Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88080
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳嘉文zh_TW
dc.contributor.advisorKevin C.-W. Wuen
dc.contributor.author王御丞zh_TW
dc.contributor.authorYu-Cheng Wangen
dc.date.accessioned2023-08-08T16:12:31Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-08-
dc.date.issued2023-
dc.date.submitted2023-07-11-
dc.identifier.citation(1)Wang, J. et al. A Bi-Functional Device for Self-Powered Electrochromic Window and Self-Rechargeable Transparent Battery Applications. Nat. Commun 2014, 5, 4921.
(2)Rai, V.; Singh, R. S.; Blackwood, D. J.; Zhili, D. A Review on Recent Advances in Electrochromic Devices: A Material Approach. Adv. Eng. Mater. 2020, 22, 2000082.
(3)Yang, G.; Zhang, Y. M.; Cai, Y.; Yang, B.; Gu, C.; Zhang, S. X. A. Advances in Nanomaterials for Electrochromic Devices. Chem. Soc. Rev. 2020, 49, 8687–8720.
(4)Sun, Y. et al. Flexible Mid-Infrared Radiation Modulator with Multilayer Graphene Thin Film by Ionic Liquid Gating. ACS Appl. Mater. Interfaces 2019, 11 (14), 13538–13544.
(5)Rao, Y. et al. Ultra-Wideband Transparent Conductive Electrode for Electrochromic Synergistic Solar and Radiative Heat Management. ACS Energy Lett. 2021, 6 (11), 3906–3915.
(6)Li, X.; Perera, K.; He, J.; Gumyusenge, A.; Mei, J. Solution-Processable Electrochromic Materials and Devices: Roadblocks and Strategies towards Large-Scale Applications. J. Mater. Chem. C 2019, 7, 12761–12789.
(7)Granqvist, C. et al. Recent advances in electrochromics for smart windows applications. Sol Energy. 1998, 63, 199-216.
(8)Zheng, R. et al. Toward Easy-to-Assemble, Large-Area Smart Windows: All-in-One Cross-Linked Electrochromic Material and Device. ACS Appl. Mater. Interfaces. 2020, 12 (24), 27526–27536.
(9)Runnerstrom, E. L.; Llordés, A.; Lounis, S. D.; Milliron, D. J. Nanostructured Electrochromic Smart Windows: Traditional Materials and NIR-Selective Plasmonic Nanocrystals. ChemComm. 2014, 50 (74), 10555–10572.
(10)Chandrasekhar, P.; Zay, B. J.; Cai, C.; Chai, Y.; Lawrence, D. Matched-Dual-Polymer Electrochromic Lenses, Using New Cathodically Coloring Conducting Polymers, with Exceptional Performance and Incorporated into Automated Sunglasses. J. Appl. Polym. Sci. 2014, 131 (22), 41043.
(11)Wang, Z. et al. Towards Full-Colour Tunability of Inorganic Electrochromic Devices Using Ultracompact Fabry-Perot Nanocavities. Nat. Commun 2020, 11 (1), 1-9.
(12)Cai, G.; Wang, J.; Lee, P. S. Next-Generation Multifunctional Electrochromic Devices. Acc. Chem. Res. 2016, 49 (8), 1469–1476.
(13)Wang, H.; Barrett, M.; Duane, B.; Gu, J.; Zenhausern, F. Materials and Processing of Polymer-Based Electrochromic Devices. Mater. Sci. Eng. B: Solid-State Mater. Adv. Technol. 2018, 228, 167–174.
(14)Mortimer, R. J. Organic Electrochromic Materials. Electrochim. Acta 1999, 44, 2971-2981.
(15)Wu, W.; Wang, M.; Ma, J.; Cao, Y.; Deng, Y. Electrochromic Metal Oxides: Recent Progress and Prospect. Adv. Electron. Mater. 2018, 4, 1800185.
(16)Niklasson, G. A.; Granqvist, C. G. Electrochromics for Smart Windows: Thin Films of Tungsten Oxide and Nickel Oxide, and Devices Based on These. J. Mater. Chem. 2007, 17 (2), 127–156.
(17)Madasamy, K.; Velayutham, D.; Suryanarayanan, V.; Kathiresan, M.; Ho, K. C. Viologen-Based Electrochromic Materials and Devices. J. Mater. Chem. C 2019, 7, 4622–4637.
(18)Chaudhary, A.; Pathak, D. K.; Tanwar, M.; Yogi, P.; Sagdeo, P. R.; Kumar, R. Polythiophene-PCBM-Based All-Organic Electrochromic Device: Fast and Flexible. ACS Appl. Electron. Mater. 2019, 1 (1), 58–63.
(19)Bayat, M. et al. Study on the Electrochromic Properties of Polypyrrole Layers Doped with Different Dye Molecules. J. Electroanal. Chem. 2021, 886, 115113.
(20)Neo, W. T.; Ye, Q.; Chua, S. J.; Xu, J. Conjugated Polymer-Based Electrochromics: Materials, Device Fabrication and Application Prospects. J. Mater. Chem. C. 2016, 4, 7364–7376.
(21)Beaujuge, P. M.; Reynolds, J. R. Color Control in π-Conjugated Organic Polymers for Use in Electrochromic Devices. Chem Rev 2010, 110 (1), 268–320.
(22)Zhang, Q. et al. Substituent-Adjusted Electrochromic Behavior of Symmetric Viologens. Materials 2021, 14 (7), 1702.
(23)Sheberla, D. et al. Conducting Polyfurans by Electropolymerization of Oligofurans. Chem. Sci. 2015, 6 (1), 360–371.
(24)Politis, J. K.; Nemes, J. C.; Curtis, M. D. Synthesis and Characterization of Regiorandom and Regioregular Poly(3-Octylfuran). J. Am. Chem. Soc. 2001, 123 (11), 2537–2547.
(25)Jin, X. H.; Sheberla, D.; Shimon, L. J. W.; Bendikov, M. Highly Coplanar Very Long Oligo(Alkylfuran)s: A Conjugated System with Specific Head-to-Head Defect. J. Am. Chem. Soc. 2014, 136 (6), 2592–2601.
(26)Gidron, O.; Diskin-Posner, Y.; Bendikov, M. α-Oligofurans. J. Am. Chem. Soc. 2010, 132 (7), 2148–2150.
(27)Gidron, O.; Bendikov, M. α-Oligofurans: An Emerging Class of Conjugated Oligomers for Organic Electronics. Angew. Chem. Int. Ed 2014, 53, 2546–2555.
(28)González-Tejera, M. J.; de la Blanca, E. S.; Carrillo, I. Polyfuran Conducting Polymers: Synthesis, Properties, and Applications. Synth Met. 2008, 158, 165–189.
(29)Liang, X., Haynes, B. S. & Montoya, A. Acid-Catalyzed ring opening of furan in aqueous solution. Energy Fuels. 2017, 32, 4139-4148.
(30)Yao, W. et al. Flexible Conjugated Polyfurans for Bifunctional Electrochromic Energy Storage Application. J. Chem. Eng. 2022, 428, 131125.
(31)Jain, V. et al. High-Contrast Solid-State Electrochromic Devices of Viologen-Bridged Polysilsesquioxane Nanoparticles Fabricated by Layer-by-Layer Assembly. ACS Appl. Mater. Interfaces. 2009, 1 (1), 83–89.
(32)Ding, J. et al. Viologen-Inspired Functional Materials: Synthetic Strategies and Applications. J. Mater. Chem. 2019, 7 (41), 23337–23360.
(33)Mortimer, R. J.; Dyer, A. L.; Reynolds, J. R. Electrochromic Organic and Polymeric Materials for Display Applications. Displays. 2006, 27, 2–18.
(34)Yu, H. F.; Chen, K. I.; Yeh, M. H.; Ho, K. C. Effect of Trifluoromethyl Substituents in Benzyl-Based Viologen on the Electrochromic Performance: Optical Contrast and Stability. Sol. Energy Mater Sol. Cells. 2019, 200, 110020.
(35)Buch, V. R., Chawla, A. K. & Rawal, S. K. Review on electrochromic property for WO3 thin films using different deposition techniques. Mater Today. 2016, 3, 1429-1437.
(36)Assis, L. M. N.; Leones, R.; Kanicki, J.; Pawlicka, A.; Silva, M. M. Prussian Blue for Electrochromic Devices. J. Electroanal. Chem. 2016, 777, 33–39.
(37)Karyakin, A. A. Prussian Blue and Its Analogues: Electrochemistry and Analytical Applications. Electroanalysis 2001, 13, 813-819.
(38)Mortimer, R. J. Electrochromic Materials. Annu. Rev. Mater. Res. 2011, 41, 241–268.
(39)Khairy, M.; Mahmoud, K. G.; Rashwan, F. A.; El-Sagher, H. M.; Banks, C. E. Nanosized Nickel Hexacyanoferrate Modified Screen-Printed Electrodes as Flexible Supercabattery Platforms: Influence of Annealing Temperatures and Supporting Electrolytes. J Energy Storage 2022, 46, 103872.
(40)Chen, P. Y.; Chen, C. S.; Yeh, T. H. Organic Multiviologen Electrochromic Cells for a Color Electronic Display Application. J. Appl. Polym. Sci. 2014, 131 (13), 40485.
(41)Lu, H. C. et al. Achieving Low-Energy Driven Viologens-Based Electrochromic Devices Utilizing Polymeric Ionic Liquids. ACS Appl. Mater. Interfaces. 2016, 8 (44), 30351–30361.
(42)Shah, K. W.; Wang, S. X.; Soo, D. X. Y.; Xu, J. Viologen-Based Electrochromic Materials: From Small Molecules, Polymers and Composites to Their Applications. Polymers. 2019, 11 (11), 1839.
(43)Li, G. et al. Electrochromic Poly(Chalcogenoviologen)s as Anode Materials for High‐Performance Organic Radical Lithium‐Ion Batteries. Angew. Chem. 2019, 58, 8468-8473.
(44)Škorjanc, T.; Shetty, D.; Olson, M. A.; Trabolsi, A. Design Strategies and Redox-Dependent Applications of Insoluble Viologen-Based Covalent Organic Polymers. ACS Appl. Mater. Interfaces. 2019, 11, 6705–6716.
(45)Oh, H.; Seo, D. G.; Yun, T. Y.; Kim, C. Y.; Moon, H. C. Voltage-Tunable Multicolor, Sub-1.5 V, Flexible Electrochromic Devices Based on Ion Gels. ACS Appl. Mater. Interfaces. 2017, 9 (8), 7658–7665.
(46)Li, S.; Li, N.; Li, G.; Li, L.; Wang, A.; Cong, Y.; Wang, X.; Zhang, T. Lignosulfonate-Based Acidic Resin for the Synthesis of Renewable Diesel and Jet Fuel Range Alkanes with 2-Methylfuran and Furfural. Green Chem. 2015, 17 (6), 3644–3652.
(47)Striepe, L.; Baumgartner, T. Viologens and Their Application as Functional Materials. Eur. J. Chem. 2017, 23,16924–16940.
(48)Pande, G. K.; Kim, N.; Choi, J. H.; Balamurugan, G.; Moon, H. C.; Park, J. S. Effects of Counter Ions on Electrochromic Behaviors of Asymmetrically Substituted Viologens. Sol. Energy Mater Sol. Cells 2019, 197, 25–31.
(49)Moon, H. C.; Kim, C. H.; Lodge, T. P.; Frisbie, C. D. Multicolored, Low-Power, Flexible Electrochromic Devices Based on Ion Gels. ACS Appl. Mater. Interfaces. 2016, 8 (9), 6252–6260.
(50)Roger J. Mortimer. Electrochromic Material. Chem. Soc. Rev. 1997, 26, 147-156.
(51)Camurlu, P. Polypyrrole Derivatives for Electrochromic Applications. RSC Adv. 2014, 4, 55832–55845.
(52)Beaujuge, P. M.; Amb, C. M.; Reynolds, J. R. Spectral Engineering in π-Conjugated Polymers with Intramolecular Donor-Acceptor Interactions. Acc. Chem. Res. 2010, 43 (11), 1396–1407.
(53)Balan, A.; Baran, D.; Toppare, L. Benzotriazole Containing Conjugated Polymers for Multipurpose Organic Electronic Applications. Polym. Chem. 2011, 2, 1029–1043.
(54)Gidron, O.; Dadvand, A.; Wei-Hsin Sun, E.; Chung, I.; Shimon, L. J. W.; Bendikov, M.; Perepichka, D. F. Oligofuran-Containing Molecules for Organic Electronics. J. Mater. Chem. C 2013, 1 (28), 4358–4367.
(55)Tirkeş, S.; Önal, A. M. Electrosynthesis of Polyfuran in Acetonitrile-Boron Trifluonde-Ethyl Ether Mixture and Its Device Application. J. Appl. Polym. Sci. 2007, 103 (2), 871–876.
(56)Zhen, S.; Lu, B.; Xu, J.; Zhang, S.; Li, Y. Poly(Mono-, Bi- or Trifuran): Effect of Oligomer Chain Length on the Electropolymerization Performances and Polymer Properties. RSC Adv. 2014, 4 (27), 14001–14012.
(57)Tuan Hoang, A.; Viet Pham, V. 2-Methylfuran (MF) as a Potential Biofuel: A Thorough Review on the Production Pathway from Biomass, Combustion Progress, and Application in Engines. Renew. Sustain. Energy Rev. 2021, 148, 111265.
(58)Tong, X., Ma, Y. & Li, Y. Biomass into chemicals: Conversion of sugars to furan derivatives by catalytic processes. Appl. Catal. A-Gen. 2010, 385, 1-13.
(59)Kertesz, M. Pancake Bonding: An Unusual Pi-Stacking Interaction. Chem. - A Eur. J. 2019, 25, 400–416.
(60)Jang, Y. J.; Kim, S. Y.; Kim, Y. M.; Lee, J. K.; Moon, H. C. Unveiling the Diffusion-Controlled Operation Mechanism of All-in-One Type Electrochromic Supercapacitors: Overcoming Slow Dynamic Response with Ternary Gel Electrolytes. Energy Stor. Mater. 2021, 43, 20–29.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88080-
dc.description.abstract電致變色材料是一種在特定施加電壓下可以反復改變光學性質的物質。這類材料已廣泛應用於我們的日常生活中,例如智能鏡子、智能窗戶和各種可逆變色產品。含有電致變色材料的產品具備屏蔽外界過熱和輻射的能力,並可隨時切換。在近期的研究中,諸如紫精和導電聚合物等有機化合物因其易於調節顏色的特性而引起關注,成為了電致變色應用中最有前景的候選材料之一。
以呋喃為基底的電致色變材料長年在該領域被低估。這不僅是因為它們對光和氧氣的耐久性較低,而且在高氧化電位下不穩定,從而導致聚呋喃的合成困難與較不佳的色變性能。為了解決這個問題,我們實驗室開發了一種名為TriM的寡聚呋喃變色材料。除了其本身的可生物降解特性外, 寡聚呋喃在常溫常壓下相當穩定,而其較低的操作電壓也使得分子結構較不容易被破壞,從而擁有更長的使用壽命。然而,TriM在著色後並不能輕易恢復漂白狀態。為了提升性能,我們通過將寡聚呋喃與聯吡啶共軛,合成了一種名為TriMbpyPF6的新型單取代紫精。TriMbpyPF6不僅具備與TriM相似的特性,更利用作為官能基的聯吡啶得到了較高的褪色能力,並在施加還原電位的過程中了變出了第二種顏色。透過這項改動,TriMbpyPF6在解決TriM問題的基礎上,成為了一種具多變色能力的電致變色材料。
zh_TW
dc.description.abstractElectrochromic materials alter their optical properties back and forth under specific applied voltages. These kinds of materials have been widely utilized in our daily lives, such as smart mirrors, smart windows, and various color-changing products with reversibility. Those products that contain electrochromic materials possess the ability to shield excess heat and radiation from outside and can switch on and off at any time. In recent studies, organic compounds such as viologens and conducting polymers have aroused attention due to their easy color-tuning properties, which makes them one of the most promising candidates for electrochromic applications.
Furan-based materials are undervalued in the electrochromic field due to their low endurance to light and oxygen and their instability under high oxidation potentials, leading to the dismal performance of polyfurans. Therefore, our lab designed an electrochromic oligofuran called TriM. It is biodegradable and stable under ambient conditions and has a lower oxidation potential, resulting in fewer structural defects and longer life cycles. However, TriM exhibits a low bleaching ability after coloration. To circumvent this, we synthesized a novel monosubstituted viologen called TriMbpyPF6 by conjugating the oligofuran with the bipyridine moiety. TriMbpyPF6 shares similar electrochemical properties with TriM, but its bipyridine component not only provides higher decoloration ability but also introduces another color to the oligofuran system during the redox process. Through this modification, TriMbpyPF6 has become a multicolor electrochromic material, further enhancing the solution to the TriM problem.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-08T16:12:31Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-08T16:12:31Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsTable of Contents

Abstract i
摘要 iii
Table of Contents iv
List of Figures viii
List of Tables xv
1.Introduction 1
1.1 Electrochromic device 4
1.2 Nickel hexacyanoferrate (III) (NiHCF) 6
1.3 Viologens 7
1.4 TriMbpyPF6 9
1.4.1. Hydroxyalkylation-alkylation (HAA) reaction 9
1.4.2. N-alkylation reaction 10
1.4.3. Anion exchange 11
2.Literature Review 13
3.Objective 15
4.Experimental 17
4.1. Chemicals and materials 17
4.2. Equipment 19
4.3. Electrochromic material synthesis 20
4.3.1. Synthesis of TriM 20
4.3.2. Synthesis of TriMbpyPF6 20
4.3.3. Synthesis of MvioPF6 24
4.4. Nanoparticled nickel hexacyanoferrarte (NiHCF) synthesis 24
4.4.1. Synthesis of NiHCF 24
4.4.2. Synthesis of nanoparticled NiHCF 25
4.5. ECD fabrication 25
4.5.1. Fabrication of the counter electrode 25
4.5.2. Fabrication of the working electrode 26
4.5.3. Fabrication of the whole electrochromic device 27
4.6. Three-electrode system 27
4.7. Two-electrode system 28
4.7.1. System set up 28
4.7.2. Spectrum absorbance and long-term optical change 28
4.7.3. Coloration efficiency measurement 29
4.8. Characterization of products 30
4.8.1. Nuclear magnetic resource (1H-NMR and 13C-NMR) spectroscopy 30
4.8.2. Gas Chromatography mass spectrometry (GC MS) 31
4.8.3. Electron spray ionization time of flight mass spectrometry (ESI-TOF MS) 31
5.Results and Discussion 32
5.1. Materials characterization 32
5.1.1. 1H-NMR and 13C-NMR 32
5.1.2. GC MS and ESI-TOF MS 35
5.2. Electrochemical properties of TriMbpyPF6 37
5.2.1. Plausible coloration mechanism of TriMbpyPF6 37
5.2.2. Electrochemical characterization of TriMbpyPF6 40
5.2.3. Diffusion of TriMbpyPF6 43
5.3. Factors affecting the performance of TriMbpyPF6 47
5.3.1. The solvent effect 47
5.3.2. The electrolyte effect 55
5.4. Performance optimization of TriMbpyPF6 65
5.4.1. Optical change (10 cycles) 65
5.4.2. Optical change (Higher cycles) 65
5.4.3. Coloration efficiency 71
5.3. Comparison between TriMbpyPF6 and TriM 74
6.Conclusion 81
7.Future Prospect 83
8.Reference 85
9.Appendix 96
9.1. 5-chloromethylfurfural characterization 96
-
dc.language.isoen-
dc.subject多變色功能zh_TW
dc.subject生質能材料zh_TW
dc.subject呋喃寡聚物zh_TW
dc.subject紫精zh_TW
dc.subject電致色變元件zh_TW
dc.subject著色效率zh_TW
dc.subjectFuran oligomeren
dc.subjectBiomass-deriveden
dc.subjectMulticoloren
dc.subjectColoration efficiencyen
dc.subjectElectrochromic deviceen
dc.subjectViologenen
dc.title具多變色能力之新穎生質能材料-紫精修飾之呋喃寡聚物於電致變色元件之應用zh_TW
dc.titleA Novel Viologen-Functionalized Biomass-based Furan Oligomer for Electrochromic Device with Multicolor Statesen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee龔仲偉;陳林祈;葉禮賢;郭紹偉zh_TW
dc.contributor.oralexamcommitteeChung-Wei Kung;Lin-Chi Chen;Li-Hsien Yeh;Shiao-Wei Kuoen
dc.subject.keyword生質能材料,呋喃寡聚物,紫精,電致色變元件,著色效率,多變色功能,zh_TW
dc.subject.keywordBiomass-derived,Furan oligomer,Viologen,Electrochromic device,Coloration efficiency,Multicolor,en
dc.relation.page96-
dc.identifier.doi10.6342/NTU202301414-
dc.rights.note未授權-
dc.date.accepted2023-07-13-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
4.5 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved