請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88054
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李君浩 | zh_TW |
dc.contributor.advisor | Jiun-Haw Lee | en |
dc.contributor.author | 施淳仁 | zh_TW |
dc.contributor.author | Chun-Jen Shih | en |
dc.date.accessioned | 2023-08-08T16:05:01Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-08-08 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-07-12 | - |
dc.identifier.citation | J.-H. Lee, I-Chun. Cheng, H. Hua, S.-T. Wu, Introduction to Flat Panel Displays (John Wiley & Sons, 2020).
H.-W. Chen, J.-H. Lee, B.-Y. Lin, S. Chen, S.-T. Wu, Liquid crystal display and organic light-emitting diode display: present status and future perspectives. Light: Science & Applications. 7, 17168–17168 (2017). C. I. Park, M. Seong, M. A. Kim, D. Kim, H. Jung, M. Cho, S. H. Lee, H. Lee, S. Min, J. Kim, M. Kim, J.-H. Park, S. Kwon, B. Kim, S. J. Kim, W. Park, J.-Y. Yang, S. Yoon, I. Kang, World’s first large size 77-inch transparent flexible OLED display. Journal of the Society for Information Display. 26, 287–295 (2018). www.precedenceresearch.com/ T. Sun, B. Chen, Y. Guo, Q. Zhu, J. Zhao, Y. Li, X. Chen, Y. Wu, Y. Gao, L. Jin, S. T. Chu, F. Wang, Ultralarge anti-Stokes lasing through tandem upconversion. Nature Communications. 13 (2022), doi:https://doi.org/10.1038/s41467-022-28701-1. C.-H. Chen, B.-Y. Lin, N. T. Tierce, M. Leung, T.-L. Chiu, C. J. Bardeen, J.-H. Lee, Efficient Solid-State triplet-triplet annihilation up-conversion electroluminescence device by incorporating intermolecular intersystem-crossing dark sensitizer. Chemical Engineering Journal. 427, 130889 (2022). C. W. Tang, S. A. VanSlyke, Organic electroluminescent diodes. Applied Physics Letters. 51, 913–915 (1987). B. Lüssem, M. Riede, K. Leo, Doping of organic semiconductors. physica status solidi (a). 210, 9–43 (2012). J. Meyer, S. Hamwi, M. Kröger, W. Kowalsky, T. Riedl, A. Kahn, Transition Metal Oxides for Organic Electronics: Energetics, Device Physics and Applications. Advanced Materials. 24, 5408–5427 (2012). H.-W. Lin, W.-C. Lin, J.-H. Chang, C.-I. Wu, Solution-processed hexaazatriphenylene hexacarbonitrile as a universal hole-injection layer for organic light-emitting diodes. Organic Electronics. 14, 1204–1210 (2013). M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, Highly efficient phosphorescent emission from organic electroluminescent devices. Nature. 395, 151–154 (1998). H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Highly efficient organic light-emitting diodes from delayed fluorescence. Nature. 492, 234–238 (2012). Y. Liu, C. Li, Z. Ren, S. Yan, M. R. Bryce, All-organic thermally activated delayed fluorescence materials for organic light-emitting diodes. Nature Reviews Materials. 3 (2018), doi:https://doi.org/10.1038/natrevmats.2018.20. A. Endo, K. Sato, K. Yoshimura, T. Kai, A. Kawada, H. Miyazaki, C. Adachi, Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes. Applied Physics Letters. 98, 083302 (2011). K. Goushi, K. Yoshida, K. Sato, C. Adachi, Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion. Nature Photonics. 6, 253–258 (2012). M. Sarma, L.-M. Chen, Y.-S. Chen, K.-T. Wong, Exciplexes in OLEDs: Principles and promises. Materials Science and Engineering: R: Reports. 150, 100689 (2022). S. P. Singh, Y. N. Mohapatra, M. Qureshi, S. Sundar Manoharan, White organic light-emitting diodes based on spectral broadening in electroluminescence due to formation of interfacial exciplexes. Applied Physics Letters. 86, 113505 (2005). W.-Y. Hung, G.-C. Fang, S.-W. Lin, S.-H. Cheng, K.-T. Wong, T.-Y. Kuo, P.-T. Chou, The First Tandem, All-exciplex-based WOLED. Scientific Reports. 4 (2014), doi:https://doi.org/10.1038/srep05161. H. Shin, S. Lee, K.-H. Kim, C.-K. Moon, S.-J. Yoo, J.-H. Lee, J.-J. Kim, Blue Phosphorescent Organic Light-Emitting Diodes Using an Exciplex Forming Co-host with the External Quantum Efficiency of Theoretical Limit. Advanced Materials. 26, 4730–4734 (2014). Y. Seino, H. Sasabe, Y. Pu, J. Kido, High‐Performance Blue Phosphorescent OLEDs Using Energy Transfer from Exciplex. Advanced Materials. 26, 1612–1616 (2014). J.-H. Lee, S.-H. Cheng, S.-J. Yoo, H. Shin, J.-H. Chang, C.-I. Wu, K.-T. Wong, J.-J. Kim, An Exciplex Forming Host for Highly Efficient Blue Organic Light Emitting Diodes with Low Driving Voltage. Advanced Functional Materials. 25, 361–366 (2014). Y.-S. Park, W.-I. Jeong, J.-J. Kim, Energy transfer from exciplexes to dopants and its effect on efficiency of organic light-emitting diodes. Journal of Applied Physics. 110, 124519 (2011). W. Song, J. Y. Lee, Light emission mechanism of mixed host organic light-emitting diodes. Applied Physics Letters. 106, 123306 (2015). K.-H. Kim, C.-K. Moon, J.-H. Lee, S.-Y. Kim, J.-J. Kim, Highly Efficient Organic Light-Emitting Diodes with Phosphorescent Emitters Having High Quantum Yield and Horizontal Orientation of Transition Dipole Moments. Advanced Materials. 26, 3844–3847 (2014). S. Lee, D. Limbach, K.-H. Kim, S.-J. Yoo, Y.-S. Park, J.-J. Kim, High efficiency and non-color-changing orange organic light emitting diodes with red and green emitting layers. Organic Electronics. 14, 1856–1860 (2013). S.-Y. Kim, W.-I. Jeong, C. Mayr, Y.-S. Park, K.-H. Kim, J.-H. Lee, C.-K. Moon, W. Brütting, J.-J. Kim, Organic Light-Emitting Diodes with 30% External Quantum Efficiency Based on a Horizontally Oriented Emitter. Advanced Functional Materials. 23, 3896–3900 (2013). J. Zhao, X. Du, S. Yuan, C. Zheng, H. Lin, S. Tao, Highly efficient green and red OLEDs based on a new exciplex system with simple structures. Organic Electronics. 43, 136–141 (2017). T. Xu, J.-G. Zhou, C.-C. Huang, L. Zhang, M.-K. Fung, I. Murtaza, H. Meng, L.-S. Liao, Highly Simplified Tandem Organic Light-Emitting Devices Incorporating a Green Phosphorescence Ultrathin Emitter within a Novel Interface Exciplex for High Efficiency. ACS Applied Materials & Interfaces. 9, 10955–10962 (2017). J.-B. Kim, J.-H. Lee, C.-K. Moon, K.-H. Kim, J.-J. Kim, Highly efficient inverted top emitting organic light emitting diodes using a horizontally oriented green phosphorescent emitter. Organic Electronics. 15, 2715–2718 (2014). K.-H. Kim, S. Lee, C.-K. Moon, S.-Y. Kim, Y.-S. Park, J.-H. Lee, J. Woo Lee, J. Huh, Y. You, J.-J. Kim, Phosphorescent dye-based supramolecules for high-efficiency organic light-emitting diodes. Nature Communications. 5 (2014). J.-H. Lee, H. Shin, J.-M. Kim, K.-H. Kim, J.-J. Kim, Exciplex-Forming Co-Host-Based Red Phosphorescent Organic Light-Emitting Diodes with Long Operational Stability and High Efficiency. ACS Applied Materials & Interfaces. 9, 3277–3281 (2017). K. Fukuda, K. Yu, T. Someya, The Future of Flexible Organic Solar Cells. Advanced Energy Materials. 10, 2000765 (2020). J. Qin, L. Lan, S. Chen, F. Huang, H. Shi, W. Chen, H. Xia, K. Sun, C. Yang, Recent Progress in Flexible and Stretchable Organic Solar Cells. Advanced Functional Materials. 30, 2002529 (2020). Z. Hu, J. Wang, X. Ma, J. Gao, C. Xu, K. Yang, Z. Wang, J. Zhang, F. Zhang, A critical review on semitransparent organic solar cells. Nano Energy. 78, 105376 (2020). M. Kaltenbrunner, M. S. White, E. D. Głowacki, T. Sekitani, T. Someya, N. S. Sariciftci, S. Bauer, Ultrathin and lightweight organic solar cells with high flexibility. Nature Communications. 3 (2012). W. Song, K. Yu, E. Zhou, L. Xie, L. Hong, J. Ge, J. Zhang, X. Zhang, R. Peng, Z. Ge, Crumple Durable Ultraflexible Organic Solar Cells with an Excellent Power‐per‐Weight Performance. Advanced Functional Materials. 31, 2102694 (2021). L. Meng, Y. Zhang, X. Wan, C. Li, X. Zhang, Y. Wang, X. Ke, Z. Xiao, L. Ding, R. Xia, H.-L. Yip, Y. Cao, Y. Chen, Organic and solution-processed tandem solar cells with 17.3% efficiency. Science. 361, 1094–1098 (2018). Z. Zheng, J. Wang, P. Bi, J. Ren, Y. Wang, Y. Yang, X. Liu, S. Zhang, J. Hou, Tandem Organic Solar Cell with 20.2% Efficiency. Joule. 6, 171–184 (2022). C. He, Y. Pan, Y. Ouyang, Q. Shen, Y. Gao, K. Yan, J. Fang, Y. Chen, C.-Q. Ma, J. Min, C. Zhang, L. Zuo, H. Chen, Manipulating the D:A interfacial energetics and intermolecular packing for 19.2% efficiency organic photovoltaics. Energy & Environmental Science. 15, 2537–2544 (2022). H. Jinno, K. Fukuda, X. Xu, S. Park, Y. Suzuki, M. Koizumi, T. Yokota, I. Osaka, K. Takimiya, T. Someya, Stretchable and waterproof elastomer-coated organic photovoltaics for washable electronic textile applications. Nature Energy. 2, 780–785 (2017). S. Park, S. W. Heo, W. Lee, D. Inoue, Z. Jiang, K. Yu, H. Jinno, D. Hashizume, M. Sekino, T. Yokota, K. Fukuda, K. Tajima, T. Someya, Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics. Nature. 561, 516–521 (2018). L. K. Reb, M. Böhmer, B. Predeschly, S. Grott, C. L. Weindl, G. I. Ivandekic, R. Guo, C. Dreißigacker, R. Gernhäuser, A. Meyer, P. Müller-Buschbaum, Perovskite and Organic Solar Cells on a Rocket Flight. Joule. 4, 1880–1892 (2020). Y.-M. Sung, M.-Z. Li, D. Luo, Y.-D. Li, S. Biring, Y.-C. Huang, C.-K. Wang, S.-W. Liu, K.-T. Wong, A micro-cavity forming electrode with high thermal stability for semi-transparent colorful organic photovoltaics exceeding 13% power conversion efficiency. Nano Energy. 80, 105565 (2021). D. Wang, H. Liu, Y. Li, G. Zhou, L. Zhan, H. Zhu, X. Lu, H. Chen, C.-Z. Li, High-performance and eco-friendly semitransparent organic solar cells for greenhouse applications. Joule. 5, 945–957 (2021). C. W. Tang, Two-layer organic photovoltaic cell. Applied Physics Letters. 48, 183-185 (1986). S. Yoo, Benoit Domercq, B. Kippelen, Efficient thin-film organic solar cells based on pentacene/C60 heterojunctions. Applied Physics Letters. 85, 5427–5429 (2004). R. Pandey, A. A. Gunawan, K. Andre Mkhoyan, R. J. Holmes, Efficient Organic Photovoltaic Cells Based on Nanocrystalline Mixtures of Boron Subphthalocyanine Chloride and C60. Advanced Functional Materials. 22, 617–624 (2012). K. Vasseur, K. Broch, A. L. Ayzner, B. P. Rand, D. Cheyns, C. Frank, F. Schreiber, M. F. Toney, Ludo Froyen, P. Heremans, Controlling the Texture and Crystallinity of Evaporated Lead Phthalocyanine Thin Films for Near-Infrared Sensitive Solar Cells. ACS Applied Materials & Interfaces. 5, 8505–8515 (2013). E. Frankevich, Y. Maruyama, H. Ogata, Mobility of charge carriers in vapor-phase grown C60 single crystal. Chemical Physics Letters. 214, 39–44 (1993). S. Few, Mark van Schilfgaarde, J. N. Kirkpatrick, J. Nelson, Influence of Chemical Structure on the Charge Transfer State Spectrum of a Polymer:Fullerene Complex. Journal of Physical Chemistry C. 118, 8253–8261 (2014). Koen Vandewal, Z. Ma, J. Bergqvist, Z. Tang, E. Wang, G. Henriksson, K. Tvingstedt, M. Andersson, F. Zhang, Olle Inganäs, Quantification of Quantum Efficiency and Energy Losses in Low Bandgap Polymer:Fullerene Solar Cells with High Open-Circuit Voltage. Advanced Functional Materials. 22, 3480–3490 (2012). Q. Burlingame, X. Tong, J. M. Hankett, M. Slootsky, Z. Chen, S. R. Forrest, Photochemical origins of burn-in degradation in small molecular weight organic photovoltaic cells. Energy and Environmental Science. 8, 1005–1010 (2015). P. Cheng, G. Li, X. Zhan, Y. Yang, Next-generation organic photovoltaics based on non-fullerene acceptors. Nature Photonics. 12, 131–142 (2018). H. Gommans, Bregt Verreet, B. P. Rand, R. N. Muller, Jef Poortmans, P. Heremans, J. Genoe, On the Role of Bathocuproine in Organic Photovoltaic Cells. Advanced Functional Materials. 18, 3686–3691 (2008). Q. Burlingame, B. Song, L. Ciammaruchi, G. Zanotti, J. M. Hankett, Z. Chen, E. A. Katz, S. R. Forrest, Reliability of Small Molecule Organic Photovoltaics with Electron-Filtering Compound Buffer Layers. Advanced Energy Materials. 6, 1601094–1601094 (2016). Y. Liu, Q. Ren, Z. Su, B. Chu, W. Li, S. Wu, F. Jin, B. Zhao, X. Yan, J. Wang, D. Fan, F. Zhang, The working mechanism of organic photovoltaic cell by using copper phthalocyanine as exciton blocking layer. Organic Electronics. 13, 2156–2159 (2012). Seung Hwan Lee, A. Rashid, C. Lee, S.-S. Yoon, Y.-Y. Noh, Toward color-selective printed organic photodetectors for high-resolution image sensors: From fundamentals to potential commercialization. Materials Science and Engineering R. 147, 100660–100660 (2022). K. Lee, Dong-Seok Leem, J. S. Castrucci, Kyung Woo Park, X. Bulliard, Kyu Sik Kim, Y. Jin, S. Lee, T. P. Bender, Soo Young Park, Green-Sensitive Organic Photodetectors with High Sensitivity and Spectral Selectivity Using Subphthalocyanine Derivatives. ACS Applied Materials & Interfaces. 5, 13089–13095 (2013). K. Lee, Gae Hwang Lee, Dong-Seok Leem, J. Lee, S.-H. Choi, X. Bulliard, H. Choi, Kyung Woo Park, Kyu Sik Kim, Y. Jin, S. Lee, Soo Young Park, Dynamic Characterization of Green-Sensitive Organic Photodetectors Using Nonfullerene Small Molecules: Frequency Response Based on the Molecular Structure. Journal of Physical Chemistry C. 118, 13424–13431 (2014). J. H. Vella, L. Huang, Naresh Eedugurala, K. Mayer, Tse Nga Ng, J. D. Azoulay, Broadband infrared photodetection using a narrow bandgap conjugated polymer. Science Advances. 7 (2021), doi:https://doi.org/10.1126/sciadv.abg2418. J.-E. Kallhammer, The road ahead for car night-vision. Nat. Photonics. 5, 12-13 (2006). Z. Hu, C. Fang, B. Li, Z. Zhang, C. Cao, M. Cai, S. Su, X. Sun, X. Shi, C. Li, T. Zhou, Y. Zhang, C. Chi, P. He, X. Xia, Y. Chen, S. S. Gambhir, Z. Cheng, J. Tian, First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/II windows. Nature Biomedical Engineering. 4, 259–271 (2019). C.-J. Shih, Y.-C. Huang, T.-Y. Wang, C.-W. Yu, I-Sheng. Hsu, A. K. Akbar, J.-Y. Lin, S. Biring, J.-H. Lee, S.-W. Liu, Transparent organic upconversion devices displaying high-resolution, single-pixel, low-power infrared images perceived by human vision. Science Advances. 9 (2023). T. Sun, B. Chen, Y. Guo, Q. Zhu, J. Zhao, Y. Li, X. Chen, Y. Wu, Y. Gao, L. Jin, S. T. Chu, F. Wang, Ultralarge anti-Stokes lasing through tandem upconversion. Nature Communications. 13 (2022), doi:https://doi.org/10.1038/s41467-022-28701-1. C.-T. Chen, B.-Y. Lin, N. T. Tierce, M. Leung, T.-L. Chiu, C. J. Bardeen, J.-H. Lee, Efficient Solid-State triplet-triplet annihilation up-conversion electroluminescence device by incorporating intermolecular intersystem-crossing dark sensitizer. Chemical Engineering Journal. 427, 130889–130889 (2022). J. S. Sandhu, A. P. Heberle, B. W. Alphenaar, A. Cleaver, Near-infrared to visible up-conversion in a forward-biased Schottky diode with a p-doped channel. Applied Physics Letters. 76, 1507–1509 (2000). K. Russell, I. Appelbaum, H. Temkin, C. H. Perry, Venkatesh Narayanamurti, M. A. Hanson, A. C. Gossard, Room-temperature electro-optic up-conversion via internal photoemission. Applied Physics Letters. 82, 2960–2962 (2003). H. Luo, D. Ban, H. Liu, P. J. Poole, M. Buchanan, Pixelless imaging device using optical up-converter. IEEE Electron Device Letters. 25, 129–131 (2004). D. Ban, H. Luo, H. Liu, Z. R. Wasilewski, A. J. SpringThorpe, R. W. Glew, M. Buchanan, Optimized GaAs∕AlGaAs light-emitting diodes and high efficiency wafer-fused optical up-conversion devices. Journal of Applied Physics. 96, 5243–5248 (2004). D. Ban, S. W. Han, Z.-T. Lu, T. Oogarah, A. J. SpringThorpe, H. Liu, Near-infrared to visible light optical upconversion by direct tandem integration of organic light-emitting diode and inorganic photodetector. Applied Physics Letters. 90, 093108–093108 (2007). J. Chen, D. Ban, X. Feng, Z.-H. Lu, Saeed Fathololoumi, A. J. SpringThorpe, H. Liu, Enhanced efficiency in near-infrared inorganic/organic hybrid optical upconverter with an embedded mirror. Journal of Applied Physics. 103, 103112–103112 (2008). J. Chen, D. Ban, M. G. Helander, Z.-H. Lu, P. J. Poole, Near-Infrared Inorganic/Organic Optical Upconverter with an External Power Efficiency of >100%. Advanced Materials. 22, 4900–4904 (2010). M. Guan, L. Li, G. Cao, Y. Zhang, B. Wang, X. Chu, Z. Zhu, Y. Zeng, Organic light-emitting diodes with integrated inorganic photo detector for near-infrared optical up-conversion. Organic Electronics. 12, 2090–2094 (2011). X. Chu, M. Guan, L. Li, Y. Zhang, F. Zhang, Y. Li, Z. Zhu, B. Wang, Y. Zeng, Improved Efficiency of Organic/Inorganic Hybrid Near-Infrared Light Upconverter by Device Optimization. ACS Applied Materials & Interfaces. 4, 4976–4980 (2012). X. Chu, M. Guan, L. Niu, Y. Zeng, Y. Li, Y. Zhang, Z. Zhu, B. Wang, Fast Responsive and Highly Efficient Optical Upconverter Based on Phosphorescent OLED. ACS Applied Materials & Interfaces. 6, 19011–19016 (2014). J. Chen, J. Tao, D. Ban, M. G. Helander, Z. Wang, J. Qiu, Z.-H. Lu, Hybrid Organic/Inorganic Optical Up-Converter for Pixel-Less Near-Infrared Imaging. Advanced Materials. 24, 3138–3142 (2012). J. Ni, T. Tano, Yoshiro Ichino, T. Hanada, T. Kamata, N. Takada, Kiyoshi Yase, Organic Light-Emitting Diode with TiOPc Layer–A New Multifunctional Optoelectronic Device. Japanese Journal of Applied Physics. 40, L948–L948 (2001). Masayuki Chikamatsu, Yoshiro Ichino, N. Takada, M. Yoshida, T. Kamata, Kiyoshi Yase, Light up-conversion from near-infrared to blue using a photoresponsive organic light-emitting device. Applied Physics Letters. 81, 769–771 (2002). Young Ho Kim, D. Song, N. Chopra, Pieter De Somer, F. So, Organic Infrared Upconversion Device. Advanced Materials. 22, 2260–2263 (2010). Wenli Lv, J. Zhong, Y. Peng, Y. Li, X. Luo, L. Sun, F. Zhao, J.-P. Zhang, H. Xia, Y. Tang, S. Xu, Y. Wang, Organic near-infrared upconversion devices: Design principles and operation mechanisms. Organic Electronics. 31, 258–265 (2016). Wenli Lv, J. Zhou, Z. Zhou, X. Li, Q. Dai, S. Xu, J. Zhong, Y. Liang, L. Sun, F. Lu, Y. Peng, An investigation of design principles toward near infrared organic upconversion devices. Optical Materials. 121, 111487–111487 (2021). Y. Okawa, S. Naka, H. Okada, Enhancement of Electron Injection in Organic Light-Emitting Diodes with Photosensitive Charge Generation Layer. Japanese Journal of Applied Physics. 50, 01BC11–01BC11 (2011). S.-W. Liu, C.-C. Lee, C.-H. Yuan, W.-C. Su, S. Lin, Wen Shin Chang, B.-Y. Huang, C.-F. Lin, Ya Ju Lee, T.-H. Su, K.-T. Chen, Transparent Organic Upconversion Devices for Near-Infrared Sensing. Advanced Materials. 27, 1217–1222 (2015). S.-W. Liu, Y.-Z. Li, S. Lin, Y. Li, C.-C. Lee, Inducing the trap-site in an emitting-layer for an organic upconversion device exhibiting high current-gain ratio and low turn-on voltage. Organic Electronics. 30, 275–280 (2016). C.-H. Yuan, C.-C. Lee, C.-F. Liu, Y.-H. Lin, W.-C. Su, S. Lin, K.-T. Chen, Yan De Li, Wen Shin Chang, Y.-Z. Li, T.-H. Su, Y.-H. Liu, S.-W. Liu, Cathodic-controlled and near-infrared organic upconverter for local blood vessels mapping. Scientific Reports. 6 (2016), doi:https://doi.org/10.1038/srep32324. S. He, D.-K. Wang, Z. Yang, J.-X. Man, Z.-H. Lu, Integrated tandem device with photoactive layer for near-infrared to visible upconversion imaging. Applied Physics Letters. 112, 243301–243301 (2018). Q. Song, T. Lin, Z. Su, B. Chu, H. Yang, W. Li, C.-S. Lee, Organic Upconversion Display with an over 100% Photon-to-photon Upconversion Efficiency and a Simple Pixelless Device Structure. The Journal of Physical Chemistry Letters. 9, 6818–6824 (2018). C.-J. Shih, Y.-Z. Li, M.-Z. Li, S. Biring, B.-C. Huang, C.-W. Liu, T.-H. Yeh, D. Luo, J.-H. Lee, Y.-H. Huang, K.-T. Wong, S.-W. Liu, Transparent organic upconversion device targeting high- grade infrared visual image. Nano Energy. 86, 106043 (2021). D. Y. Kim, K. R. Choudhury, J. W. Lee, D. W. Song, G. Sarasqueta, F. So, PbSe Nanocrystal-Based Infrared-to-Visible Up-Conversion Device. Nano Letters. 11, 2109–2113 (2011). Young Ho Kim, T.-H. Lai, Jae Sung Lee, J. R. Manders, F. So, Multi-spectral imaging with infrared sensitive organic light emitting diode. Scientific Reports. 4 (2015), doi:https://doi.org/10.1038/srep05946. H. Yu, Do Young Kim, J. Lee, S.-J. Baek, J. Lee, P. Singh, F. So, High-gain infrared-to-visible upconversion light-emitting phototransistors. Nature Photonics. 10, 129–134 (2016). Aytak Motmaen, A. Rostami, Samiye Matloub, Ultra High-efficiency Integrated Mid Infrared to Visible Up-conversion System. Scientific Reports. 10 (2020), doi:https://doi.org/10.1038/s41598-020-66392-0. D. Li, Y.-S. Hu, N. Zhang, Y. Lv, J. Lin, X. Guo, Y. Fan, J. Luo, X. Liu, Near-Infrared to Visible Organic Upconversion Devices Based on Organic Light-Emitting Field Effect Transistors. ACS Applied Materials & Interfaces. 9, 36103–36110 (2017). W. Zhou, Y. Shang, F. Pelayo, K. Xu, R. Wang, S. Luo, X. Xiao, X. Zhou, M. Huang, E. H. Sargent, Z. Ning, Solution-processed upconversion photodetectors based on quantum dots. Nature electronics. 3, 251–258 (2020). G. Mu, T. Rao, S. Zhang, C. Wen, M. Chen, Q. Hao, X. Tang, Ultrasensitive Colloidal Quantum-Dot Upconverters for Extended Short-Wave Infrared. ACS Applied Materials & Interfaces. 14, 45553–45561 (2022). J. H. Kim, J. Lee, J. Lim, J. Roh, S. Baek, W. Kim, M. C. Suh, H. Yu, Highly Efficient Top‐Emitting Infrared‐to‐Visible Up‐Conversion Device Enabled by Microcavity Effect. Advanced Functional Materials, 2214530 (2023). H. Tachibana, N. Aizawa, Y. Hidaka, T. Yasuda, Tunable Full-Color Electroluminescence from All-Organic Optical Upconversion Devices by Near-Infrared Sensing. ACS Photonics. 4, 223–227 (2017). D. Yang, X. Zhou, D. Ma, A. Vadim, T. Ahamad, S. M. Alshehri, Near infrared to visible light organic up-conversion devices with photon-to-photon conversion efficiency approaching 30%. Materials Horizons. 5, 874–882 (2018). N. Li, N. Eedugurala, D. Leem, J. D. Azoulay, T. N. Ng, Organic Upconversion Imager with Dual Electronic and Optical Readouts for Shortwave Infrared Light Detection. Advanced Functional Materials. 31, 2100565 (2021). C. Shin, N. Li, B. Seo, N. Eedugurala, J. D. Azoulay, T. N. Ng, Heterojunction bilayers serving as a charge transporting interlayer reduce the dark current and enhance photomultiplication in organic shortwave infrared photodetectors. Materials Horizons. 9, 2172–2179 (2022). B. H. Yu, Y. Cheng, M. Li, S.-W. Tsang, F. So, Sub-Band Gap Turn-On Near-Infrared-to-Visible Up-Conversion Device Enabled by an Organic–Inorganic Hybrid Perovskite Photovoltaic Absorber. ACS Applied Materials & Interfaces. 10, 15920–15925 (2018). K. Strassel, A. Kaiser, S. Jenatsch, A. C. Véron, S. B. Anantharaman, E. Hack, M. Diethelm, F. Nüesch, R. Aderne, C. Legnani, S. Yakunin, M. Cremona, R. Hany, Squaraine Dye for a Visibly Transparent All-Organic Optical Upconversion Device with Sensitivity at 1000 nm. ACS Applied Materials & Interfaces. 10, 11063–11069 (2018). W. Hu, C. Vael, M. Diethelm, K. Strassel, S. B. Anantharaman, A. Aribia, M. Cremona, S. Jenatsch, F. Nüesch, R. Hany, On the Response Speed of Narrowband Organic Optical Upconversion Devices. Advanced Optical Materials. 10, 2200695 (2022). J. Hou, O. Inganäs, R. H. Friend, F. Gao, Organic solar cells based on non-fullerene acceptors. Nature Materials. 17, 119–128 (2018). C. Yan, S. Barlow, Z. Wang, H. Yan, A. K.-Y. . Jen, S. R. Marder, X. Zhan, Non-fullerene acceptors for organic solar cells. Nature Reviews Materials. 3 (2018). N. Li, Y. S. Lau, Z. Xiao, L. Ding, F. Zhu, NIR to Visible Light Upconversion Devices Comprising an NIR Charge Generation Layer and a Perovskite Emitter. Advanced Optical Materials. 6, 1801084 (2018). N. Li, Z. Lan, Y. S. Lau, J. Xie, D. Zhao, F. Zhu, SWIR Photodetection and Visualization Realized by Incorporating an Organic SWIR Sensitive Bulk Heterojunction. Advanced Science. 7, 2000444 (2020). X. Du, J. Han, Z. He, C. Han, X. Wang, J. Wang, Y. Jiang, S. Tao, Efficient Organic Upconversion Devices for Low Energy Consumption and High‐Quality Noninvasive Imaging. Advanced Materials. 33, 2102812 (2021). Z. He, X. Du, C. Zheng, X. Yu, H. Lin, S. Tao, High‐Quality Artery Monitoring and Pathology Imaging Achieved by High‐Performance Synchronous Electrical and Optical Output of Near‐Infrared Organic Photodetector. Advanced Science. 10, 2203870 (2022). C. Lee, R. Estrada, Y. Li, S. Biring, N. R. A. Amin, M. Li, S. Liu, K. Wong, Vacuum‐Processed Small Molecule Organic Photodetectors with Low Dark Current Density and Strong Response to Near‐Infrared Wavelength. Advanced Optical Materials. 8, 2000519 (2020). Z. Su, F. Hou, X. Wang, Y. Gao, F. Jin, G. Zhang, Y. Li, L. Zhang, B. Chu, W. Li, High-Performance Organic Small-Molecule Panchromatic Photodetectors. ACS Applied Materials & Interfaces. 7, 2529–2534 (2015).. D. Leem, K. Lee, N. Li, B. W. Park, T. Choi, T. Ro, O. K. Kwon, Y. Kwon, T. N. Ng, S. Kim, Highly Responsive and Thermally Reliable Near‐Infrared Organic Photodiodes Utilizing Naphthalocyanine Molecules Tuned with Axial Ligands. Advanced Optical Materials. 9, 2001682 (2020). M. Wang, Y.-Z. Li, H.-C. Chen, C.-W. Liu, Y.-S. Chen, Y.-C. Lo, C.-S. Tsao, Y.-C. Huang, S.-W. Liu, K.-T. Wong, B. Hu, Unveiling the underlying mechanism of record-high efficiency organic near-infrared photodetector harnessing a single-component photoactive layer. Materials Horizons. 7, 1171–1179 (2020). J. Lee, S. Ko, M. Seifrid, H. Lee, B. R. Luginbuhl, A. Karki, M. Ford, K. Rosenthal, K. Cho, T. Nguyen, G. C. Bazan, Bandgap Narrowing in Non‐Fullerene Acceptors: Single Atom Substitution Leads to High Optoelectronic Response Beyond 1000 nm. Advanced Energy Materials. 8, 1801212 (2018). J. Lee, S.-J. Ko, H. Lee, J. Huang, Z. Zhu, M. Seifrid, J. Vollbrecht, V. V. Brus, A. Karki, H. Wang, K. Cho, T.-Q. Nguyen, G. C. Bazan, Side-Chain Engineering of Nonfullerene Acceptors for Near-Infrared Organic Photodetectors and Photovoltaics. ACS Energy Letters. 4, 1401–1409 (2019). N. R. Al Amin, K. K. Kesavan, S. Biring, C.-C. Lee, T.-H. Yeh, T.-Y. Ko, S.-W. Liu, K.-T. Wong, A Comparative Study via Photophysical and Electrical Characterizations on Interfacial and Bulk Exciplex-Forming Systems for Efficient Organic Light-Emitting Diodes. ACS Applied Electronic Materials. 2, 1011–1019 (2020). M. Li, C. Lee, S. Biring, I. Hsu, D. Luo, R. Estrada, Y. Wu, C. Yang, S. Liu, Vacuum‐Deposited Transparent Organic Photovoltaics for Efficiently Harvesting Selective Ultraviolet and Near‐Infrared Solar Energy. Solar RRL. 5, 2000564 (2020). R. A. Marcus, N. Sutin, Electron transfers in chemistry and biology. Biochimica et Biophysica Acta (BBA) - Reviews on Bioenergetics. 811, 265–322 (1985) A. Miller, E. Abrahams, Impurity Conduction at Low Concentrations. Physical Review. 120, 745–755 (1960). W. Brütting, J. Frischeisen, T. D. Schmidt, B. J. Scholz, C. Mayr, Device efficiency of organic light-emitting diodes: Progress by improved light outcoupling. physica status solidi (a). 210, 44–65 (2012). J.-H. Lee, C.-H. Chen, P.-H. Lee, H.-Y. Lin, M. Leung, T.-L. Chiu, C.-F. Lin, Blue organic light-emitting diodes: current status, challenges, and future outlook. Journal of Materials Chemistry C. 7, 5874–5888 (2019). C. Chen, N. T. Tierce, M. Leung, T. Chiu, C. Lin, C. J. Bardeen, J. Lee, Efficient Triplet–Triplet Annihilation Upconversion in an Electroluminescence Device with a Fluorescent Sensitizer and a Triplet‐Diffusion Singlet‐Blocking Layer. Advanced Materials. 30, 1804850 (2018). C.-H. Chen, B.-Y. Lin, N. T. Tierce, M. Leung, T.-L. Chiu, C. J. Bardeen, J.-H. Lee, Efficient Solid-State triplet-triplet annihilation up-conversion electroluminescence device by incorporating intermolecular intersystem-crossing dark sensitizer. Chemical Engineering Journal. 427, 130889 (2022). A. Endo, K. Sato, K. Yoshimura, T. Kai, A. Kawada, H. Miyazaki, C. Adachi, Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes. Applied Physics Letters. 98, 083302 (2011). K. Shizu, Y. Sakai, H. Tanaka, S. Hirata, C. Adachi, H. Kaji, [Paper] Meta-linking Strategy for Thermally Activated Delayed Fluorescence Emitters with a Small Singlet-Triplet Energy Gap. ITE Transactions on Media Technology and Applications. 3, 108–113 (2015). D. H. Ahn, S. W. Kim, H. Lee, I. J. Ko, D. Karthik, J. Y. Lee, J. H. Kwon, Highly efficient blue thermally activated delayed fluorescence emitters based on symmetrical and rigid oxygen-bridged boron acceptors. Nature Photonics. 13, 540–546 (2019). T.-L. Wu, M.-J. Huang, C.-C. Lin, P.-Y. Huang, T.-Y. Chou, R.-W. Chen-Cheng, H.-W. Lin, R.-S. Liu, C.-H. Cheng, Diboron compound-based organic light-emitting diodes with high efficiency and reduced efficiency roll-off. Nature Photonics. 12, 235–240 (2018). Y. Zhang, Q. Ran, Q. Wang, Y. Liu, C. Hänisch, S. Reineke, J. Fan, L. Liao, High‐Efficiency Red Organic Light‐Emitting Diodes with External Quantum Efficiency Close to 30% Based on a Novel Thermally Activated Delayed Fluorescence Emitter. Advanced Materials. 31, 1902368 (2019). C.-Y. Chan, M. Tanaka, H. Nakanotani, C. Adachi, Efficient and stable sky-blue delayed fluorescence organic light-emitting diodes with CIEy below 0.4. Nature Communications. 9 (2018), doi:https://doi.org/10.1038/s41467-018-07482-6. D. J. Stewart, M. J. Dalton, R. N. Swiger, T. M. Cooper, J. E. Haley, L.-S. Tan, Exciplex Formation in Blended Spin-Cast Films of Fluorene-Linked Dyes and Bisphthalimide Quenchers. The Journal of Physical Chemistry A. 117, 3909–3917 (2013). M. Sarma, K.-T. Wong, Exciplex: An Intermolecular Charge-Transfer Approach for TADF. ACS Applied Materials & Interfaces. 10, 19279–19304 (2018). M. Wang, Y. Huang, K. Lin, T. Yeh, J. Duan, T. Ko, S. Liu, K. Wong, B. Hu, Revealing the Cooperative Relationship between Spin, Energy, and Polarization Parameters toward Developing High‐Efficiency Exciplex Light‐Emitting Diodes. Advanced Materials. 31, 1904114 (2019). M. Wang, D. Luo, T. Yeh, Y. Huang, C. Ko, W. Hung, Y. Tang, S. Liu, K. Wong, B. Hu, Extending Anisotropy Dynamics of Light‐Emitting Dipoles as Necessary Condition Toward Developing Highly‐Efficient OLEDs. Advanced Optical Materials. 11 (2023), doi:https://doi.org/10.1002/adom.202202477. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions. Science. 270, 1789–1791 (1995). A. J. Heeger, 25th Anniversary Article: Bulk Heterojunction Solar Cells: Understanding the Mechanism of Operation. Advanced Materials. 26, 10–28 (2013). S. S. van Bavel, M. Bärenklau, G. de With, H. Hoppe, J. Loos, P3HT/PCBM Bulk Heterojunction Solar Cells: Impact of Blend Composition and 3D Morphology on Device Performance. Advanced Functional Materials. 20, 1458–1463 (2010). J. S. Moon, J. Jo, A. J. Heeger, Nanomorphology of PCDTBT:PC70BM Bulk Heterojunction Solar Cells. Advanced Energy Materials. 2, 304–308 (2012). S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, A. J. Heeger, Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nature Photonics. 3, 297–302 (2009). A. J. Moulé, K. Meerholz, Controlling Morphology in Polymer–Fullerene Mixtures. Advanced Materials. 20, 240–245 (2008). Y. Sun, G. C. Welch, W. L. Leong, C. J. Takacs, G. C. Bazan, A. J. Heeger, Solution-processed small-molecule solar cells with 6.7% efficiency. Nature Materials. 11, 44–48 (2011). J. K. Lee, W. L. Ma, C. J. Brabec, J. Yuen, J. S. Moon, J. Y. Kim, K. Lee, G. C. Bazan, A. J. Heeger, Processing Additives for Improved Efficiency from Bulk Heterojunction Solar Cells. Journal of the American Chemical Society. 130, 3619–3623 (2008). J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, G. C. Bazan, Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nature Materials. 6, 497–500 (2007). W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology. Advanced Functional Materials. 15, 1617–1622 (2005). N. D. Treat, M. A. Brady, G. Smith, M. F. Toney, E. J. Kramer, C. J. Hawker, M. L. Chabinyc, Interdiffusion of PCBM and P3HT Reveals Miscibility in a Photovoltaically Active Blend. Advanced Energy Materials. 1, 82–89 (2010). G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nature Materials. 4, 864–868 (2005). G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang, Y. Yang, "Solvent Annealing" Effect in Polymer Solar Cells Based on Poly(3-hexylthiophene) and Methanofullerenes. Advanced Functional Materials. 17, 1636-1644 (2007). C.-C. Lee, C.-J. Shih, G. Kumar, S. Biring, S. Sen, S.-W. Liu, Highly efficient exciplex organic light-emitting devices employing a sputtered indium-tin oxide electrode with nano-pinhole morphology. Journal of Materials Chemistry C. 5, 12050-12056 (2017). C.-H. Lu, W.-H. Wu, S.-H. Kuo, J.-Y. Guo, M.-C. Chen, S.-D. Yang, A. W. Kung, Greater than 50 times compression of 1030 nm Yb:KGW laser pulses to single-cycle duration. 27, 15638–15638 (2019). Y.-C. Cheng, C.-H. Lu, Y.-Y. Lin, A. W. Kung, Supercontinuum generation in a multi-plate medium. 24, 7224–7224 (2016). B. Chen, J. Su, J.-Y. Guo, K. Chen, S.-W. Chu, H.-H. Lu, C.-H. Lu, S.-D. Yang, Double-Pass Multiple-Plate Continuum for High-Temporal-Contrast Nonlinear Pulse Compression. 3 (2022), doi:https://doi.org/10.3389/fphot.2022.937622. R. R. Tamming, C. Lin, J. M. Hodgkiss, S.-D. Yang, K. Chen, C.-H. Lu, Single 3.3 fs multiple plate compression light source in ultrafast transient absorption spectroscopy. 11 (2021), doi:https://doi.org/10.1038/s41598-021-92102-5. B. P. Rand, D. C. Burk, S. R. Forrest, Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells. Physical Review B. 75 115327 (2007). C.-F. Lin, M. Zhang, S.-W. Liu, T.-L. Chiu, J.-H. Lee, High Photoelectric Conversion Efficiency of Metal Phthalocyanine/Fullerene Heterojunction Photovoltaic Device. 12, 476–505 (2011). Italo Rodrigo Calori, Antonio Claudio Tedesco, Aluminum chloride phthalocyanine in MCF-7: Rationally accounting for state of aggregation of photosensitizers inside cells. 173, 107940–107940 (2020). Hirohiko Fukagawa, Shunsuke Hosoumi, H. Yamane, Satoshi Kera, N. Ueno, Dielectric properties of polar-phthalocyanine monolayer systems with repulsive dipole interaction. 83 (2011), doi:https://doi.org/10.1103/physrevb.83.085304. W. Wang, D. Zhao, F. Zhang, L. Li, M. Du, C. Wang, Y. Yu, Q. Huang, M. Zhang, L. Li, J. Miao, Z. Lou, G. Shen, Y. Fang, Y. Yan, Highly Sensitive Low‐Bandgap Perovskite Photodetectors with Response from Ultraviolet to the Near‐Infrared Region. 27, 1703953–1703953 (2017). B. W. Caplins, T. K. Mullenbach, R. J. Holmes, D. A. Blank, Intermolecular Interactions Determine Exciton Lifetimes in Neat Films and Solid State Solutions of Metal-Free Phthalocyanine. The Journal of Physical Chemistry C. 119, 27340–27347 (2015). S. Dhami, A. J. deMello, G. Rumbles, S. Bishop, D. Phillips, A. Beeby, PHTHALOCYANINE FLUORESCENCE AT HIGH CONCENTRATION: DIMERS OR REABSORPTION EFFECT? 61, 341–346 (1995). W. Graupner, G. Cerullo, Guglielmo Lanzani, M. Nisoli, E. List, G. Leising, S. De Silvestri, Direct Observation of Ultrafast Field-Induced Charge Generation in Ladder-Type Poly(Para-Phenylene). 81, 3259–3262 (1998). J. Cabanillas-Gonzalez, T. Virgili, A. Gambetta, Guglielmo Lanzani, T. D. Anthopoulos, M. de, Photoinduced Transient Stark Spectroscopy in Organic Semiconductors: A Method for Charge Mobility Determination in the Picosecond Regime. 96 (2006), doi:https://doi.org/10.1103/physrevlett.96.106601. J. Cabanillas-Gonzalez, T. Virgili, A. Gambetta, L. Lüer, Guglielmo Lanzani, T. D. Anthopoulos, M. de, Subpicosecond photoinduced Stark spectroscopy in fullerene-based devices. 75 (2007), doi:https://doi.org/10.1103/physrevb.75.045207. Andrius Devižis, Jelissa De Jonghe-Risse, R. Hany, F. Nüesch, S. Jenatsch, Vidmantas Gulbinas, J.-E. Moser, Dissociation of Charge Transfer States and Carrier Separation in Bilayer Organic Solar Cells: A Time-Resolved Electroabsorption Spectroscopy Study. 137, 8192–8198 (2015). Vytautas Jašinskas, Marius Franckevičius, Andrius Gelžinis, Jevgenij Chmeliov, Vidmantas Gulbinas, Direct Tracking of Charge Carrier Drift and Extraction from Perovskite Solar Cells by Means of Transient Electroabsorption Spectroscopy (2023), doi:https://doi.org/10.1021/acsaelm.2c01346. C. V. Shank, D. H. Auston, Ultrafast Phenomena in Semiconductor Devices. 215, 797–801 (1982). C.-J. Shih, C.-C. Lee, T.-H. Yeh, Sajal Biring, Kiran Kishore Kesavan, A. Amin, M.-H. Chen, W.-C. Tang, S.-W. Liu, K.-T. Wong, Versatile Exciplex-Forming Co-Host for Improving Efficiency and Lifetime of Fluorescent and Phosphorescent Organic Light-Emitting Diodes. 10, 24090–24098 (2018). J.-H. Lee, S. Lee, S.-J. Yoo, K.-H. Kim, J.-J. Kim, Langevin and Trap-Assisted Recombination in Phosphorescent Organic Light Emitting Diodes. Advanced Functional Materials. 24, 4681–4688 (2014). P. M. Borsenberger, L. Pautmeier, R. Richert, Heinz Bässler, Hole transport in 1,1‐bis(di‐4‐tolylaminophenyl)cyclohexane. 94, 8276–8281 (1991). J. Kublitski, A. Hofacker, B. K. Boroujeni, Johannes Benduhn, V. C. Nikolis, C. Kaiser, D. Spoltore, H. Kleemann, A. Fischer, F. Ellinger, Koen Vandewal, K. Leo, Reverse dark current in organic photodetectors and the major role of traps as source of noise. 12 (2021), doi:https://doi.org/10.1038/s41467-020-20856-z. G. Zuo, M. Linares, Tanvi Upreti, Martijn Kemerink, General rule for the energy of water-induced traps in organic semiconductors. Nature Materials. 18, 588–593 (2019). N. B. Kotadiya, A. Mondal, Paul, D. Andrienko, Gert-Jan A. H. Wetzelaer, A window to trap-free charge transport in organic semiconducting thin films. Nature Materials. 18, 1182–1186 (2019). S. Ullbrich, B. Siegmund, A. Mischok, A. Hofacker, J. Benduhn, D. Spoltore, K. Vandewal, Fast Organic Near-Infrared Photodetectors Based on Charge-Transfer Absorption. The Journal of Physical Chemistry Letters. 8, 5621–5625 (2017). C.-J. Shih, C.-Y. Lin, K. Chen, N. R. A. Amin, D. Luo, I-S. Hsu, A. K. Akbar, S. Biring, C.-H. Lu, B.-H. Chen, S.-D. Yang, J.-H. Lee, S.-W. Liu, Organic upconversion devices beyond human sensation. Advanced Science. under review. Y.-M. Sung, A. K. Akbar, S. Biring, C.-F. Li, Y.-C. Huang, S.-W. Liu, The effect of ZnO preparation on the performance of inverted polymer solar cells under one sun and indoor light. J. Mater. Chem. 9, 1196–1204 (2021). K.-G. Lim, S. Ahn, T.-W. Lee, Energy level alignment of dipolar interface layer in organic and hybrid perovskite solar cells. J. Mater. Chem. 6, 2915–2924 (2018). S. Ryu, Na Young Ha, Yeong Hwan Ahn, J.-Y. Park, S. Lee, Light intensity dependence of organic solar cell operation and dominance switching between Shockley–Read–Hall and bimolecular recombination losses. 11 (2021), doi:https://doi.org/10.1038/s41598-021-96222-w. J. Vollbrecht, J. Lee, S.-J. Ko, V. V. Brus, A. Karki, W. Le, M. Seifrid, M. J. Ford, K. Cho, G. C. Bazan, T.-Q. Nguyen, Design of narrow bandgap non-fullerene acceptors for photovoltaic applications and investigation of non-geminate recombination dynamics. J. Mater. Chem. 8, 15175–15182 (2020). P. Hartnagel, T. Kirchartz, Understanding the light-intensity dependence of the short-circuit current of organic solar cells. Adv. Theory Simul. 3, 2000116 (2020). M. Pranav, J. Benduhn, M. Nyman, S. M. Hosseini, J. Kublitski, S. Shoaee, D. Neher, K. Leo, D. Spoltore, Enhanced Charge Selectivity via Anodic-C60 Layer Reduces Nonradiative Losses in Organic Solar Cells. ACS Applied Materials & Interfaces. 13, 12603–12609 (2021). H. J. Snaith, The perils of solar cell efficiency measurements. Nat. Photon. 6, 337–340 (2012). Hyun Suk Jung, N.-G. Park, Perovskite Solar Cells: From Materials to Devices. 11, 10–25 (2014). M. A. Green, A. Ho-Baillie, H. J. Snaith, The emergence of perovskite solar cells. 8, 506–514 (2014). J. Li, H. Wang, Xin Yu Chin, Herlina Arianita Dewi, K. Vergeer, Teck Wee Goh, W. Melvin, Jia Haur Lew, Kian Ping Loh, Cesare Soci, Tze Chien Sum, H. J. Bolink, N. Mathews, Subodh Mhaisalkar, A. Bruno, Highly Efficient Thermally Co-evaporated Perovskite Solar Cells and Mini-modules. 4, 1035–1053 (2020). Chiang Y-H, Anaya M, Stranks SD. Multisource Vacuum Deposition of Methylammonium-Free Perovskite Solar Cells. ACS Energy Letters. 2020 Jun 25;5(8):2498–504. X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C.-L. Shieh, B. Nilsson, A. J. Heeger, High-Detectivity Polymer Photodetectors with Spectral Response from 300 nm to 1450 nm. Science. 325, 1665–1667 (2009). | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88054 | - |
dc.description.abstract | 近紅外影像技術應用領域廣泛,包含生醫影像、環境監控、影像融合、體徵辨識、以及光通訊領域。有別於現有無機半導體技術仰賴微影化製程,點陣化紅外訊號並以矩陣面板呈現可見光影像;本論文以全有機半導體材料為基礎,在無需複雜像素化條件下,透過連續堆疊功能性薄膜,將有機光感測器以及有機發光二極體進行異質整合,實現近紅外光轉換至可見光譜效果,稱作有機上轉換元件(Organic upconversion device; OUD)。
論文首先對蒸鍍型小分子材料-氯铝酞菁(Chloroaluminum phthalocyanine; ClAlPc)進行材料光物理特性分析,以超快光譜學解析在施加電場下能有效延長ClAlPc自由載子之壽命,將其作為元件載子產生層開發。以半導體材料存在極性相反之電洞以及電子流為基礎,針對電洞驅動型、電子驅動型、以及雙載子驅動型串座元件結構進行開發,在導入激發複合物為磷光發光層主體下,上轉換量子效率分別達到14.4%、16.1%、以及31.2%,屬歷年最佳上轉換成果。在後續驗證其影像解析度極限達5080 ppi、-3 dB頻寬響應速度最高達100 kHz,展示無線通訊介面概念。 與此同時,本論文亦針對非富勒烯受體材料(Non-fullerene acceptor; NFA)-COTIC-4F進行獨立探討,在與施體材料PTB7-Th形成混合異質介面結構下(Bulk heterojunction; BHJ),其在940 nm近紅外波長之絕對感測度高於1013 Jones,展示此材料系統作為載子產生層之潛力,並在此提出一大面積(10.35 cm2)、平均可見光穿透度接近60%(Average visible transmittance;AVT)、且輕薄(22.91 g)之上轉換成像裝置,其最低感測近紅外強度低於1.0 μW cm-2。在後續近紅外弱光影像解析應用上,除驗證血管造影之生醫影像,進一步將其整合為穿戴式裝置,針對近年隱私意識抬頭議題提出反紅外光偵測之使用情境。 | zh_TW |
dc.description.abstract | Near-infrared imaging technologies have been applied to various fields, including biomedical imaging, environmental monitoring, image fusion, biometrics, and optical communication. However, unlike the existing inorganic semiconductors that required costly photolithographic techniques to digitalize infrared information for external read-out, this thesis demonstrates the visualization of near-infrared images using all-organic materials without pixelation. By utilizing a multi-layered stack of functional thin films, which integrates an organic photodetector with an organic light-emitting diode, the organic upconversion device can convert infrared signals into the visible spectrum.
At first, the photophysical characteristics of chloroaluminum phthalocyanine (ClAlPc), a small molecule deposited through thermal evaporation, were investigated in detail. The ClAlPc exhibited an extended free charge carrier lifetime under an electrical field, as observed in ultrafast spectroscopy experiments. Consequently, the ClAlPc was employed as the charge generation layer in the upconversion device. By leveraging the bipolar nature of the semiconductor materials, three device structures were developed: hole-driven, electron-driven, and bipolar-driven tandem device structures. The introduction of a bipolar exciplex co-host system in the phosphorescent emission layer led to remarkable quantum efficiencies of 14.4%, 16.1%, and 31.2%, respectively, representing the highest reported results. The optimized device, capable of achieving a maximum image resolution of 5080 pixels per inch (ppi) and a -3 dB response bandwidth of 100 kHz, was utilized to create a wireless communication interface. At the same time, a non-fullerene acceptor (NFA) COTIC-4F was also investigated, in combination with an electron-donor (PTB7-Th), to form a bulk heterojunction (BHJ) blend. Under the excitation at a wavelength of 940 nm, the specific detectivity surpassed 1013 Jones, showcasing the material system's potential as a charge generation layer. Subsequently, a large-area (10.35 cm2), semi-transparent (average visible transmittance~ 60%), and light-weight (22.91 g) upconversion device was further developed to resolve weak infrared signal with power density lower than 1.0 μW cm-2. In addition to biomedical applications, such as blood vessel imaging, the thesis proposed a wearable anti-detection device to address growing concerns over privacy breaches. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-08T16:05:01Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-08-08T16:05:01Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 圖目錄 v
表目錄 xi 誌謝 xii 中文摘要 xiii 英文摘要 xiv 引言 1 第一章、發展背景 5 1.1 有機發光二極體 5 1.2 有機光伏打電池 12 1.3 有機光感測器 16 1.4 上轉換元件 20 1.4.1全無機系統 23 1.4.2無機–有機混合系統 25 1.4.3全有機系統 31 1.5 研究動機 60 第二章、研究方法 70 2.1 理論基礎 70 2.1.1載子傳輸模型 70 2.1.2有機電致發光原理 71 2.1.3有機光伏打原理 77 2.2 實驗方法 81 2.2.1 實驗材料 81 2.2.2 實驗步驟 83 2.3 特性表徵 94 2.3.1 量測設備 94 2.3.2 單位定義 102 第三章、結果與討論 110 3.1 同質接面之光致載子產生層 110 3.1.1 載子產生層材料評估 110 3.1.2 氯鋁酞菁穩態光物理分析 114 3.1.3 氯鋁酞菁激發態動力學 117 3.2 單一主體與激發複合體之發光系統比較 122 3.3 單載子驅動(電洞)之有機上轉換元件 125 3.3.2 漏光成因與抑制設計 130 3.3.3 透明被動面板概念驗證 137 3.4 單載子驅動(電子)之有機上轉換元件 139 3.5 雙極性載子驅動之串座型有機上轉換元件 145 3.5.1 元件特性探討 146 3.5.2 近紅外光通訊概念驗證 152 3.5.3 影像解析度分析 156 3.6 非富勒烯受體有機上轉換元件 160 3.6.1 載子產生層特性探討 161 3.6.2 上轉換元件開發 164 3.6.3 穿透式元件評估 170 3.6.4 反偵測概念驗證 173 3.6.5 血管造影概念驗證 177 3.6.6 可見光屏蔽上轉換元件 178 4.1 工作結語 181 4.2 未來方向 183 4.2.1 上轉換量子效率 183 4.2.2 實際應用 184 參考文獻 185 附錄一、著作目錄 210 附錄二、Research Highlights 213 附錄三、名詞縮寫列表 214 | - |
dc.language.iso | zh_TW | - |
dc.title | 可視化近紅外光技術:有機上轉換元件開發與應用 | zh_TW |
dc.title | Infrared visualization technology: The development and application of organic upconversion device | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 博士 | - |
dc.contributor.oralexamcommittee | 林皓武;劉舜維;黃裕清;劉振良 | zh_TW |
dc.contributor.oralexamcommittee | Hao-Wu Lin;Shun-Wei Liu;Yu-Ching Huang;Cheng-Liang Liu | en |
dc.subject.keyword | 有機上轉換元件,近紅外光成像,非富勒烯受體,激發複合物,光通訊,反偵測, | zh_TW |
dc.subject.keyword | Organic upconversion device,Near-infrared imaging,Non-fullerene acceptor,Exciplex,Optical communication,Anti-detection, | en |
dc.relation.page | 215 | - |
dc.identifier.doi | 10.6342/NTU202301542 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2023-07-13 | - |
dc.contributor.author-college | 電機資訊學院 | - |
dc.contributor.author-dept | 光電工程學研究所 | - |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 目前未授權公開取用 | 17.03 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。