulec, I., Nicol, G.W., Prosser, J.I., 2017. Temperature responses of soil ammonia-oxidising archaea depend on pH. Soil Biol. Biochem. 106, 61–68.
Guo, J., Peng, Y., Wang, S., Ma, B., Ge, S., Wang, Z., Huang, H., Zhang, J., Zhang, L., 2013. Pathways and organisms involved in ammonia oxidation and nitrous oxide emission. Crit. Rev. Environ. Sci. Technol. 43, 2213–2296. https://doi.org/10.1080/10643389.2012.672072
Guo, J.H., Liu, X.J., Zhang, Y., Shen, J.L., Han, W.X., Zhang, W.F., Christie, P., Goulding, K.W.T., Vitousek, P.M., Zhang, F.S., 2010. Significant acidification in major Chinese croplands. Science (80-. ). 327, 1008–1010.
Guo, Y., Naeem, A., Becker-Fazekas, S., Pitann, B., Mühling, K.H., 2022. Efficacy of four nitrification inhibitors for the mitigation of nitrous oxide emissions under different soil temperature and moisture#. J. Plant Nutr. Soil Sci. 185, 60–68. https://doi.org/10.1002/jpln.202000367
Hamilton, S.E., Friess, D.A., 2018. Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012. Nat. Clim. Chang. 8, 240–244.
Hargreaves, P.R., Baker, K.L., Graceson, A., Bonnett, S.A.F., Ball, B.C., Cloy, J.M., 2021. Use of a nitrification inhibitor reduces nitrous oxide (N2O) emissions from compacted grassland with different soil textures and climatic conditions. Agric. Ecosyst. Environ. 310, 107307. https://doi.org/10.1016/j.agee.2021.107307
Harris, E., Diaz-Pines, E., Stoll, E., Schloter, M., Schulz, S., Duffner, C., Li, K., Moore, K.L., Ingrisch, J., Reinthaler, D., Zechmeister-Boltenstern, S., Glatzel, S., Brüggemann, N., Bahn, M., 2021. Denitrifying pathways dominate nitrous oxide emissions from managed grassland during drought and rewetting, Sci. Adv.
Harris, E., Yu, L., Wang, Y.P., Mohn, J., Henne, S., Bai, E., Barthel, M., Bauters, M., Boeckx, P., Dorich, C., Farrell, M., Krummel, P.B., Loh, Z.M., Reichstein, M., Six, J., Steinbacher, M., Wells, N.S., Bahn, M., Rayner, P., 2022. Warming and redistribution of nitrogen inputs drive an increase in terrestrial nitrous oxide emission factor. Nat. Commun. 13. https://doi.org/10.1038/s41467-022-32001-z
Harty, M.A., Forrestal, P.J., Watson, C.J., McGeough, K.L., Carolan, R., Elliot, C., Krol, D., Laughlin, R.J., Richards, K.G., Lanigan, G.J., 2016. Reducing nitrous oxide emissions by changing N fertiliser use from calcium ammonium nitrate (CAN) to urea based formulations. Sci. Total Environ. 563–564, 576–586. https://doi.org/10.1016/j.scitotenv.2016.04.120
Hayashi, K., Nishimura, S., Yagi, K., 2008. Ammonia volatilization from a paddy field following applications of urea: Rice plants are both an absorber and an emitter for atmospheric ammonia. Sci. Total Environ. 390, 485–494. https://doi.org/10.1016/j.scitotenv.2007.10.037
Hayatsu, M., Tago, K., Saito, M., 2008. Various players in the nitrogen cycle: Diversity and functions of the microorganisms involved in nitrification and denitrification. Soil Sci. Plant Nutr. 54, 33–45. https://doi.org/10.1111/j.1747-0765.2007.00195.x
Hayatsu, M., Tago, K., Uchiyama, I., Toyoda, A., Wang, Y., Shimomura, Y., Okubo, T., Kurisu, F., Hirono, Y., Nonaka, K., 2017. An acid-tolerant ammonia-oxidizing γ-proteobacterium from soil. ISME J. 11, 1130–1141.
He, J., Shen, J., Zhang, L., Zhu, Y., Zheng, Y., Xu, M., Di, H., 2007. Quantitative analyses of the abundance and composition of ammonia‐oxidizing bacteria and ammonia‐oxidizing archaea of a Chinese upland red soil under long‐term fertilization practices. Environ. Microbiol. 9, 2364–2374.
Heil, J., Liu, S., Vereecken, H., Brüggemann, N., 2015. Abiotic nitrous oxide production from hydroxylamine in soils and their dependence on soil properties. Soil Biol. Biochem. 84, 107–115. https://doi.org/10.1016/j.soilbio.2015.02.022
Hénault, C., Bourennane, H., Ayzac, A., Ratié, C., Saby, N.P.A., Cohan, J.-P., Eglin, T., Le Gall, C., 2019. Management of soil pH promotes nitrous oxide reduction and thus mitigates soil emissions of this greenhouse gas. Sci. Rep. 9, 1–11.
Hénault, C., Devis, X., Page, S., Justes, E., Reau, R., Germon, J.C., 1998. Nitrous oxide emissions under different soil and land management conditions. Biol. Fertil. Soils 26, 199–207.
Hénault, C., Grossel, A., Mary, B., Roussel, M., LéOnard, J., 2012. Nitrous Oxide Emission by Agricultural Soils: A Review of Spatial and Temporal Variability for Mitigation. Pedosphere 22, 426–433. https://doi.org/10.1016/S1002-0160(12)60029-0
Hink, L., Gubry-Rangin, C., Nicol, G.W., Prosser, J.I., 2018. The consequences of niche and physiological differentiation of archaeal and bacterial ammonia oxidisers for nitrous oxide emissions. ISME J. 12, 1084–1093. https://doi.org/10.1038/s41396-017-0025-5
Hink, L., Nicol, G.W., Prosser, J.I., 2017. Archaea produce lower yields of N2O than bacteria during aerobic ammonia oxidation in soil. Environ. Microbiol. 19, 4829–4837.
Hobbs, J.K., Jiao, W., Easter, A.D., Parker, E.J., Schipper, L.A., Arcus, V.L., 2013. Change in heat capacity for enzyme catalysis determines temperature dependence of enzyme catalyzed rates. ACS Chem. Biol. 8, 2388–2393.
Holmes, D.E., Dang, Y., Smith, J.A., 2019. Nitrogen cycling during wastewater treatment, 1st ed, Advances in Applied Microbiology. Elsevier Inc. https://doi.org/10.1016/bs.aambs.2018.10.003
Hooper, P., Zhou, Y., Coventry, D.R., McDonald, G.K., 2015. Use of nitrogen fertilizer in a targeted way to improve grain yield, quality, and nitrogen use efficiency. Agron. J. 107, 903–915.
Horz, H.-P., Yimga, M.T., Liesack, W., 2001. Detection of methanotroph diversity on roots of submerged rice plants by molecular retrieval of pmoA, mmoX, mxaF, and 16S rRNA and ribosomal DNA, including pmoA-based terminal restriction fragment length polymorphism profiling. Appl. Environ. Microbiol. 67, 4177–4185.
Hu, H.-W., Chen, D., He, J.-Z., 2015. Microbial regulation of terrestrial nitrous oxide formation: understanding the biological pathways for prediction of emission rates. FEMS Microbiol. Rev. 39, 729–749.
Hu, H.-W., Zhang, L.-M., Dai, Y., Di, H.-J., He, J.-Z., 2013. pH-dependent distribution of soil ammonia oxidizers across a large geographical scale as revealed by high-throughput pyrosequencing. J. Soils Sediments 13, 1439–1449.
Hu, H.W., Chen, D., He, J.Z., 2015. Microbial regulation of terrestrial nitrous oxide formation: Understanding the biological pathways for prediction of emission rates. FEMS Microbiol. Rev. 39, 729–749. https://doi.org/10.1093/femsre/fuv021
Hu, L., Dong, Z., Wang, Z., Xiao, L., Zhu, B., 2022. The contributions of ammonia oxidizing bacteria and archaea to nitrification-dependent N2O emission in alkaline and neutral purple soils. Sci. Rep. 12, 1–11. https://doi.org/10.1038/s41598-022-23084-1
Huang, J., Yu, H., Guan, X., Wang, G., Guo, R., 2016. Accelerated dryland expansion under climate change. Nat. Clim. Chang. 6, 166–171.
Huang, L., Gao, X., Guo, J., Ma, X., Liu, M., 2013. A review on the mechanism and affecting factors of nitrous oxide emission in constructed wetlands. Environ. earth Sci. 68, 2171–2180.
Hynes, R.K., Knowles, R., 1982. Effect of acetylene on autotrophic and heterotrophic nitrification. Can. J. Microbiol. 28, 334–340.
IPCC, 2015. Climate change 2014: mitigation of climate change. Cambridge University Press.
Jia, Z., Conrad, R., 2009. Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil. Environ. Microbiol. 11, 1658–1671.
Jiang, X., Hou, X., Zhou, X., Xin, X., Wright, A., Jia, Z., 2015. pH regulates key players of nitrification in paddy soils. Soil Biol. Biochem. 81, 9–16. https://doi.org/10.1016/j.soilbio.2014.10.025
Jiang, Z., Zhong, Y., Yang, J., Wu, Y., Li, H., Zheng, L., 2019. Effect of nitrogen fertilizer rates on carbon footprint and ecosystem service of carbon sequestration in rice production. Sci. Total Environ. 670, 210–217. https://doi.org/10.1016/j.scitotenv.2019.03.188
Joseph, S., Cowie, A.L., Van Zwieten, L., Bolan, N., Budai, A., Buss, W., Cayuela, M.L., Graber, E.R., Ippolito, J.A., Kuzyakov, Y., Luo, Y., Ok, Y.S., Palansooriya, K.N., Shepherd, J., Stephens, S., Weng, Z., Lehmann, J., 2021. How biochar works, and when it doesn’t: A review of mechanisms controlling soil and plant responses to biochar. GCB Bioenergy 13, 1731–1764. https://doi.org/10.1111/gcbb.12885
Jung, M.-Y., Sedlacek, C.J., Kits, K.D., Mueller, A.J., Rhee, S.-K., Hink, L., Nicol, G.W., Bayer, B., Lehtovirta-Morley, L., Wright, C., 2022. Ammonia-oxidizing archaea possess a wide range of cellular ammonia affinities. ISME J. 16, 272–283.
Kan, Z.-R., Liu, Q.-Y., Wu, G., Ma, S.-T., Virk, A.L., Qi, J.-Y., Zhao, X., Zhang, H.-L., 2020. Temperature and moisture driven changes in soil carbon sequestration and mineralization under biochar addition. J. Clean. Prod. 265, 121921. https://doi.org/https://doi.org/10.1016/j.jclepro.2020.121921
Khalil, K., Mary, B., Renault, P., 2004. Nitrous oxide production by nitrification and denitrification in soil aggregates as affected by O2 concentration. Soil Biol. Biochem. 36, 687–699. https://doi.org/https://doi.org/10.1016/j.soilbio.2004.01.004
Kirschbaum, M.U.F., 2000. Will changes in soil organic carbon act as a positive or negative feedback on global warming? Biogeochemistry 48, 21–51.
Klawonn, I., Bonaglia, S., Brüchert, V., Ploug, H., 2015. Aerobic and anaerobic nitrogen transformation processes in N2-fixing cyanobacterial aggregates. ISME J. 9, 1456–1466. https://doi.org/10.1038/ismej.2014.232
Klimczyk, M., Siczek, A., Schimmelpfennig, L., 2021. Improving the efficiency of urea-based fertilization leading to reduction in ammonia emission. Sci. Total Environ. 771, 145483. https://doi.org/10.1016/j.scitotenv.2021.145483
Kool, D.M., Dolfing, J., Wrage, N., Van Groenigen, J.W., 2011. Nitrifier denitrification as a distinct and significant source of nitrous oxide from soil. Soil Biol. Biochem. 43, 174–178. https://doi.org/10.1016/j.soilbio.2010.09.030
Kozlowski, J.A., Price, J., Stein, L.Y., 2014. Revision of N2O-producing pathways in the ammonia-oxidizing bacterium Nitrosomonas europaea ATCC 19718. Appl. Environ. Microbiol. 80, 4930–4935.
Kozlowski, J.A., Stieglmeier, M., Schleper, C., Klotz, M.G., Stein, L.Y., 2016. Pathways and key intermediates required for obligate aerobic ammonia-dependent chemolithotrophy in bacteria and Thaumarchaeota. ISME J. 10, 1836–1845.
KRÜGER, M., Frenzel, P., 2003. Effects of N‐fertilisation on CH4 oxidation and production, and consequences for CH4 emissions from microcosms and rice fields. Glob. Chang. Biol. 9, 773–784.
Kuypers, M.M.M.M., Marchant, H.K., Kartal, B., 2018. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 16, 263–276. https://doi.org/10.1038/nrmicro.2018.9
Lam, S.K., Suter, H., Mosier, A.R., Chen, D., 2017. Using nitrification inhibitors to mitigate agricultural N2O emission: a double‐edged sword? Glob. Chang. Biol. 23, 485–489.
Laughlin, R.J., Stevens, R.J., 2002. Evidence for fungal dominance of denitrification and codenitrification in a grassland soil. Soil Sci. Soc. Am. J. 66, 1540–1548.
Lawson, C.E., Lücker, S., 2018. Complete ammonia oxidation: an important control on nitrification in engineered ecosystems? Curr. Opin. Biotechnol. 50, 158–165. https://doi.org/https://doi.org/10.1016/j.copbio.2018.01.015
Lehtovirta-Morley, L.E., 2018. Ammonia oxidation: Ecology, physiology, biochemistry and why they must all come together. FEMS Microbiol. Lett. 365, 1–9. https://doi.org/10.1093/femsle/fny058
Lehtovirta-Morley, L.E., Ge, C., Ross, J., Yao, H., Nicol, G.W., Prosser, J.I., 2014. Characterisation of terrestrial acidophilic archaeal ammonia oxidisers and their inhibition and stimulation by organic compounds. FEMS Microbiol. Ecol. 89, 542–552.
Lehtovirta-Morley, L.E., Ross, J., Hink, L., Weber, E.B., Gubry-Rangin, C., Thion, C., Prosser, J.I., Nicol, G.W., 2016. Isolation of ‘Candidatus Nitrosocosmicus franklandus’, a novel ureolytic soil archaeal ammonia oxidiser with tolerance to high ammonia concentration. FEMS Microbiol. Ecol. 92, fiw057.
Levy-Booth, D.J., Prescott, C.E., Grayston, S.J., 2014. Microbial functional genes involved in nitrogen fixation, nitrification and denitrification in forest ecosystems. Soil Biol. Biochem. 75, 11–25. https://doi.org/10.1016/j.soilbio.2014.03.021
Li, C., Hu, H.-W.W., Chen, Q.-L.L., Chen, D., He, J.-Z.Z., 2020. Growth of comammox Nitrospira is inhibited by nitrification inhibitors in agricultural soils. J. Soils Sediments 20, 621–628. https://doi.org/10.1007/s11368-019-02442-z
Li, Y., Chapman, S.J., Nicol, G.W., Yao, H., 2018. Nitrification and nitrifiers in acidic soils. Soil Biol. Biochem. 116, 290–301. https://doi.org/https://doi.org/10.1016/j.soilbio.2017.10.023
Li, Y., Shah, S.H.H., Wang, J., 2020. Modelling of nitrification inhibitor and its effects on emissions of nitrous oxide (N2O) in the UK. Sci. Total Environ. 709, 136156. https://doi.org/10.1016/j.scitotenv.2019.136156
Li, Y., Xi, R., Wang, W., Yao, H., 2019. The relative contribution of nitrifiers to autotrophic nitrification across a pH-gradient in a vegetable cropped soil. J. Soils Sediments 19, 1416–1426.
Liang, C., Balser, T.C., 2011. Microbial production of recalcitrant organic matter in global soils: implications for productivity and climate policy. Nat. Rev. Microbiol. 9, 75.
Liang, L.L., Arcus, V.L., Heskel, M.A., O’Sullivan, O.S., Weerasinghe, L.K., Creek, D., Egerton, J.J.G., Tjoelker, M.G., Atkin, O.K., Schipper, L.A., 2018. Macromolecular rate theory (MMRT) provides a thermodynamics rationale to underpin the convergent temperature response in plant leaf respiration. Glob. Chang. Biol. 24, 1538–1547.
Liang, Y., Wu, C., Wei, X., Liu, Y., Chen, X., Qin, H., Wu, J., Su, Y., Ge, T., Hu, Y., 2021. Characterization of nirS- and nirK-containing communities and potential denitrification activity in paddy soil from eastern China. Agric. Ecosyst. Environ. 319, 107561. https://doi.org/10.1016/j.agee.2021.107561
Liao, R., Miao, Y., Li, J., Li, Yan, Wang, Z., Du, J., Li, Yueming, Li, A., Shen, H., 2018. Temperature dependence of denitrification microbial communities and functional genes in an expanded granular sludge bed reactor treating nitrate-rich wastewater. RSC Adv. 8, 42087–42094. https://doi.org/10.1039/c8ra08256a
Lin, S., Hernandez-Ramirez, G., 2020. Nitrous oxide emissions from manured soils as a function of various nitrification inhibitor rates and soil moisture contents. Sci. Total Environ. 738, 139669.
Lin, Y.-P., Ansari, A., Ngoc-Dan Cao, T., Shiau, Y.-J., Lur, H.-S., Muzaffar, A., Wunderlich, R.F., Mukhtar, H., 2022a. Using inhibitors to trade greenhouse gas emission for ammonia losses in paddy soil: A zero-sum game. Environ. Technol. Innov. 28, 102547. https://doi.org/https://doi.org/10.1016/j.eti.2022.102547
Lin, Y.-P., Ansari, A., Wunderlich, R.F., Lur, H.-S., Ngoc-Dan Cao, T., Mukhtar, H., 2022b. Assessing the influence of environmental niche segregation in ammonia oxidizers on N2O fluxes from soil and sediments. Chemosphere 289, 133049. https://doi.org/https://doi.org/10.1016/j.chemosphere.2021.133049
Lin, Y., Hu, H.W., Ye, G., Fan, J., Ding, W., He, Z.Y., Zheng, Y., He, J.Z., 2021. Ammonia-oxidizing bacteria play an important role in nitrification of acidic soils: A meta-analysis. Geoderma 404, 115395. https://doi.org/10.1016/j.geoderma.2021.115395
Lin, Y.P., Ansari, A., Cheng, L.C., Lin, C.M., Wunderlich, R.F., Cao, T.N.D., Mukhtar, H., 2021. Measuring responses of dicyandiamide-, 3,4-dimethylpyrazole phosphate-, and allylthiourea-induced nitrification inhibition to soil abiotic and biotic factors. Int. J. Environ. Res. Public Health 18, 1–12. https://doi.org/10.3390/ijerph18137130
Lindau, C.W., Bollich, P.K., Delaune, R.D., Patrick, W.H., Law, V.J., 1991. Effect of urea fertilizer and environmental factors on CH 4 emissions from a Louisiana, USA rice field. Plant Soil 136, 195–203.
Liu, C., Wang, K., Zheng, X., 2013. Effects of nitrification inhibitors (DCD and DMPP) on nitrous oxide emission, crop yield and nitrogen uptake in a wheat–maize cropping system. Biogeosciences 10, 2427–2437. https://doi.org/10.5194/bg-10-2427-2013
Liu, H., Ding, Y., Zhang, Q., Liu, X., Xu, J., Li, Y., Di, H., 2019. Heterotrophic nitrification and denitrification are the main sources of nitrous oxide in two paddy soils. Plant Soil 445, 39–53. https://doi.org/10.1007/s11104-018-3860-x
Liu, L., Greaver, T.L., 2009. A review of nitrogen enrichment effects on three biogenic GHGs: the CO2 sink may be largely offset by stimulated N2O and CH4 emission. Ecol. Lett. 12, 1103–1117.
Liu, L., Zhang, X., Xu, W., Liu, X., Li, Y., Wei, J., Gao, M., Bi, J., Lu, X., Wang, Z., Wu, X., 2020. Challenges for Global Sustainable Nitrogen Management in Agricultural Systems. J. Agric. Food Chem. 68, 3354–3361. https://doi.org/10.1021/acs.jafc.0c00273
Liu, S., Han, P., Hink, L., Prosser, J.I., Wagner, M., Bruggemann, N., 2017. Abiotic conversion of extracellular NH2OH contributes to N2O emission during ammonia oxidation. Environ. Sci. Technol. 51, 13122–13132.
Liu, S., Schloter, M., Hu, R., Vereecken, H., Brüggemann, N., 2019. Hydroxylamine contributes more to abiotic N2O production in soils than nitrite. Front. Environ. Sci. 7, 47.
Lladó, S., López-Mondéjar, R., Baldrian, P., 2017. Forest soil bacteria: diversity, involvement in ecosystem processes, and response to global change. Microbiol. Mol. Biol. Rev. 81, e00063-16.
Lu, X., Nicol, G.W., Neufeld, J.D., 2018. Differential responses of soil ammonia-oxidizing archaea and bacteria to temperature and depth under two different land uses. Soil Biol. Biochem. 120, 272–282.
Ma, K.E., Qiu, Q., Lu, Y., 2010. Microbial mechanism for rice variety control on methane emission from rice field soil. Glob. Chang. Biol. 16, 3085–3095.
Mafa-Attoye, T.G., Baskerville, M.A., Ofosu, E., Oelbermann, M., Thevathasan, N. V., Dunfield, K.E., 2020. Riparian land-use systems impact soil microbial communities and nitrous oxide emissions in an agro-ecosystem. Sci. Total Environ. 724. https://doi.org/10.1016/j.scitotenv.2020.138148
Maharjan, B., Venterea, R.T., 2013. Nitrite intensity explains N management effects on N2O emissions in maize. Soil Biol. Biochem. 66, 229–238. https://doi.org/10.1016/j.soilbio.2013.07.015
Makhalanyane, T.P., Valverde, A., Gunnigle, E., Frossard, A., Ramond, J.-B., Cowan, D.A., 2015. Microbial ecology of hot desert edaphic systems. FEMS Microbiol. Rev. 39, 203–221.
Marsden, K.A., Marín-Martínez, A.J., Vallejo, A., Hill, P.W., Jones, D.L., Chadwick, D.R., 2016. The mobility of nitrification inhibitors under simulated ruminant urine deposition and rainfall: a comparison between DCD and DMPP. Biol. Fertil. Soils 52, 491–503. https://doi.org/10.1007/s00374-016-1092-x
Martens‐Habbena, W., Qin, W., Horak, R.E.A., Urakawa, H., Schauer, A.J., Moffett, J.W., Armbrust, E.V., Ingalls, A.E., Devol, A.H., Stahl, D.A., 2015. The production of nitric oxide by marine ammonia‐oxidizing archaea and inhibition of archaeal ammonia oxidation by a nitric oxide scavenger. Environ. Microbiol. 17, 2261–2274.
Maucieri, C., Barbera, A.C., Vymazal, J., Borin, M., 2017. A review on the main affecting factors of greenhouse gases emission in constructed wetlands. Agric. For. Meteorol. 236, 175–193.
McCarty, G.W., 1999. Modes of action of nitrification inhibitors. Biol. Fertil. Soils 29, 1–9.
McGeough, K.L., Watson, C.J., Müller, C., Laughlin, R.J., Chadwick, D.R., 2016. Evidence that the efficacy of the nitrification inhibitor dicyandiamide (DCD) is affected by soil properties in UK soils. Soil Biol. Biochem. 94, 222–232.
Mehrani, M.J., Lu, X., Kowal, P., Sobotka, D., Mąkinia, J., 2021. Incorporation of the complete ammonia oxidation (comammox) process for modeling nitrification in suspended growth wastewater treatment systems. J. Environ. Manage. 297. https://doi.org/10.1016/j.jenvman.2021.113223
Meinhardt, K.A., Stopnisek, N., Pannu, M.W., Strand, S.E., Fransen, S.C., Casciotti, K.L., Stahl, D.A., 2018. Ammonia-oxidizing bacteria are the primary N2O producers in an ammonia-oxidizing archaea dominated alkaline agricultural soil. Environ. Microbiol. 20, 2195–2206. https://doi.org/10.1111/1462-2920.14246
Menéndez, S., Barrena, I., Setien, I., González-Murua, C., Estavillo, J.M., 2012. Efficiency of nitrification inhibitor DMPP to reduce nitrous oxide emissions under different temperature and moisture conditions. Soil Biol. Biochem. 53, 82–89. https://doi.org/10.1016/j.soilbio.2012.04.026
Merino, P., Menéndez, S., Pinto, M., González‐Murua, C., Estavillo, J.M., 2005. 3, 4‐Dimethylpyrazole phosphate reduces nitrous oxide emissions from grassland after slurry application. Soil Use Manag. 21, 53–57.
Mi, W., Zheng, S., Yang, X., Wu, L., Liu, Y., Chen, J., 2017. Comparison of yield and nitrogen use efficiency of different types of nitrogen fertilizers for different rice cropping systems under subtropical monsoon climate in China. Eur. J. Agron. 90, 78–86. https://doi.org/https://doi.org/10.1016/j.eja.2017.07.013
Mørkved, P.T., Dörsch, P., Bakken, L.R., 2007. The N2O product ratio of nitrification and its dependence on long-term changes in soil pH. Soil Biol. Biochem. 39, 2048–2057.
Mosier, A.R., Duxbury, J.M., Freney, J.R., Heinemeyer, O., Minami, K., 1998. Assessing and mitigating N2O emissions from agricultural soils. Clim. Change. https://doi.org/10.1023/A:1005386614431
Mothapo, N. V., Chen, H., Cubeta, M.A., Shi, W., 2013. Nitrous oxide producing activity of diverse fungi from distinct agroecosystems. Soil Biol. Biochem. 66, 94–101. https://doi.org/10.1016/j.soilbio.2013.07.004
Muck, S., De Corte, D., Clifford, E.L., Bayer, B., Herndl, G.J., Sintes, E., 2019. Niche Differentiation of Aerobic and Anaerobic Ammonia Oxidizers in a High Latitude Deep Oxygen Minimum Zone. Front. Microbiol. 10. https://doi.org/10.3389/fmicb.2019.02141
Mukhtar, H., Lin, Y.-P., Lin, C.-M., Petway, J.R., 2019a. Assessing Thermodynamic Parameter Sensitivity for Simulating Temperature Response of Soil Nitrification. Environ. Sci. Process. Impacts 21, 1596–1608. https://doi.org/10.1039/C9EM00310J
Mukhtar, H., Lin, Y.P., Lin, C.M., Lin, Y.R., 2019b. Relative abundance of ammonia oxidizing archaea and bacteria influences soil nitrification responses to temperature. Microorganisms 7. https://doi.org/10.3390/microorganisms7110526
Nair, D., Abalos, D., Philippot, L., Bru, D., Mateo-Marín, N., Petersen, S.O., 2021. Soil and temperature effects on nitrification and denitrification modified N2O mitigation by 3,4-dimethylpyrazole phosphate. Soil Biol. Biochem. 157. https://doi.org/10.1016/j.soilbio.2021.108224
Norton, J., Ouyang, Y., 2019. Controls and adaptive management of nitrification in agricultural soils. Front. Microbiol. 10, 1931. https://doi.org/10.3389/fmicb.2019.01931
O’Neill, M., Gallego-Lorenzo, L., Lanigan, G.J., Forristal, P.D., Osborne, B.A., 2020. Assessment of nitrous oxide emission factors for arable and grassland ecosystems. J. Integr. Environ. Sci. 17, 165–185. https://doi.org/10.1080/1943815X.2020.1825227
Ouyang, Y., Norton, J.M., Stark, J.M., 2017. Ammonium availability and temperature control contributions of ammonia oxidizing bacteria and archaea to nitrification in an agricultural soil. Soil Biol. Biochem. 113, 161–172. https://doi.org/https://doi.org/10.1016/j.soilbio.2017.06.010
Ouyang, Y., Norton, J.M., Stark, J.M., Reeve, J.R., Habteselassie, M.Y., 2016. Ammonia-oxidizing bacteria are more responsive than archaea to nitrogen source in an agricultural soil. Soil Biol. Biochem. 96, 4–15. https://doi.org/10.1016/j.soilbio.2016.01.012
Pajares, S., Ramos, R., 2019. Processes and Microorganisms Involved in the Marine Nitrogen Cycle: Knowledge and Gaps. Front. Mar. Sci. 6. https://doi.org/10.3389/fmars.2019.00739
Palmer, K., Drake, H.L., Horn, M.A., 2010. Association of novel and highly diverse acid-tolerant denitrifiers with N2O fluxes of an acidic fen. Appl. Environ. Microbiol. 76, 1125–1134.
Palomo, A., Pedersen, A.G., Fowler, S.J., Dechesne, A., Sicheritz-Pontén, T., Smets, B.F., 2018. Comparative genomics sheds light on niche differentiation and the evolutionary history of comammox Nitrospira. ISME J. 12, 1779–1793. https://doi.org/10.1038/s41396-018-0083-3
Parkhurst, D.L., Stollenwerk, K.G., Colman, J.A., 2003. Reactive-Transport Simulation of Phosphorus in the Sewage Plume at the Massachusetts Military Reservation, Cape Cod, Massachusetts, Water-Resources Investigations Report 03-4017. Massachussets.
Pasda, G., Hähndel, R., Zerulla, W., 2001. Effect of fertilizers with the new nitrification inhibitor DMPP (3, 4-dimethylpyrazole phosphate) on yield and quality of agricultural and horticultural crops. Biol. Fertil. soils 34, 85–97.
Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G.P., Smith, P., 2016. Climate-smart soils. Nature 532, 49–57.
Peng, L., Ni, B.J., Ye, L., Yuan, Z., 2015. N2O production by ammonia oxidizing bacteria in an enriched nitrifying sludge linearly depends on inorganic carbon concentration. Water Res. 74, 58–66. https://doi.org/10.1016/j.watres.2015.02.003
Philippot, L., 2002. Denitrifying genes in bacterial and Archaeal genomes. Biochim. Biophys. Acta - Gene Struct. Expr. 1577, 355–376. https://doi.org/https://doi.org/10.1016/S0167-4781(02)00420-7
Philippot, L., Andersson, S.G.E., Battin, T.J., Prosser, J.I., Schimel, J.P., Whitman, W.B., Hallin, S., 2010. The ecological coherence of high bacterial taxonomic ranks. Nat. Rev. Microbiol. 8, 523–529.
Plaza-Bonilla, D., Álvaro-Fuentes, J., Bareche, J., Pareja-Sánchez, E., Justes, É., Cantero-Martínez, C., 2018. No-tillage reduces long-term yield-scaled soil nitrous oxide emissions in rainfed Mediterranean agroecosystems: A field and modelling approach. Agric. Ecosyst. Environ. 262, 36–47. https://doi.org/10.1016/j.agee.2018.04.007
Prosser, J.I., Hink, L., Gubry-Rangin, C., Nicol, G.W., 2020. Nitrous oxide production by ammonia oxidizers: Physiological diversity, niche differentiation and potential mitigation strategies. Glob. Chang. Biol. 26, 103–118.
Prosser, J.I., Nicol, G.W., 2012. Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation. Trends Microbiol. 20, 523–531.
Qi, D., Wu, Q., Zhu, J., 2020. Nitrogen and phosphorus losses from paddy fields and the yield of rice with different water and nitrogen management practices. Sci. Rep. 10, 1–12.
Qin, X., Li, Y., Wang, H., Li, J., Wan, Y., Gao, Q., Liao, Y., Fan, M., 2015. Effect of rice cultivars on yield-scaled methane emissions in a double rice field in South China. J. Integr. Environ. Sci. 12, 47–66.
Ramotowski, D., Shi, W., 2022. Nitrapyrin-based nitrification inhibitors shaped the soil microbial community via controls on soil pH and inorganic N composition. Appl. Soil Ecol. 170, 104295. https://doi.org/10.1016/j.apsoil.2021.104295
Ratkowsky, D.A., Lowry, R.K., McMeekin, T.A., Stokes, A.N., Chandler, R.E., 1983. Model for bacterial culture growth rate throughout the entire biokinetic temperature range. J. Bacteriol. 154, 1222–1226.
Robinson, A., Di, H.J., Cameron, K.C., Podolyan, A., 2014. Effect of soil aggregate size and dicyandiamide on N2O emissions and ammonia oxidizer abundance in a grazed pasture soil. Soil Use Manag. 30, 231–240. https://doi.org/10.1111/sum.12104
Rohe, L., Apelt, B., Vogel, H.J., Well, R., Wu, G.M., Schlüter, S., 2021. Denitrification in soil as a function of oxygen availability at the microscale. Biogeosciences 18, 1185–1201. https://doi.org/10.5194/bg-18-1185-2021
Rose, T.J., Wood, R.H., Rose, M.T., Van Zwieten, L., 2018. A re-evaluation of the agronomic effectiveness of the nitrification inhibitors DCD and DMPP and the urease inhibitor NBPT. Agric. Ecosyst. Environ. 252, 69–73.
Ruser, R., Schulz, R., 2015. The effect of nitrification inhibitors on the nitrous oxide (N2O) release from agricultural soils-a review. J. Plant Nutr. Soil Sci. 178, 171–188. https://doi.org/10.1002/jpln.201400251
Rütting, T., Schleusner, P., Hink, L., Prosser, J.I., 2021. The contribution of ammonia-oxidizing archaea and bacteria to gross nitrification under different substrate availability. Soil Biol. Biochem. 160, 108353.
Saad, O.A.L.O., Conrad, R., 1993. Temperature dependence of nitrification, denitrification, and turnover of nitric oxide in different soils. Biol. Fertil. soils 15, 21–27.
Sahrawat, K.L., 2008. Factors affecting nitrification in soils. Commun. Soil Sci. Plant Anal. 39, 1436–1446. https://doi.org/10.1080/00103620802004235
Samad, M.S., Ganasamurthy, S., Highton, M.P., Bakken, L.R., Clough, T.J., de Klein, C.A.M., Richards, K.G., Lanigan, G.J., Morales, S.E., 2021. Urea treatment decouples intrinsic pH control over N2O emissions in soils. Soil Biol. Biochem. 163, 108461.
Santoro, A.E., Buchwald, C., McIlvin, M.R., Casciotti, K.L., 2011. Isotopic signature of N2O produced by marine ammonia-oxidizing archaea. Science (80-. ). 333, 1282–1285.
Sauder, L.A., Albertsen, M., Engel, K., Schwarz, J., Nielsen, P.H., Wagner, M., Neufeld, J.D., 2017. Cultivation and characterization of Candidatus Nitrosocosmicus exaquare, an ammonia-oxidizing archaeon from a municipal wastewater treatment system. ISME J. 11, 1142–1157.
Saunois, M., Stavert, A.R., Poulter, B., Bousquet, P., Canadell, J.G., Jackson, R.B., Raymond, P.A., Dlugokencky, E.J., Houweling, S., Patra, P.K., 2020. The global methane budget 2000–2017. Earth Syst. Sci. Data 12, 1561–1623.
Schimel, J., 2000. Rice, microbes and methane. Nature 403, 375–377.
Schipper, L.A., Hobbs, J.K., Rutledge, S., Arcus, V.L., 2014. Thermodynamic theory explains the temperature optima of soil microbial processes and high Q10 values at low temperatures. Glob. Chang. Biol. 20, 3578–3586.
Schlesinger, W.H., Reckhow, K.H., Bernhardt, E.S., 2006. Global change: The nitrogen cycle and rivers. Water Resour. Res. 42, 5–6. https://doi.org/10.1029/2005WR004300
Schmidt, I., Sliekers, O., Schmid, M., Cirpus, I., Strous, M., Bock, E., Kuenen, J.G., Jetten, M.S.M., 2002. Aerobic and anaerobic ammonia oxidizing bacteria - Competitors or natural partners? FEMS Microbiol. Ecol. 39, 175–181. https://doi.org/10.1016/S0168-6496(01)00208-2
Schmidt, I., van Spanning, R.J.M., Jetten, M.S.M., 2004. Denitrification and ammonia oxidation by Nitrosomonas europaea wild-type, and NirK- and NorB-deficient mutants. Microbiology 150, 4107–4114. https://doi.org/10.1099/mic.0.27382-0
Schnell, S., King, G.M., 1994. Mechanistic analysis of ammonium inhibition of atmospheric methane consumption in forest soils. Appl. Environ. Microbiol. 60, 3514–3521.
Senande-Rivera, M., Insua-Costa, D., Miguez-Macho, G., 2022. Spatial and temporal expansion of global wildland fire activity in response to climate change. Nat. Commun. 13, 1–9.
Senbayram, M., Budai, A., Bol, R., Chadwick, D., Marton, L., Gündogan, R., Wu, D., 2019. Soil NO 3− level and O 2 availability are key factors in controlling N 2 O reduction to N 2 following long-term liming of an acidic sandy soil. Soil Biol. Biochem. 132, 165–173. https://doi.org/10.1016/j.soilbio.2019.02.009
Shakoor, A., Xu, Y., Wang, Q., Chen, N., He, F., Zuo, H., Yin, H., Yan, X., Ma, Y., Yang, S., 2018. Effects of fertilizer application schemes and soil environmental factors on nitrous oxide emission fluxes in a rice-wheat cropping system, east China. PLoS One 13, e0202016.
Shi, Y., Zhang, X., Wang, Zucheng, Xu, Z., He, C., Sheng, L., Liu, H., Wang, Zhongqiang, 2021. Shift in nitrogen transformation in peatland soil by nitrogen inputs. Sci. Total Environ. 764, 142924. https://doi.org/10.1016/j.scitotenv.2020.142924
Siciliano, S.D., Ma, W.K., Ferguson, S., Farrell, R.E., 2009. Nitrifier dominance of Arctic soil nitrous oxide emissions arises due to fungal competition with denitrifiers for nitrate. Soil Biol. Biochem. 41, 1104–1110.
Šimek, M., Cooper, J.E., 2002. The influence of soil pH on denitrification: progress towards the understanding of this interaction over the last 50 years. Eur. J. Soil Sci. 53, 345–354.
Šimek, M., Jı́šová, L., Hopkins, D.W., 2002. What is the so-called optimum pH for denitrification in soil? Soil Biol. Biochem. 34, 1227–1234.
Soler-Jofra, A., Picioreanu, C., Yu, R., Chandran, K., van Loosdrecht, M.C.M., Pérez, J., 2018. Importance of hydroxylamine in abiotic N2O production during transient anoxia in planktonic axenic Nitrosomonas cultures. Chem. Eng. J. 335, 756–762.
Soler-Jofra, A., Stevens, B., Hoekstra, M., Picioreanu, C., Sorokin, D., van Loosdrecht, M.C.M., Pérez, J., 2016. Importance of abiotic hydroxylamine conversion on nitrous oxide emissions during nitritation of reject water. Chem. Eng. J. 287, 720–726. https://doi.org/https://doi.org/10.1016/j.cej.2015.11.073
Song, X., Ju, X., Topp, C.F.E., Rees, R.M., 2019. Oxygen regulates nitrous oxide production directly in agricultural soils. Environ. Sci. Technol. 53, 12539–12547. https://doi.org/10.1021/acs.est.9b03089
Song, X., Wei, H., Rees, R.M., Ju, X., 2022. Soil oxygen depletion and corresponding nitrous oxide production at hot moments in an agricultural soil. Environ. Pollut. 292. https://doi.org/10.1016/j.envpol.2021.118345
Sonthiphand, P., Neufeld, J.D., 2014. Nitrifying bacteria mediate aerobic ammonia oxidation and urea hydrolysis within the Grand River. Aquat. Microb. Ecol. 73, 151–162. https://doi.org/10.3354/ame01712
Sorokin, D.Y., Lücker, S., Vejmelkova, D., Kostrikina, N.A., Kleerebezem, R., Rijpstra, W.I.C., Damsté, J.S.S., Le Paslier, D., Muyzer, G., Wagner, M., 2012. Nitrification expanded: discovery, physiology and genomics of a nitrite-oxidizing bacterium from the phylum Chloroflexi. ISME J. 6, 2245–2256.
Spieck, E., Hartwig, C., McCormack, I., Maixner, F., Wagner, M., Lipski, A., Daims, H., 2006. Selective enrichment and molecular characterization of a previously uncultured Nitrospira-like bacterium from activated sludge. Environ. Microbiol. 8, 405–415. https://doi.org/10.1111/j.1462-2920.2005.00905.x
Stanford, G., Dzienia, S., Vander Pol, R.A., 1975. Effect of temperature on denitrification rate in soils. Soil Sci. Soc. Am. J. 39, 867–870.
Stark, J.M., 1996. Modeling the temperature response of nitrification. Biogeochemistry 35, 433–445.
Stein, L.Y., Klotz, M.G., Lancaster, K.M., Nicol, G.W., Qin, W., Schleper, C., Stahl, D., Ward, B.B., Yoon, S., 2021. Comment on"A Critical Review on Nitrous Oxide Production by Ammonia-Oxidizing Archaea" by Lan Wu, Xueming Chen, Wei Wei, Yiwen Liu, Dongbo Wang, and Bing-Jie Ni. Environ. Sci. Technol. 55, 797–798. https://doi.org/10.1021/acs.est.0c06792
Stenstrom, M.K., Poduska, R.A., 1980. The effect of dissolved oxygen concentration on nitrification. Water Res. 14, 643–649.
Stieglmeier, M., Mooshammer, M., Kitzler, B., Wanek, W., Zechmeister-Boltenstern, S., Richter, A., Schleper, C., 2014. Aerobic nitrous oxide production through N-nitrosating hybrid formation in ammonia-oxidizing archaea 8, 1135–1146. https://doi.org/10.1038/ismej.2013.220
Su, Q., Domingo-Félez, C., Jensen, M.M., Smets, B.F., 2019. Abiotic nitrous oxide (N2O) production is strongly pH dependent, but contributes little to overall N2O emissions in biological nitrogen removal systems. Environ. Sci. Technol. 53, 3508–3516.
Subbarao, G. V, Ito, O., Sahrawat, K.L., Berry, W.L., Nakahara, K., Ishikawa, T., Watanabe, T., Suenaga, K., Rondon, M., Rao, I.M., 2006. Scope and strategies for regulation of nitrification in agricultural systems—challenges and opportunities. CRC. Crit. Rev. Plant Sci. 25, 303–335.
Sullivan, M.J., Gates, A.J., Appia-Ayme, C., Rowley, G., Richardson, D.J., 2013. Copper control of bacterial nitrous oxide emission and its impact on vitamin B12-Dependent metabolism. Proc. Natl. Acad. Sci. U. S. A. 110, 19926–19931. https://doi.org/10.1073/pnas.1314529110
SUN, B., Hong, Z., Lü, Y., Fei, L.U., WANG, X., 2016. The effects of nitrogen fertilizer application on methane and nitrous oxide emission/uptake in Chinese croplands. J. Integr. Agric. 15, 440–450.
Sun, R., Guo, X., Wang, D., Chu, H., 2015. Effects of long-term application of chemical and organic fertilizers on the abundance of microbial communities involved in the nitrogen cycle. Appl. Soil Ecol. 95, 171–178.
Sun, R., Myrold, D.D., Wang, D., Guo, X., Chu, H., 2019. AOA and AOB communities respond differently to changes of soil pH under long-term fertilization. Soil Ecol. Lett. 1, 126–135.
Tao, R., Zhang, H., Gu, X., Hu, B., Li, J., Chu, G., 2021. Di-(2-ethylhexyl) phthalate (DEHP) exposure suppressed the community diversity and abundance of ammonia-oxidizers and mitigated N2O emissions in an alkaline soil. Ecotoxicol. Environ. Saf. 227, 112910.
Taylor, A.E., Giguere, A.T., Zoebelein, C.M., Myrold, D.D., Bottomley, P.J., 2017. Modeling of soil nitrification responses to temperature reveals thermodynamic differences between ammonia-oxidizing activity of archaea and bacteria. ISME J. 11, 896–908. https://doi.org/10.1038/ismej.2016.179
Taylor, A.E., Myrold, D.D., Bottomley, P.J., 2019. Temperature affects the kinetics of nitrite oxidation and nitrification coupling in four agricultural soils. Soil Biol. Biochem. 136, 107523. https://doi.org/10.1016/j.soilbio.2019.107523
Taylor, A.E., Taylor, K., Tennigkeit, B., Palatinszky, M., Stieglmeier, M., Myrold, D.D., Schleper, C., Wagner, M., Bottomley, P.J., 2015. Inhibitory effects of C2 to C10 1-alkynes on ammonia oxidation in two Nitrososphaera species. Appl. Environ. Microbiol. 81, 1942–1948.
Taylor, A.E., Zeglin, L.H., Wanzek, T.A., Myrold, D.D., Bottomley, P.J., 2012. Dynamics of ammonia-oxidizing archaea and bacteria populations and contributions to soil nitrification potentials. ISME J. 6, 2024–2032. https://doi.org/10.1038/ismej.2012.51
Thomson, A.J., Giannopoulos, G., Pretty, J., Baggs, E.M., Richardson, D.J., 2012. Biological sources and sinks of nitrous oxide and strategies to mitigate emissions. Philos. Trans. R. Soc. B Biol. Sci. 367, 1157–1168. https://doi.org/10.1098/rstb.2011.0415
Thorburn, P.J., Biggs, J.S., Collins, K., Probert, M.E., 2010. Using the APSIM model to estimate nitrous oxide emissions from diverse Australian sugarcane production systems. Agric. Ecosyst. Environ. 136, 343–350.
Throbäck, I.N., Enwall, K., Jarvis, Å., Hallin, S., 2004. Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiol. Ecol. 49, 401–417. https://doi.org/10.1016/j.femsec.2004.04.011
Tian, H., Lu, C., Ciais, P., Michalak, A.M., Canadell, J.G., Saikawa, E., Huntzinger, D.N., Gurney, K.R., Sitch, S., Zhang, B., Yang, J., Bousquet, P., Bruhwiler, L., Chen, G., Dlugokencky, E., Friedlingstein, P., Melillo, J., Pan, S., Poulter, B., Prinn, R., Saunois, M., Schwalm, C.R., Wofsy, S.C., 2016. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere. Nature 531, 225–228. https://doi.org/10.1038/nature16946
Tian, H., Xu, R., Canadell, J.G., Thompson, R.L., Winiwarter, W., Suntharalingam, P., Davidson, E.A., Ciais, P., Jackson, R.B., Janssens-Maenhout, G., Prather, M.J., Regnier, P., Pan, N., Pan, S., Peters, G.P., Shi, H., Tubiello, F.N., Zaehle, S., Zhou, F., Arneth, A., Battaglia, G., Berthet, S., Bopp, L., Bouwman, A.F., Buitenhuis, E.T., Chang, J., Chipperfield, M.P., Dangal, S.R.S., Dlugokencky, E., Elkins, J.W., Eyre, B.D., Fu, B., Hall, B., Ito, A., Joos, F., Krummel, P.B., Landolfi, A., Laruelle, G.G., Lauerwald, R., Li, W., Lienert, S., Maavara, T., MacLeod, M., Millet, D.B., Olin, S., Patra, P.K., Prinn, R.G., Raymond, P.A., Ruiz, D.J., van der Werf, G.R., Vuichard, N., Wang, J., Weiss, R.F., Wells, K.C., Wilson, C., Yang, J., Yao, Y., 2020. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 586, 248–256. https://doi.org/10.1038/s41586-020-2780-0
Tiedje, J.M., 1994. Denitrifiers. Methods Soil Anal. Part 2 Microbiol. Biochem. Prop. 5, 245–267.
Tiedje, J.M., 1982. Denitrification. p. 1011–1026. AL Page et al (ed.) Methods of soil analysis. Part 2. Agron. Monogr. 9. ASA and SSSA, Madison, WI. Denitrification. p. 1011–1024. AL Page al.(ed.) Methods soil Anal. Part 2. 2nd ed. Agron. Monogr. 9. ASA SSSA, Madison, WI.
Timilsena, Y.P., Adhikari, R., Casey, P., Muster, T., Gill, H., Adhikari, B., 2015. Enhanced efficiency fertilisers: A review of formulation and nutrient release patterns. J. Sci. Food Agric. 95, 1131–1142. https://doi.org/10.1002/jsfa.6812
Tomlinson, I., 2013. Doubling food production to feed the 9 billion: a critical perspective on a key discourse of food security in the UK. J. Rural Stud. 29, 81–90.
Tourna, M., Freitag, T.E., Nicol, G.W., Prosser, J.I., 2008. Growth, activity and temperature responses of ammonia‐oxidizing archaea and bacteria in soil microcosms. Environ. Microbiol. 10, 1357–1364.
Tufail, M.A., Naeem, A., Arif, M.S., Farooq, T.H., Shahzad, S.M., Dar, A.A., Albasher, G., Shakoor, A., 2022. Unraveling the efficacy of nitrification inhibitors (DCD and DMPP) in reducing nitrogen gases emissions across agroecosystems: A three-decade global data synthesis (1993–2021). Fuel 324, 124725. https://doi.org/10.1016/j.fuel.2022.124725
Tzanakakis, V.A., Taylor, A.E., Bakken, L.R., Bottomley, P.J., Myrold, D.D., Dörsch, P., 2019. Relative activity of ammonia oxidizing archaea and bacteria determine nitrification-dependent N2O emissions in Oregon forest soils. Soil Biol. Biochem. 139, 107612.
Uzoma, K.C., Smith, W., Grant, B., Desjardins, R.L., Gao, X., Hanis, K., Tenuta, M., Goglio, P., Li, C., 2015. Assessing the effects of agricultural management on nitrous oxide emissions using flux measurements and the DNDC model. Agric. Ecosyst. Environ. 206, 71–83.
Van der Stocken, T., Vanschoenwinkel, B., Carroll, D., Cavanaugh, K.C., Koedam, N., 2022. Mangrove dispersal disrupted by projected changes in global seawater density. Nat. Clim. Chang. 12, 685–691.
Van Kessel, M.A.H.J., Speth, D.R., Albertsen, M., Nielsen, P.H., den Camp, H.J.M.O., Kartal, B., Jetten, M.S.M., Lücker, S., 2015. Complete nitrification by a single microorganism. Nature 528, 555–559.
Velthof, G.L., Lesschen, J.P., Webb, J., Pietrzak, S., Miatkowski, Z., Pinto, M., Kros, J., Oenema, O., 2014. The impact of the Nitrates Directive on nitrogen emissions from agriculture in the EU-27 during 2000-2008. Sci. Total Environ. 468–469, 1225–1233. https://doi.org/10.1016/j.scitotenv.2013.04.058
Venterea, R.T., 2007. Nitrite‐driven nitrous oxide production under aerobic soil conditions: kinetics and biochemical controls. Glob. Chang. Biol. 13, 1798–1809.
Venterea, R.T., Coulter, J.A., Clough, T.J., 2020. Nitrite accumulation and nitrogen gas production increase with decreasing temperature in urea-amended soils: Experiments and modeling. Soil Biol. Biochem. 142, 107727.
Venterea, R.T., Halvorson, A.D., Kitchen, N., Liebig, M.A., Cavigelli, M.A., Grosso, S.J. Del, Motavalli, P.P., Nelson, K.A., Spokas, K.A., Singh, B.P., Stewart, C.E., Ranaivoson, A., Strock, J., Collins, H., 2012. Challenges and opportunities for mitigating nitrous oxide emissions from fertilized cropping systems. Front. Ecol. Environ. 10, 562–570. https://doi.org/https://doi.org/10.1890/120062
Veraart, A.J., De Klein, J.J.M., Scheffer, M., 2011. Warming can boost denitrification disproportionately due to altered oxygen dynamics. PLoS One 6, e18508.
Vijayan, A., Vattiringal Jayadradhan, R.K., Pillai, D., Prasannan Geetha, P., Joseph, V., Isaac Sarojini, B.S., 2021. Nitrospira as versatile nitrifiers: Taxonomy, ecophysiology, genome characteristics, growth, and metabolic diversity. J. Basic Microbiol. 61, 88–109. https://doi.org/10.1002/jobm.202000485
Vitousek, P.M., Howarth, R.W., 1991. Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13, 87–115.
Vogeler, I., Giltrap, D., Cichota, R., 2013. Comparison of APSIM and DNDC simulations of nitrogen transformations and N2O emissions. Sci. Total Environ. 465, 147–155.
Wang, B., Zhao, J., Guo, Z., Ma, J., Xu, H., Jia, Z., 2015. Differential contributions of ammonia oxidizers and nitrite oxidizers to nitrification in four paddy soils. ISME J. 9, 1062–1075. https://doi.org/10.1038/ismej.2014.194
Wang, L. ke, Zeng, G. ming, Yang, Z. hui, Luo, L. ling, Xu, H. yin, Huang, J., 2014. Operation of partial nitrification to nitrite of landfill leachate and its performance with respect to different oxygen conditions. Biochem. Eng. J. 87, 62–68. https://doi.org/10.1016/j.bej.2014.03.013
Wang, S., Liu, Y., Chen, L., Yang, H., Wang, G., Wang, C., Dong, X., 2021. Effects of excessive nitrogen on nitrogen uptake and transformation in the wetland soils of Liaohe estuary, northeast China. Sci. Total Environ. 791, 148228. https://doi.org/10.1016/j.scitotenv.2021.148228
Wang, S., Radny, D., Huang, S., Zhuang, L., Zhao, S., Berg, M., Jetten, M.S.M., Zhu, G., 2017. Nitrogen loss by anaerobic ammonium oxidation in unconfined aquifer soils. Sci. Rep. 7, 1–10. https://doi.org/10.1038/srep40173
Wang, Y.F., Gu, J.D., 2014. Effects of allylthiourea, salinity, and pH on ammonia/ammonium-oxidizing prokaryotes in mangrove sediment incubated in laboratory microcosms. Appl. Microbiol. Biotechnol. 98, 3257–3274. https://doi.org/10.1007/s00253-013-5399-3
Wang, Z., Chen, J., Mao, S., Han, Y., Chen, F., Zhang, L., Li, Y., Li, C., 2017. Comparison of greenhouse gas emissions of chemical fertilizer types in China’s crop production. J. Clean. Prod. 141, 1267–1274.
Wang, Z., Meng, Y., Zhu-Barker, X., He, X., Horwath, W.R., Luo, H., Zhao, Y., Jiang, X., 2019. Responses of nitrification and ammonia oxidizers to a range of background and adjusted pH in purple soils. Geoderma 334, 9–14.
Wankel, S.D., Ziebis, W., Buchwald, C., Charoenpong, C., De Beer, Di., Dentinger, J., Xu, Z., Zengler, K., 2017. Evidence for fungal and chemodenitrification based N2O flux from nitrogen impacted coastal sediments. Nat. Commun. 8. https://doi.org/10.1038/ncomms15595
Ward, B.B., 2018. Nitrification. Encycl. Ecol. 351–358. https://doi.org/10.1016/B978-0-12-409548-9.00697-7
Wardle, D.A., Bardgett, R.D., Klironomos, J.N., Setala, H., Van Der Putten, W.H., Wall, D.H., 2004. Ecological linkages between aboveground and belowground biota. Science (80-. ). 304, 1629–1633.
Wassmann, R., Aulakh, M.S., 2000. The role of rice plants in regulating mechanisms of methane missions. Biol. Fertil. Soils 31, 20–29.
Watson, S.W., Valois, F.W., Waterbury, J.B., 1981. The Family Nitrobacteraceae. The Prokaryotes 1005–1022. https://doi.org/10.1007/978-3-662-13187-9_80
Weiske, A., Benckiser, G., Herbert, T., Ottow, J., 2001. Influence of the nitrification inhibitor 3, 4-dimethylpyrazole phosphate (DMPP) in comparison to dicyandiamide (DCD) on nitrous oxide emissions, carbon dioxide fluxes and methane oxidation during 3 years of repeated application in field experiments. Biol. Fertil. Soils 34, 109–117.
Weiss, R.F., Price, B.A., 1980. Nitrous oxide solubility in water and seawater. Mar. Chem. 8, 347–359.
Wrage-Mönnig, N., Horn, M.A., Well, R., Müller, C., Velthof, G., Oenema, O., 2018. The role of nitrifier denitrification in the production of nitrous oxide revisited. Soil Biol. Biochem. 123, A3–A16. https://doi.org/10.1016/j.soilbio.2018.03.020
Wrage, N., Velthof, G.L., Van Beusichem, M.L., Oenema, O., 2001. Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol. Biochem. 33, 1723–1732. https://doi.org/10.1016/S0038-0717(01)00096-7
Wright, C.L., Schatteman, A., Crombie, A.T., Murrell, J.C., Lehtovirta-Morley, L.E., 2020. Inhibition of ammonia monooxygenase from ammonia-oxidizing archaea by linear and aromatic alkynes. Appl. Environ. Microbiol. 86. https://doi.org/10.1128/AEM.02388-19
Wu, D., Cárdenas, L.M., Calvet, S., Brüggemann, N., Loick, N., Liu, S., Bol, R., 2017. The effect of nitrification inhibitor on N2O, NO and N2 emissions under different soil moisture levels in a permanent grassland soil. Soil Biol. Biochem. 113, 153–160. https://doi.org/10.1016/j.soilbio.2017.06.007
Wu, D., Zhang, Y., Dong, G., Du, Z., Wu, W., Chadwick, D., Bol, R., 2021. The importance of ammonia volatilization in estimating the efficacy of nitrification inhibitors to reduce N2O emissions: A global meta-analysis. Environ. Pollut. 271, 116365.
Wu, J., He, S., Li, G., Zhao, Z., Wei, Y., Lin, Z., Tao, D., 2019. Reducing ammonia and greenhouse gas emission with adding high levels of superphosphate fertilizer during composting. Environ. Sci. Pollut. Res. 26, 30921–30929.
Wu, L., Chen, X., Wei, W., Liu, Y., Wang, D., Ni, B.-J., 2020. A Critical Review on Nitrous Oxide Production by Ammonia-Oxidizing Archaea. Environ. Sci. Technol. 54, 9175–9190.
Xia, W., Zhang, C., Zeng, X., Feng, Y., Weng, J., Lin, X., Zhu, J., Xiong, Z., Xu, J., Cai, Z., 2011. Autotrophic growth of nitrifying community in an agricultural soil. ISME J. 5, 1226–1236.
Xiao, H., Schaefer, D.A., Yang, X., 2017. pH drives ammonia oxidizing bacteria rather than archaea thereby stimulate nitrification under Ageratina adenophora colonization. Soil Biol. Biochem. 114, 12–19.
Xie, J., Yan, J., He, H., Lin, D., Chen, Y., Li, Y., Huang, X., Zhang, H., 2021. Evaluation of the key factors to dominate aerobic ammonia-oxidizing archaea in wastewater treatment plant. Int. Biodeterior. Biodegrad. 164, 105289. https://doi.org/10.1016/j.ibiod.2021.105289
Xing, H., Wang, E., Smith, C.J., Rolston, D., Yu, Q., 2011. Modelling nitrous oxide and carbon dioxide emission from soil in an incubation experiment. Geoderma 167–168, 328–339. https://doi.org/10.1016/j.geoderma.2011.07.003
Xu, X., Liu, X., Li, Y., Ran, Y., Liu, Y., Zhang, Q., Li, Z., He, Y., Xu, J., Di, H., 2017. High temperatures inhibited the growth of soil bacteria and archaea but not that of fungi and altered nitrous oxide production mechanisms from different nitrogen sources in an acidic soil. Soil Biol. Biochem. 107, 168–179. https://doi.org/10.1016/j.soilbio.2017.01.003
Xu, Y., Yu, L., Ciais, P., Li, W., Santoro, M., Yang, H., Gong, P., 2022. Recent expansion of oil palm plantations into carbon-rich forests. Nat. Sustain. 1–4.
Yang, L., Zhang, X., Ju, X., Wu, D., 2021. Oxygen-depletion by rapid ammonia oxidation regulates kinetics of N2O, NO and N2 production in an ammonium fertilised agricultural soil. Soil Biol. Biochem. 163. https://doi.org/10.1016/j.soilbio.2021.108460
Yang, M., Fang, Y., Sun, D., Shi, Y., 2016. Efficiency of two nitrification inhibitors (dicyandiamide and 3, 4-dimethypyrazole phosphate) on soil nitrogen transformations and plant productivity: a meta-analysis. Sci. Rep. 6, 22075.
Yang, X., Ni, K., Shi, Y., Yi, X., Ji, L., Ma, L., Ruan, J., 2020. Heavy nitrogen application increases soil nitrification through ammonia-oxidizing bacteria rather than archaea in acidic tea (Camellia sinensis L.) plantation soil. Sci. Total Environ. 717, 137248. https://doi.org/10.1016/j.scitotenv.2020.137248
Yang, Y., Pan, J., Zhou, Z., Wu, J., Liu, Y., Lin, J.G., Hong, Y., Li, X., Li, M., Gu, J.D., 2020. Complex microbial nitrogen-cycling networks in three distinct anammox-inoculated wastewater treatment systems. Water Res. 168, 115142. https://doi.org/10.1016/j.watres.2019.115142
Yao, H., Huang, S., Qiu, Q., Li, Y., Wu, L., Mi, W., Dai, F., 2016. Effects of different fertilizers on the abundance and community structure of ammonia oxidizers in a yellow clay soil. Appl. Microbiol. Biotechnol. 100, 6815–6826. https://doi.org/10.1007/s00253-016-7502-z
Yao, Y., Zhang, M., Tian, Y., Zhao, M.M., Zhang, B., Zhao, M.M., Zeng, K., Yin, B., 2018. Urea deep placement for minimizing NH3 loss in an intensive rice cropping system. F. Crop. Res. 218, 254–266.
Yin, S., Zhang, X., Jiang, Z., Zhu, P., Li, C., Liu, C., 2017. Inhibitory effects of 3, 4-dimethylpyrazole phosphate on CH4 and N2O emissions in paddy fields of subtropical China. Int. J. Environ. Res. Public Health 14, 1177.
Ying, J., Li, X., Wang, N., Lan, Z., He, J., Bai, Y., 2017. Contrasting effects of nitrogen forms and soil pH on ammonia oxidizing microorganisms and their responses to long-term nitrogen fertilization in a typical steppe ecosystem. Soil Biol. Biochem. 107, 10–18.
Young, C.L., 1981. IUPAC solubility data series. Oxides of nitrogen (8).
Yu, Y., Zhao, C., Zheng, N., Jia, H., Yao, H., 2019. Interactive effects of soil texture and salinity on nitrous oxide emissions following crop residue amendment. Geoderma 337, 1146–1154. https://doi.org/10.1016/j.geoderma.2018.11.012
Zaman, M., Nguyen, M.L., 2012. How application timings of urease and nitrification inhibitors affect N losses from urine patches in pastoral system. Agric. Ecosyst. Environ. 156, 37–48.
Zerulla, W., Barth, T., Dressel, J., Erhardt, K., von Locquenghien, K.H., Pasda, G., Rädle, M., Wissemeier, A., 2001. 3, 4-Dimethylpyrazole phosphate (DMPP)–a new nitrification inhibitor for agriculture and horticulture. Biol. Fertil. soils 34, 79–84.
Zhang, M., Yao, Y., Tian, Y., Ceng, K., Zhao, M.M., Zhao, M.M., Yin, B., 2018. Increasing yield and N use efficiency with organic fertilizer in Chinese intensive rice cropping systems. F. Crop. Res. 227, 102–109.
Zhang, Q., Zhang, X., Duan, P., Jiang, X., Shen, H., Yan, X., Xiong, Z., 2021. The effect of long-term biochar amendment on N2O emissions: Experiments with N15-O18 isotopes combined with specific inhibition approaches. Sci. Total Environ. 769, 144533.
Zhang, X., Duan, P., Wu, Z., Xiong, Z., 2019. Science of the Total Environment Aged biochar stimulated ammonia-oxidizing archaea and bacteria-derived N 2 O and NO production in an acidic vegetable soil. Sci. Total Environ. 687, 433–440. https://doi.org/10.1016/j.scitotenv.2019.06.128
Zhang, X., Zhang, X., Ward, B.B., Ward, B.B., Sigman, D.M., 2020. Global Nitrogen Cycle: Critical Enzymes, Organisms, and Processes for Nitrogen Budgets and Dynamics. Chem. Rev. 120, 5308–5351. https://doi.org/10.1021/acs.chemrev.9b00613
Zhang, Y., Mu, Y., Zhou, Y., Tian, D., Liu, J., Zhang, C., 2016. NO and N 2 O emissions from agricultural fields in the North China Plain: Origination and mitigation. Sci. Total Environ. 551–552, 197–204. https://doi.org/10.1016/j.scitotenv.2016.01.209
Zhao, J.J., Zhao, J.J., Xie, S., Lei, S., 2021. The role of hydroxylamine in promoting conversion from complete nitrification to partial nitrification: NO toxicity inhibition and its characteristics. Bioresour. Technol. 319, 124230. https://doi.org/10.1016/j.biortech.2020.124230
Zheng, H., Huang, H., Yao, L., Liu, J., He, H., Tang, J., 2014. Impacts of rice varieties and management on yield-scaled greenhouse gas emissions from rice fields in China: A meta-analysis. Biogeosciences 11, 3685–3693.
Zhong, L., Li, G., Qing, J., Li, J., Xue, J., Yan, B., Chen, G., Kang, X., Rui, Y., 2022. Biochar can reduce N2O production potential from rhizosphere of fertilized agricultural soils by suppressing bacterial denitrification. Eur. J. Soil Biol. 109, 103391. https://doi.org/10.1016/j.ejsobi.2022.103391
Zhu-Barker, X., Cavazos, A.R., Ostrom, N.E., Horwath, W.R., Glass, J.B., 2015. The importance of abiotic reactions for nitrous oxide production. Biogeochemistry 126, 251–267. https://doi.org/10.1007/s10533-015-0166-4
Zhu, X., Burger, M., Doane, T.A., Horwath, W.R., 2013a. Ammonia oxidation pathways and nitri fi er denitri fi cation are signi fi cant sources of N 2 O and NO under low oxygen availability 1–6. https://doi.org/10.1073/pnas.1219993110
Zhu, X., Burger, M., Doane, T.A., Horwath, W.R., 2013b. Ammonia oxidation pathways and nitrifier denitrification are significant sources of N2O and NO under low oxygen availability. Proc. Natl. Acad. Sci. U. S. A. 110, 6328–6333. https://doi.org/10.1073/pnas.1219993110
Zuo, X., Xu, W., Wei, S., Grossart, H.-P., Gao, Y., Luo, Z., 2021. Characterization of a novel aciduric and halotolerant aerobic denitrifying fungus Fusarium solani DS3 isolated from coastal seawater. Bioresour. Technol. Reports 16, 100839.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88089-
dc.description.abstract環境及人為因子會影響陸地生態系統中,土壤微生物活動所產生氧化亞氮(N2O),進而改變土壤碳氮循環之平衡,因此針對土壤中氮循環之研究,將有助於擬定適當減緩溫室氣體(GHG)排放之策略。本研究藉由實驗和模擬方法,研析影響土壤和沉積物中之氨氧化菌生成N2O之環境驅動因子。於不同pH和溫度梯度,針對對土壤和沉積物中促進硝化作用之主要兩個關鍵微生物-氨氧化古菌(AOA)和氨氧化細菌(AOB),使用特殊硝化抑制劑PTIO和1-Octyne,以及農務操作上廣泛使用之硝化抑制劑DCD和DMPP下,量測N2O之生成。結果顯示,AOA和AOB分別在不同的生態棲位下,成為主要的潛在氨氧化菌(PAO),而土壤溫度則是生態棲位重要環境決定因子。AOA在溫度較高的環境中為主導的PAO,N2O通量高於AOB;而在酸性條件下,亦較適於AOA生存與作用,隨著pH值增加,AOA和AOB主導的N2O通量減少。此外,溫度和氧氣供應控制著N2O之生成,由AOB促進的硝化反硝化反應(NDB),對於N2O生成影響較為顯著。本研究中將溫度反應曲線利用平方根理論(SQRT)和大分子速率理論(MMRT)兩種模型進行分析。藉由似然函數、r(判定系數)和NSE(納什-薩特克利夫效率)驗證相關數值。SQRT模型之平均r值為0.95±0.06,顯示預測值與觀測值之間存在著很強的相關性。同樣,MMRT模型的平均r值為0.95±0.05,顯示在不同反應路徑和環境中,溫度敏感特性一致。由SQRT模型計算AOB促進之硝化反硝化路徑(NDB)的最適溫度(Topt)相對於AOA硝化路徑(NtA)高0.94°C,比AOB的硝化路徑(NtB)高12.4°C。而MMRT模型計算Topt值時也呈現了類似的趨勢。在氧化作用中,SQRT和MMRT模型計算之NtA的Topt值為11.5°C,比NtB的估計值高13.5°C(p < 0.05)。NtB通量的平均最高溫度(Tmax)為69.0°C,與NtA(67.1°C)相似,但明顯高於NDB(64.3°C)。另一方面,NtB通量之平均最低溫度(Tmin)低於冰點(-4.4°C),顯示NtB反應路徑於低溫下較為敏感;相反的,NtA和NDB反應路徑之Tmin值分別為8.8°C和2.3°C,顯示它們能夠在相對較低溫之條件下發揮作用。NtA的溫度範圍(Trange)(58.3°C)顯著低於NtB(68.7°C)(p < 0.05)。然而,NtB和NDB路徑之間的Trange沒有顯著差異(p > 0.05),顯示這些反應路徑之的溫度敏感性範圍相似。硝化抑制劑可以減少土壤中N2O排放,但可能改變NH3揮發和土壤中CH4通量,這對環境和經濟有重要影響。當以45kg/ha 之DCD與9 kg/ha之DMPP處理之土壤,可分別減少溫室氣體(GHG)排放34.2%和36.6%;然而,不同的DCD與DMPP處理,對氣體N損失之影響則相反,空氣中N損失增加了6.7%至36.7%,以及13.2%至45.9%。N2O的直接排放是造成全球暖化潛勢(GWP)的主因,以未施肥作為對照組,N2O佔比範圍從53.3%至68.9%,而CH4之佔比則從23.7%至39.5%。施用兩種硝化抑制劑DCD和DMPP可以抑制N2O和CH4排放,但隨著劑量增加,反而促進更多的NH3損失。因此,本研究針對硝化作用及硝化抑制劑之有效性,為建立溫室氣體排放減緩方法提供了重要之見解。透過探討環境驅動因子、微生物活動和減緩措施間之相互作用,研究結果將有助於永續農業發展與環境管理,以應對全球變暖及其相關影響所帶來的挑戰。zh_TW
dc.description.abstractUnderstanding the effect of environmental drivers on nitrous oxide production in terrestrial ecosystems is crucial for developing appropriate mitigation strategies to reduce greenhouse gas (GHG) emissions from microbial activities in the soil. This study examines the impact of environmental drivers on N2O production in soil and sediment from ammonia oxidizers, with a particular focus on reducing greenhouse gas (GHG) emissions, by experimental and modeling approaches to find suitable management practices to reduce GHG emissions. Two key groups involved in nitrification and nitrous oxide (N2O) production, ammonia-oxidizing archaea (AOA) and bacteria (AOB), were measured using specific inhibitors, PTIO and 1-Octyne, over a wide range of pH and temperature gradients in soils and sediments, which further applied on reducing GHG using common used nitrification inhibitors, DCD and DMPP. Results showed that AOA and AOB occupied different niches for potential ammonia oxidizer (PAO), and soil temperature was a significant determinant of niche specialization. AOA-dominated PAO and N2O fluxes were predicted to have a higher optimum temperature than AOB's. AOA dominated PAO in acidic conditions, whereas AOA- and AOB-dominated N2O fluxes decreased with increasing pH. Moreover, N2O production was controlled by temperature and oxygen supply, with AOB-supported nitrifier-denitrification (NDB) contributing significantly to the suboxic N2O budget. The temperature response curves were analyzed using two models: the qquare root theory (SQRT) and the macromolecular rate theory (MMRT) model. Both models exhibited a good fit to the data, as evidenced by the likelihood functions, r (coefficient of determination), and NSE (Nash-Sutcliffe Efficiency). The average r values for the SQRT model were 0.95±0.06, indicating a strong correlation between the predicted and observed values. Similarly, the average r values for the MMRT model were 0.95±0.05, indicating a consistent and reliable estimation of the temperature sensitivity traits across different pathways and environments. The SQRT-estimated optimum temperature (Topt) for the Nitrifier-Denitrification by AOB (NDB) pathway was 0.94°C higher compared to the nitrification by AOA (NtA) pathway and 12.4°C higher compared to the nitrification by AOB (NtB) pathway. The MMRT model showed a similar trend in estimating Topt values. Among the oxic pathways, the SQRT and MMRT models estimated Topt values for NtA that were 11.5°C and 13.5°C higher (p < 0.05) than the corresponding estimates for NtB. The average maximum temperature (Tmax) for NtB fluxes was 69.0°C, similar to NtA (67.1°C), but considerably higher than NTB (64.3°C). On the other hand, the average minimum temperature (Tmin) for NtB fluxes was below the freezing point (-4.4°C), indicating the sensitivity of NtB pathway to low temperatures. In contrast, both NtA and NDB pathways exhibited higher Tmin values of 8.8°C and 2.3°C, respectively, suggesting their ability to function under relatively cooler conditions. The temperature range (Trange) for NtA (58.3°C) was significantly (p < 0.05) lower compared to NtB (68.7°C). However, there was no significant difference (p > 0.05) in Trange between NtB and NDB pathways, indicating a similar range of temperature sensitivity for these pathways. The application of nitrogen (N) had a profound impact on ammonia (NH3) volatilization, nitrous oxide (N2O), and methane (CH4) in both fallow-fertilized and cropped soils. Nitrification inhibitors can decrease N2O emissions but may alter NH3 volatilization and soil CH4 fluxes, which have important environmental and economic implications. DCD and DMPP treatments reduced greenhouse gas (GHG) emissions by up to 34.2% and 36.6%, respectively, when applied at rates of 45 and 9 kg/ha. However, an opposite trend was observed for gaseous N losses, which increased by 6.7% to 36.7% and 13.2% to 45.9%, respectively, with different DCD and DMPP treatments. Direct N2O emissions were found to be the major contributor to global warming potential (GWP), ranging from 53.3% to 68.9%, while CH4 contributed from 23.7% to 39.5%, except in the unfertilized controls. The intensive application of two nitrification inhibitors, DCD and DMPP, strongly inhibited N2O emission and CH4 emission but promoted greater NH3 losses in a dose-dependent manner. Therefore, this study emerges understanding of the role of nitrification and the effectiveness of nitrification inhibitors provides valuable insights into the development of targeted approaches for mitigating greenhouse gas emissions. By exploring the interplay between environmental drivers, microbial activities, and mitigation practices, these findings contribute to the ongoing efforts in sustainable agriculture and environmental management to address the challenges posed by global warming and its associated impacts.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-08T16:14:54Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-08T16:14:54Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsCertificate of Dissertation Approval from the Oral Defense Committee i
Statement of Academic Ethics and Originality Comparison ii
Dedication iii
Acknowledgment iv
摘要 vi
Abstract ix
Table of Contents xii
List of Tables xv
List of Figures xvi
List of Supplementary Figures xviii
Chapter 1. Introduction 1
1.1 Background 1
1.2 Objectives of Studies 7
Chapter 2. Literature Review 9
2.1 Nitrogen Cycle in Terrestrial Ecosystem 9
2.2 Microbial Activities in Nitrous Oxide Production 14
2.3 Environmental Drivers 20
2.3.1 Soil temperature 21
2.3.2 Soil pH 26
2.3.3 Oxygen availability 29
2.3.4 Soil Moisture 33
2.3.5 Nitrogen/substrate level 36
2.4 Modelling Environmental Drivers (Fitting Curve) 38
2.5 Nitrification Inhibitors 42
Chapter 3. Material and Method 46
3.1 Study Framework 46
3.2 Experimental 1−Assessing the influence of environmental niche segregation in ammonia oxidizers on N2O fluxes from soil and sediments (Lin et al., 2022). 48
3.2.1 Soil Sampling 48
3.2.2 Experimental Setup 49
3.2.3 Statistical analysis 51
3.3 Experimental Design 2−Thermodynamic sensitivity of ammonia oxidizers-driven N2O fluxes under oxic-suboxic realms (Mukhtar et al., 2023) 51
3.3.1 Soil sampling 51
3.3.2 Distinguishing N transformations pathways 52
3.3.3 Analytical and statistical analysis 55
3.4 Experimental Design 3−Using inhibitors to trade greenhouse gas emission for ammonia losses in paddy soil: A zero-sum game (Lin et al., 2022) 55
3.4.1 Preliminary Experiment. 55
3.4.2. Greenhouse Experiment 58
3.4.3 Analytical and statistical analysis 61
3.5 SQRT and MMRT models 62
Chapter 4. Result 65
4.1 Result 1−Assessing the influence of environmental niche segregation in ammonia oxidizers on N2O fluxes from soil and sediments (Lin et al., 2022). 65
4.2 Result 2−Thermodynamic sensitivity of ammonia oxidizers-driven N2O fluxes under oxic-suboxic realms (Mukhtar et al., 2023) 70
4.3 Result 3−Using inhibitors to trade greenhouse gas emission for ammonia losses in paddy soil: A zero-sum game (Lin et al., 2022) 75
4.3.1 Preliminary result 75
4.3.2. Greenhouse experiment results. 79
Chapter 5. Discussion 88
5.1 Discussion 1−Assessing the influence of environmental niche segregation in ammonia oxidizers on N2O fluxes from soil and sediments (Lin et al., 2022). 88
5.2 Discussion 2−Thermodynamic sensitivity of ammonia oxidizers-driven N2O fluxes under oxic-suboxic realms (Mukhtar et al., 2023) 94
5.3 Discussion 3−Using inhibitors to trade greenhouse gas emission for ammonia losses in paddy soil: A zero-sum game (Lin et al., 2022) 100
Chapter 6 Conclusion 107
6.1 Summary 107
6.2 Limitations 110
6.3 Outlook 112
Reference 117
Appendices 145
Copyright matters 145
Supplementary 150
-
dc.language.isoen-
dc.subject氨氧化古菌(AOA)zh_TW
dc.subject氨氧化細菌(AOB)zh_TW
dc.subject環境驅動因子zh_TW
dc.subject土壤zh_TW
dc.subject環境區域zh_TW
dc.subject氧化亞氮zh_TW
dc.subject硝化作用zh_TW
dc.subjectenvironmental zonesen
dc.subjectnitrificationen
dc.subjectnitrous oxideen
dc.subjectAOAen
dc.subjectAOBen
dc.subjectenvironmental driversen
dc.subjectsoilen
dc.title評估土壤與沈積物中氨氧化微生物及硝化抑制劑對於氧化亞氮生成與抑制之效果zh_TW
dc.titleAssessing the Contribution of Ammonia Oxidizers and Effectiveness of Nitrification Inhibitors on Nitrous Oxide Production in Soils and Sedimentsen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee李达源;盧虎生;吳瑞賢; 江莉琦zh_TW
dc.contributor.oralexamcommitteeDar-Yuan LEE;Huu Sheng Lur;Ray-Shyan Wu;Li-Chi Chiangen
dc.subject.keyword硝化作用,氧化亞氮,氨氧化古菌(AOA),氨氧化細菌(AOB),環境驅動因子,土壤,環境區域,zh_TW
dc.subject.keywordnitrification,nitrous oxide,AOA,AOB,environmental drivers,soil,environmental zones,en
dc.relation.page152-
dc.identifier.doi10.6342/NTU202301437-
dc.rights.note未授權-
dc.date.accepted2023-07-13-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物環境系統工程學系-
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
4.73 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved