Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88060Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 陳中平 | zh_TW |
| dc.contributor.advisor | Chung-Ping Chen | en |
| dc.contributor.author | 胡佳誠 | zh_TW |
| dc.contributor.author | Chia-Chen Hu | en |
| dc.date.accessioned | 2023-08-08T16:06:54Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-08 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-12 | - |
| dc.identifier.citation | [1] Edward Bennett Rosa. The self and mutual inductances of linear conductors. Number 80. US Department of Commerce and Labor, Bureau of Standards, 1908.
[2] F. W. Grover. Inductance Calculations: Working Formulas and Tables. D. Van Nostrand, New York, 1946. [3] Albert E Ruehli. Inductance calculations in a complex integrated circuit environment. IBM journal of research and development, 16(5):470–481, 1972. [4] Cletus Hoer and Y Love. Exact inductance equations for rectangular con-ductors with applications to more complicated geometries. Journal of Research of the National Bureau of Standards. C, Engineering and Instrumentation, 69(2):127–137, 1965. [5] Albert E Ruehli. Equivalent circuit models for three-dimensional multiconductor systems. IEEE Transactions on Microwave theory and techniques, 22(3):216–221, 1974. [6] Mattan Kamon, Michael J Tsuk, and Jacob White. Fasthenry: A multipoleaccelerated 3-d inductance extraction program. In Proceedings of the 30th international design automation conference, pages 678–683, 1993. [7] Abdulkadir C Yucel, Ioannis P Georgakis, Athanasios G Polimeridis, Hakan Bağcı, and Jacob K White. Voxhenry: Fft-accelerated inductance extraction for voxelized geometries. IEEE Transactions on Microwave Theory and Techniques, 66(4):1723–1735, 2018. [8] Kyle Jackman and Coenrad J Fourie. Fast multicore fasthenry and a tetrahedral modeling method for inductance extraction of complex 3d geometries. In 2015 15th International Superconductive Electronics Conference (ISEC), pages 1–3. IEEE, 2015. [9] SA Schelkunoff. Some equivalence theorems of electromagnetics and their application to radiation problems. The Bell System Technical Journal, 15(1):92–112, 1936. [10] Weng Cho Chew. Waves and fields in inhomogenous media, volume 16. John Wiley & Sons, 1999. [11] Albert Ruehli, Giulio Antonini, and Lijun Jiang. Circuit oriented electromagnetic modeling using the PEEC techniques. John Wiley & Sons, 2017. [12] Constantine A Balanis. Advanced engineering electromagnetics. John Wiley & Sons, 2012. [13] Constantine A Balanis. Antenna theory: analysis and design. John wiley & sons, 2016. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88060 | - |
| dc.description.abstract | 隨著IC設計產業的蓬勃發展,電路的複雜度日益上升。2.5D/3D晶片和系統級封裝技術成為優化晶片系統的重要因素。然而,其複雜的非曼哈頓繞線和多層結構使得電氣分析變得更加複雜,並且由於芯片間連線的尺度問題,寄生電感的影響變得不可忽視。此外,矽智財的重要性也越來越受到重視。儘管電路布局往往難以回溯,但隨著人工智慧(AI)產業的快速成長,我們無法排除矽智財遭到非法侵權的風險。基於這兩個問題,我們提出了一種可應用於非曼哈頓繞線、具有高精準度並能有效保護矽智財的電感萃取演算法。該演算法利用了電磁學的經典理論中的等效定理的概念。我們可以利用等效平面通過固定的計算次數來計算大量線路對指定導體的互感總值。同時,由於等效平面將布局資訊轉換為平面上的等效電流和磁流,使原始布局無法被回溯,從而達到保護知識產權的效果。 | zh_TW |
| dc.description.abstract | With the blooming development of the IC design industry, the complexity of circuits is increasing. 2.5D/3D chips and system-level packaging technology have become important factors in optimizing chip systems. However, their complex non-Manhattan routing and multilayer structures make electrical analysis more challenging, and the impact of parasitic inductance cannot be ignored due to the scale of inter-chip connections.In addition, the importance of silicon intellectual property (IP) is being increasingly recognized. Although circuit layouts are often difficult to trace, with the rapid growth of the artificial intelligence (AI) industry, we cannot exclude the risk of illegal infringement of silicon IP. Based on these two issues, we propose an inductance extraction algorithm that is applicable to non-Manhattan routing, achieves high precision, and effectively protects silicon IP.The algorithm utilizes the concept of equivalence principle from classical electromagnetic theory. We can use an equivalence surface to calculate the total mutual inductance between a large number of conductors and a specified conductor using a fixed number of computations. Additionally, the conversion of layout information into equivalence electric and magnetic currents on the equivalence surface makes it impossible to trace back to the original layout, thereby achieving the goal of protecting intellectual property rights. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-08T16:06:54Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-08T16:06:54Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i
Acknowledgements iii 摘要 v Abstract vii Contents ix List of Figures xiii Chapter 1 Introduction 1 1.1 Motivation and Objectives . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 General Background Information . . . . . . . . . . . . . . . . . . . 2 1.3 EPRIMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Chapter 2 Relevant Theories and Methods 9 2.1 Equivalence Principle . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Partial Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Chapter 3 Establishing Equivalence Bounding Box 15 3.1 Surface equivalence electric current due to source . . . . . . . . . . . 15 3.2 Surface equivalence magnetic current due to source . . . . . . . . . . 19 Chapter 4 Creating Equivalence Magnetic Fields 21 4.1 Equivalence magnetic field due to surface equivalence electric current 22 4.2 Equivalence magnetic field due to surface equivalence magnetic current 23 Chapter 5 Mutual inductance calculation and Optimization 31 5.1 Preprocessing of Formulas . . . . . . . . . . . . . . . . . . . . . . . 31 5.2 Rayleigh Quadrature Formula . . . . . . . . . . . . . . . . . . . . . 33 5.3 Decomposition of Source Filament Current . . . . . . . . . . . . . . 36 5.4 Determining the Correct Integration Direction and Sign Correction . . 37 Chapter 6 Experiment Results 47 6.1 Conductor to Conductor . . . . . . . . . . . . . . . . . . . . . . . . 47 6.1.1 Case1-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 6.1.2 Case1-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 6.1.3 Case1-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.1.4 Case1-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 6.1.5 Case1-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.1.6 Case1-6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.2 Spiral to Conductor . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.2.1 Case2-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 6.2.2 Case2-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.2.3 Case2-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6.2.4 Case2-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.2.5 Case2-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 6.2.6 Case2-6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 6.2.7 Case2-7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.2.8 Case2-8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Chapter 7 Discussion and Future Work 63 References 65 Appendix A — Introduction 67 A.1 Flow Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 | - |
| dc.language.iso | en | - |
| dc.subject | 電感 | zh_TW |
| dc.subject | 寄生萃取 | zh_TW |
| dc.subject | 等效定理 | zh_TW |
| dc.subject | Parasitic extraction | en |
| dc.subject | inductance | en |
| dc.subject | equivalent theorem | en |
| dc.title | 應用等效定理的電感萃取宏觀建模演算法EPRIMA | zh_TW |
| dc.title | EPRIMA:Equivalence PRinciple Inductance Macromodeling Algorithm | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 鄭士康;吳瑞北 | zh_TW |
| dc.contributor.oralexamcommittee | Shyh-Kang Jeng;Ruey-Beei Wu | en |
| dc.subject.keyword | 寄生萃取,電感,等效定理, | zh_TW |
| dc.subject.keyword | Parasitic extraction,inductance,equivalent theorem, | en |
| dc.relation.page | 68 | - |
| dc.identifier.doi | 10.6342/NTU202300971 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-07-13 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電子工程學研究所 | - |
| Appears in Collections: | 電子工程學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-111-2.pdf Restricted Access | 4.17 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
