Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88070
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor丁宗蘇zh_TW
dc.contributor.advisorTzung-Su Dingen
dc.contributor.author陳明芫zh_TW
dc.contributor.authorMing-Yuan Chenen
dc.date.accessioned2023-08-08T16:09:43Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-08-
dc.date.issued2023-
dc.date.submitted2023-07-13-
dc.identifier.citationArroyo-Solís, A., Castillo, J. M., Figueroa, E., López-Sánchez, J. L., Slabbekoorn, H., (2013) Experimental evidence for an impact of anthropogenic noise on dawn chorus timing in urban birds. Journal of Avian Biology, 44, 288-296.
Boeckle, M., Preininger, D., and Hodl, W. (2009) Communication in Noisy Environments i: Acoustic Signals of Staurois Latopalmatus (Boulenger 1887). Herpetologica, 65, 154-165.
Boelman, N. T., Asner, G. P., Hart, P. J., and Martin, R. E. (2007) Multi-trophic invasion resistance in Hawaii: Bioacoustics, field surveys, and airborne remote sensing. Ecological Applications, 17(8), 2137-2144.
Berg, K. S., Brumfield, R. T., Apanius, V. (2006) Phylogenetic and ecological determinants of the neotropical dawn chorus. Proceedings of the Royal Society B: Biological Sciences 273, 999–1005.
Catchpole, C. K., and Slater, P. J. B. (2008) Bird Song: Biological Themes and Variations, 2nd ed., Cambridge University Press.
Chinchor, N. (1992) “MUC-4 evaluation metrics” in Proceedings of the 4th Conference on Message Understanding, (Association for Computational Linguistics, 1992), pp. 22–29.
Cuthill, I., Macdonald, W. (1990) Experimental manipulation of the dawn and dusk chorus in the blackbird Turdus merula. Behavioral Ecology and Sociobiology, 26.
Cortes, C., and Vapnik, V. (1995) Support-vector networks. Machine Learning, 20 (3), 273-297.
Darras, K. F. A., Deppe, F., Fabian, Y., Kartono, A. P., Angulo, A., Kolbrek, B., Mulyani, Y. A., Prawiradilaga, D. M. (2020) High microphone signal-to-noise ratio enhances acoustic sampling of wildlife. PeerJ, 8, e9955.
Darras, K. F. A., Pérez, N., -, M., Dilong, L., Hanf-Dressler, T., Markolf, M., and Wanger, T. C. (2023) ecoSound-web: an open-source, online platform for ecoacoustics. F1000Research 9, 1224.
De Camargo Barbosa, K. V., Rodewald, A. D., Ribeiro, M. C., and Jahn, A. E. (2020) Noise level and water distance drive resident and migratory bird species richness within a Neotropical megacity, Landscape and Urban Planning, 197, 103769.
Fairbrass, A. J., Rennert, P., Willams, C., Titheridge, H., and Jones, K. E. (2017) Biases of acoustic indices measuring biodiversity in urban areas. Ecological Indicators, 83, 169-177.
Farina, A., and Belgrano, A. (2006) The eco-field hypothesis: toward a cognitive landscape. Landscape Ecology, 21, 5-17.
Farina, A. (2014) Soundscape Ecology. Springer.
Frid, A., Dill, L. (2002) Human-caused disturbance stimuli as a form of predation risk. Conservation Ecology, 6(1).
Google LLC (2022) Google Earth Pro v7.3.6.9345. https://www.google.com/intl/zh-TW/earth/about/versions/.
Grau, J., Grosse, I., and Keilwagen, J. (2015) PRROC: computing and visualizing precision-recall and receiver operating characteristic curves in R. Bioinformatics, 31(15), 2595-2597.
Hildén, O. (1965) Habitat selection in birds: a review. Annales Zoologici Fennic, 2, 53-75.
Hill, A. P., Prince, P., Piña Covarrubias, E., Doncaster, C. P., Snaddon, J. L., Rogers, A. (2018) AudioMoth: Evaluation of a smart open acoustic device for monitoring biodiversity and the environment. Methods in Ecology and Evolution 9, 1199-1211.
Jocher, G., Stoken, A., Borovec, J., NanoCode012, Liu, C., Laughing, tkianai, Hogan, A., lorenzomammana, yxNONG, AlexWang1900, Diaconu, L., Marc, wanghaoyang0106, ml5ah, Doug, Ingham, F., Frederik, Rai, P. (2020) ultralytics/yolov5: v3.1 - Bug Fixes and Performance Improvements (v3.1).
Kasten, E. P., Gage, S. H., Fox, J., and Joo, W. (2012) The remote environmental assessment laboratory's acoustic library: an archive for studying soundscape ecology. Ecological Informatics, 12, 50-67.
Kahl, S., Denton, T., Klinck, H., Glotin, H., Goëau, H., Vellinga, W. P., Planqué, R., and Joly, A. (2021a). Overview of BirdCLEF 2021: Bird call identification in soundscape recordings. In CLEF 2021 (Working Notes).
Kahl, S., Wood, C. M., Eibl, M., and Klinck, H. (2021b) BirdNET: A deep learning solution for avian diversity monitoring, Ecological Informatics, 61, 101236.
Krause, B. L. (1987) Bioacoustics: Habitat ambience and ecological balance, Whole Earth Review, 57, ISSN 0749-5056.
Krause, B. L. (1993) The niche hypothesis. Soundscape Newsletter, 6, 6-10.
Krause, B. L. (2012) The great animal orchestra. Back Bay Books.
Kunc, H. P., Morrison, K., and Schmidt, R. (2022) A meta-analysis on the evolution of the Lombard effect reveals that amplitude adjustments are a widespread vertebrate mechanism. Proceedings of the National Academy of Sciences 119.
Ligges, U., Krey, S., Mersmann, O., and Schnackenberg, S. (2018) tuneR: Analysis of Music and Speech. https://CRAN.R-project.org/package=tuneR
Lin, T.-H., Tsao, Y., Wang, Y.-H., Yen, H.-W., Lu, S.-S. (2017) Computing biodiversity change via a soundscape monitoring network, 2017 Pacific Neighborhood Consortium Annual Conference and Joint Meetings (PNC), Tainan, Taiwan, 2017, pp. 128-133.
Lin, T.-H., and Tsao, Y. (2019) Source separation in ecoacoustics: a roadmap towards versatile soundscape information retrieval. Remote Sensing in Ecology and Conservation, 6(3), 236-247.
Lombard, É. (1911) Le signe de l'élévation de la voix. Annales des Maladies de l'Oreille et du Larynx. XXXVII(2): 101-9.
Maegawa, Y., Ushigome, Y., Suzuki, M., Taguchi, K., Kobayashi, K., Haga, C., and Matsui, T. (2021) A new survey method using convolutional neural networks for automatic classification of bird calls, Ecological Informatics, 61.
Marchal, J., Fabianek, F., and Aubry, Y. (2022) Software performance for the automated identification of bird vocalisations: the case of two closely related species. Bioacoustics 31, 397-413.
Meille`re, A., Brischoux F, Angelier, F. (2015) Impact of chronic noise exposure on antipredator behavior: an experiment in breeding house sparrows. Behavioral Ecology, 26, 569-577.
Miller, M. W. (2006) Apparent effects of light pollution on singing behavior of American robins. The Condor, 108(1), 130-139.
Morton, E. (1975) Ecological sources of selection on avian sounds. American Naturalist, 109, 17-34.
NCH Software (2021) WavePad v13.38. https://www.nch.com.au/wavepad/index.html/.
Pijanowski, B. C., Villanueva-Rivera, L. J., Dumyahn, S. L., Farina, A., Krause, B. L., Napoletano, B. M., Gage, S. H., and Pieretti, N. (2011) Soundscape ecology: the science of sound in the landscape. BioScience, 61(3): 203-216.
Potvin, D. A. (2017) Coping with a changing soundscape: avoidance, adjustments and adaptations. Animal Cognition 20, 9–18.
Proppe, D. S., Sturdy, C. B., St. Clair, C. C. (2013) Anthropogenic noise decreases urban songbird diversity and may contribute to homogenization. Global Change Biology, 19, 1075–1084.
Puswal, S. M., Jinjun, M., and Liu, F. (2021) Effects of temperature and season on birds’ dawn singing behavior in a forest of eastern China. Journal of Ornithology, 162(2), 447-459.
R Core Team (2022) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
Ribeiro, J. W., Harmon, K., Augusto Leite, G., Nascimento de Melo, T., LeBien, J., and Campos-Cerqueira, M. (2022) Passive Acoustic Monitoring as a Tool to Investigate the Spatial Distribution of Invasive Alien Species. Remote Sensing, 14(18).
Ross, S. R. P. J., Friedman, N. R., Dudley, K. L., Yoshimura, M., Yoshida, T., and Economo, E. P. (2017) Listening to ecosystems: data-rich acoustic monitoring through landscape-scale sensor networks. Ecological Research, 33(1), 135-147.
Saito, K., Nakamura, K., Ueta, M., Kurosawa, R., Fujiwara, A., Kobayashi, H.H., Nakayama, M., Toko, A., Nagahama, K. (2015) Utilizing the Cyberforest live sound system with social media to remotely conduct woodland bird censuses in Central Japan. Ambio, 44, 572-583.
Sethi, S. S., Ewers, R. M., Jones, N. S., Signorelli, A., Picinali, L., and Orme, C. D. L. (2020) SAFE Acoustics: An open‐source, real‐time eco‐acoustic monitoring network in the tropical rainforests of Borneo. Methods in Ecology and Evolution 11, 1182-1185.
Sethi, S. S., Ewers, R. M., Jones, N. S., Sleutel, J., Shabrani, A., Zulkifli, N. and Picinali, L. (2022) Soundscapes predict species occurrence in tropical forests. Oikos, 2022: e08525.
Signal developers (2013) signal: Signal processing. http://r-forge.r-project.org/projects/signal/.
Simpson, S. D., Radford, A. N., Nedelec, S. L., Ferrari, M. C. O., Chivers, D. P., Mccormick, M. I., and Meekan, M. G. (2016) Anthropogenic noise increases fish mortality by predation. Nature Communications 7, 10544.
Slabbekoorn, H., and Peet, M. (2003) Birds sing at a higher pitch in urban noise. Nature 424, 267.
Stowell, D. (2022) Computational bioacoustics with deep learning: a review and roadmap. PeerJ, 10, e13152.
Sugai, L. S. M., Silva, T. S. F., Ribeiro, J. W., and Llusia, D. (2019) Terrestrial passive acoustic monitoring: review and perspectives. BioScience, 69(1), 15-25.
Sullivan, B. L., Wood, C.L., Iliff, M. J., Bonney, R.E., Fink, D., and Kelling, S. (2009) eBird: a citizen-based bird observation network in the biological sciences. Biological Conservation, 142, 2282-2292.
Sun, Y. J., Yen, S. C., and Lin, T. H. (2022) soundscape_IR: A source separation toolbox for exploring acoustic diversity in soundscapes. Methods in Ecology and Evolution, 13, 2347-2355. https://doi.org/10.1111/2041-210X.13960/.
Sueur, J., Aubin, T., and Simonis, C. (2008) Seewave: a free modular tool for sound analysis and synthesis. Bioacoustics, 18, 213-226.
Tachibana, R. O., Oosugi, O., and Okanoya, K. (2014) Semi-automatic classification of birdsong elements using a linear support vector machine. PLoS One, 9(3), e92584.
Villanueva-Rivera, L. J., Pijanowski, B. C., Doucette, J., and Pekin, B. (2011) A primer of acoustic analysis for landscape ecologists. Landscape Ecology, 26, 1233-1246.
Wallschlager, D. (1980) Correlation of song frequency and body weight in passerine birds. Experientia (Basel), 36, 412.
Wood, W. E., and Yezerinac, S. M. (2006) Song Sparrow (Melospiza Melodia) Song Varies with Urban Noise. The Auk, 123(3), 650-659.
Wu, S. H., Chang, H. W., Lin, R. S., and Tuanmu, M. N. (2022) SILIC: A cross database framework for automatically extracting robust biodiversity information from soundscape recordings based on object detection and a tiny training dataset. Ecological Informatics, 68, 101534.
Wu, S. H., Ko, J. C. J., Lin, R. S., Tsai, W. L., and Chang, H. W. (2023) An acoustic detection dataset of birds (Aves) in montane forests using a deep learning approach. Biodiversity Data Journal, 11, e97811.
Xia, C., Lioyd, H., Shi, J., Wei, C., Zhang, Y. and Manser, M. (2018) Dawn singing of the Brownish-flanked Bush Warbler influences dawn chorusing in a bird community. Ethology, 124(6), 400-409.
Zuberogoitia, I., Burgos, G., González-Oreja, J. A., Morant, J., Martinez, J. E., Albizua, J. Z. (2018) Factors Affecting Spontaneous Vocal Activity Of Tawny Owls strix Aluco and Implications For Surveying Large Areas. Ibis, 3(161), 495-503.
丁宗蘇、陳奕全(2017)大安森林公園環境基礎調查: 花香、鳥不語,大安森林公園的聲景與噪音成果報告書。
張博翔(2020)運用聲音指數探討長其聲景監測的取樣方法。國立臺灣師範大學生命科學系研究所碩士論文。
洪貫捷(2008)都市噪音對於白頭翁(Pycnonotus sinensis)鳴聲的影響。國立臺灣師範大學生命科學系研究所碩士論文。
袁孝維、張樂寧、許暐咏(2015)大安森林公園環境基礎調查:脊椎動物相調查研究及環境教育計畫成果報告書。
陳奕全(2017)蟬聲對鳥類鳴唱行為的干擾。國立臺灣大學生物資源暨農學院森林環境暨資源學系碩士論文。
陳韋民(2010)森林鳥類群聚的晨鳴時序與鳴唱模式。國立成功大學生命學系研究所碩士論文。
劉小如、丁宗蘇、方偉宏、林文宏、蔡牧起、顏重威(2012)台灣鳥類誌第二版。行政院農委會林務局。
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88070-
dc.description.abstract被動式聲音監測是近年來備受矚目的生態研究方式,研究者透過此方法可以更有效率的收集聲景資料。隨著科技進步,人工智慧在聲景分析上獲得更廣泛的運用。以卷積式神經網路為基礎的SILIC是臺灣第一個開放使用的多物種自動辨識工具。本研究試圖運用SILIC探索大安森林公園的鳥類聲景,評估該工具在干擾較大的都市環境中的表現,並以其產出之標記檢驗主流的聲景生態學假說,探討噪音、天氣、時間、空間位置對鳥類發聲頻度的影響。人工驗證顯示非目標物種的干擾是SILIC辨識錯誤的主因,另一個主要干擾源則是人造音。當精確度為70%時,通過篩選的物種召回率介於0.125-1,平均為0.586;F1分數介於0.212-0.824,平均為0.586;平均精確度介於0.378-0.945,平均為0.695。噪音作為都市聲景的重要元素,對鳥類的發聲頻度產生顯著的影響,並受到週間/週末的影響。道路距離除了影響環境噪音強度,也可能影響鳥類的棲地偏好。大安森林公園的鳥類在晨間及上午發聲頻度較高。氣溫與發聲頻度正相關,且受月份影響較大,可看出鳥類發聲頻度的季節變化。降水量與最大陣風風速則反映天氣的影響。個別物種發聲頻度的變化趨勢與整體聲景大致類似,物種對各項環境因子的敏感度不同造成發聲頻度的種間差異。SILIC對高度噪音干擾的聲景資料辨識仍有良好的表現水準,其產生的標記適用於更深入的聲景研究;未來若能持續訓練模型,提升其辨識表現,應可對未來的聲景生態研究助益匪淺。zh_TW
dc.description.abstractPassive acoustic monitoring has been a popular tool for recent ecological research, which collects soundscape data more effectively. Artificial intelligence has gained broader applications in soundscape analysis. SILIC, based on convolutional neural networks, is the first open-source multi-species identification tool in Taiwan. This study was aimed to explore bird soundscape in Daan Park using SILIC, evaluate the performance of SILIC in highly-disturbed urban environments, and use the generated labels to validate mainstream hypotheses in soundscape ecology. This study investigated the influences of noise, weather, time, and spatial location on bird vocalization frequency. The main sources of misidentification were sound form non-target species, followed by anthrophonies. With a precision threshold of 70 %, the recall for qualified species ranged from 0.125 to 1, with an average of 0.586; the F1 scores ranged from 0.212 to 0.824, with an average of 0.586; and the AP ranged from 0.378 to 0.945, with an average of 0.695. Noise, as an important element of urban soundscape, had significant impact on bird vocalization frequency, and was negatively correlated with distance to road, a factor not only affected noise amplitude, but also related to bird habitat preferences. Birds in Daan Park tended to vocalize more in morning hours. Temperature was positively correlated with bird vocalization frequency and was mainly affected by months, indicating seasonal variations. Rainfall and maximum gust wind speed were the main weather factors affecting bird vocalization frequency. The effect of environmental factors on individual species' vocalization frequencies were generally similar to the overall soundscape. The differences in vocalization frequencies among species were caused by their sensitivity to different environmental factors. SILIC maintains a certain level of performance in highly disturbed soundscape, the generated labels are applicable to further soundscape research. Continuous training of SILIC shall benefit soundscape ecology research in future.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-08T16:09:43Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-08T16:09:43Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝誌………………………………………………………………...………….… i
摘要…………………………………………………………………………...… ii
Abstract …………………………………………………………...…………… iii
目錄………………………………………………………………...…………… v
前言………………………………………………………………...…………… 1
一、 聲景與聲景生態學…………………………………...………………… 1
二、 聲景生態學的近年發展…………………………...…………………… 3
三、 研究目的…………………………………...…………………………… 6
材料方法……………………………………………………………………...… 7
一、 研究地點…………………………………...…………………………… 7
二、 錄音資料…………………………………...…………………………… 7
三、 噪音強度…………………………………...…………………………… 8
四、 氣象資料…………………………………...………………………....… 9
五、 地理資訊資料……………………………...………………..……..…… 9
六、 SILIC人工智慧物種辨識………………....……………………..…..… 9
七、 SILIC表現評估…………………….……...…………..……………… 10
八、 統計分析…………………………………...……………………..…… 12
結果………………………………………………………………………...….. 13
一、 SILIC人工智慧物種辨識………………....……………………..…… 13
二、 鳥類發聲與噪音的時空分布………………....………………….…… 14
三、 鳥類發聲頻度與環境因子之間的關係………………………….…… 16
討論……………………………………………………..…………………...… 19
一、 SILIC綜合表現………………....……………………..……………… 19
二、 環境因子對鳥類總體聲景的影響………………....…………….…… 22
結論…………………………………………………………………...….……. 25
參考文獻……………………………………………………...……………..… 26
圖………………………………………………………………………...…….. 34
表……………………………………………………………………….......….. 55
附錄………………………………………………………………………...….. 69
-
dc.language.isozh_TW-
dc.title以人工智慧物種辨識工具探索大安森林公園的鳥類聲景zh_TW
dc.titleExploring the Bird Soundscape of Daan Park Using AI-powered Species Detection and Identification Toolen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee許富雄;蔡若詩;林瑞興;端木茂甯zh_TW
dc.contributor.oralexamcommitteeFu-Hsiung Hsu;Juo-Shi Tsai;Ruey-Shing Lin;Mao-Ning Tuanmuen
dc.subject.keyword被動式聲音監測,物種自動辨識,模型評估,聲景生態學,zh_TW
dc.subject.keywordpassive acoustic monitoring,automatic species identification,model evaluation,soundscape ecology,en
dc.relation.page80-
dc.identifier.doi10.6342/NTU202301532-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-07-14-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept森林環境暨資源學系-
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
5.45 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved