請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88050完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳嘉文 | zh_TW |
| dc.contributor.advisor | Kevin C.-W. Wu | en |
| dc.contributor.author | 郭子榕 | zh_TW |
| dc.contributor.author | Tzu-Jung Kuo | en |
| dc.date.accessioned | 2023-08-01T16:36:58Z | - |
| dc.date.available | 2023-11-10 | - |
| dc.date.copyright | 2023-08-01 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-07 | - |
| dc.identifier.citation | (1) Awaja, F.; Pavel, D. Recycling of PET. Eur. Polym. J. 2005, 41 (7), 1453–1477.
(2) Wang, C.; Liu, Y.; Chen, W.; Zhu, B.; Qu, S.; Xu, M. Critical Review of Global Plastics Stock and Flow Data. J. Ind. Ecol. 2021, 25 (5), 1300–1317. (3) Statista. Annual production of plastics worldwide from 1950 to 2020. https://www.statista.com/statistics/282732/global-production-of-plastics-since-1950/. (4) Geyer, R.; Jambeck, J. R.; Law, K. L. Production, Use, and Fate of All Plastics Ever Made. Sci. Adv. 2017, 3 (7), e1700782. (5) Ellis, L. D.; Rorrer, N. A.; Sullivan, K. P.; Otto, M.; McGeehan, J. E.; Román-Leshkov, Y.; Wierckx, N.; Beckham, G. T. Chemical and Biological Catalysis for Plastics Recycling and Upcycling. Nat. Catal. 2021, 4 (7), 539–556. (6) Yuan, X.; Lee, J. G.; Yun, H.; Deng, S.; Kim, Y. J.; Lee, J. E.; Kwak, S. K.; Lee, K. B. Solving Two Environmental Issues Simultaneously: Waste Polyethylene Terephthalate Plastic Bottle-Derived Microporous Carbons for Capturing CO2. J. Chem. Eng. 2020, 397, 125350. (7) Auta, H. S.; Emenike, C. U.; Fauziah, S. H. Distribution and Importance of Microplastics in the Marine Environment: A Review of the Sources, Fate, Effects, and Potential Solutions. Environ. Int. 2017, 102, 165–176. (8) Rahimi, A.; García, J. M. Chemical Recycling of Waste Plastics for New Materials Production. Nat. Rev. Chem. 2017, 1 (6), 0046. (9) Xin, J.; Zhang, Q.; Huang, J.; Huang, R.; Jaffery, Q. Z.; Yan, D.; Zhou, Q.; Xu, J.; Lu, X. Progress in the Catalytic Glycolysis of Polyethylene Terephthalate. J. Environ. Manage. 2021, 296, 113267. (10) Tawfik, M. E.; Eskander, S. B. Chemical Recycling of Poly(Ethylene Terephthalate) Waste Using Ethanolamine. Sorting of the End Products. Polym. Degrad. Stab. 2010, 95 (2), 187–194. (11) Mittal, A.; Soni, R. K.; Dutt, K.; Singh, S. Scanning Electron Microscopic Study of Hazardous Waste Flakes of Polyethylene Terephthalate (PET) by Aminolysis and Ammonolysis. J. Hazard. Mater. 2010, 178 (1–3), 390–396. (12) Paliwal, N. R.; Mungray, A. K. Ultrasound Assisted Alkaline Hydrolysis of Poly(Ethylene Terephthalate) in Presence of Phase Transfer Catalyst. Polym. Degrad. Stab. 2013, 98 (10), 2094–2101. (13) Anggo Krisbiantoro, P.; Chiao, Y.-W.; Liao, W.; Sun, J.-P.; Tsutsumi, D.; Yamamoto, H.; Kamiya, Y.; C.-W. Wu, K. Catalytic Glycolysis of Polyethylene Terephthalate (PET) by Solvent-Free Mechanochemically Synthesized MFe2O4 (M = Co, Ni, Cu and Zn) Spinel. J. Chem. Eng. 2022, 450, 137926. (14) Chiao, Y.-W.; Liao, W.; Krisbiantoro, P. A.; Yu, B.-Y.; Wu, K. C.-W. Waste-Battery-Derived Multifunctional Zinc Catalysts for Glycolysis and Decolorization of Polyethylene Terephthalate. Appl. Catal. B, 2023, 325, 122302. (15) Veregue, F. R.; Pereira da Silva, C. T.; Moisés, M. P.; Meneguin, J. G.; Guilherme, M. R.; Arroyo, P. A.; Favaro, S. L.; Radovanovic, E.; Girotto, E. M.; Rinaldi, A. W. Ultrasmall Cobalt Nanoparticles as a Catalyst for PET Glycolysis: A Green Protocol for Pure Hydroxyethyl Terephthalate Precipitation without Water. ACS Sustain. Chem. Eng. 2018, 6 (9), 12017–12024. (16) Kurokawa, H.; Ohshima, M.; Sugiyama, K.; Miura, H. Methanolysis of Polyethylene Terephthalate (PET) in the Presence of Aluminium Tiisopropoxide Catalyst to Form Dimethyl Terephthalate and Ethylene Glycol. Polym. Degrad. Stab. 2003, 79 (3), 529–533. (17) Kosloski-Oh, S. C.; Wood, Z. A.; Manjarrez, Y.; de los Rios, J. P.; Fieser, M. E. Catalytic Methods for Chemical Recycling or Upcycling of Commercial Polymers. Mater. Horiz. 2021, 8 (4), 1084–1129. (18) Zhou, H.-C.; Long, J. R.; Yaghi, O. M. Introduction to Metal–Organic Frameworks. Chem. Rev. 2012, 112 (2), 673–674. (19) Jiao, L.; Seow, J. Y. R.; Skinner, W. S.; Wang, Z. U.; Jiang, H.-L. Metal–Organic Frameworks: Structures and Functional Applications. Mater. Today 2019, 27, 43–68. (20) Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The Chemistry and Applications of Metal-Organic Frameworks. Science, 2013, 341 (6149), 1230444. (21) Liao, Y.-T.; Matsagar, B. M.; Wu, K. C.-W. Metal–Organic Framework (MOF)-Derived Effective Solid Catalysts for Valorization of Lignocellulosic Biomass. ACS Sustain. Chem. Eng. 2018, 6 (11), 13628–13643. (22) Konnerth, H.; Matsagar, B. M.; Chen, S. S.; Prechtl, M. H. G.; Shieh, F.-K.; Wu, K. C.-W. Metal-Organic Framework (MOF)-Derived Catalysts for Fine Chemical Production. Coord. Chem. Rev. 2020, 416, 213319. (23) Li, J.-R.; Sculley, J.; Zhou, H.-C. Metal–Organic Frameworks for Separations. Chem. Rev. 2012, 112 (2), 869–932. (24) Li, J.-R.; Ma, Y.; McCarthy, M. C.; Sculley, J.; Yu, J.; Jeong, H.-K.; Balbuena, P. B.; Zhou, H.-C. Carbon Dioxide Capture-Related Gas Adsorption and Separation in Metal-Organic Frameworks. Coord. Chem. Rev. 2011, 255 (15–16), 1791–1823. (25) Mallakpour, S.; Nikkhoo, E.; Hussain, C. M. Application of MOF Materials as Drug Delivery Systems for Cancer Therapy and Dermal Treatment. Coord. Chem. Rev. 2022, 451, 214262. (26) Deng, Y.; Chi, B.; Li, J.; Wang, G.; Zheng, L.; Shi, X.; Cui, Z.; Du, L.; Liao, S.; Zang, K.; Luo, J.; Hu, Y.; Sun, X. Atomic Fe‐Doped MOF‐Derived Carbon Polyhedrons with High Active‐Center Density and Ultra‐High Performance toward PEM Fuel Cells. Adv. Energy Mater. 2019, 9 (13), 1802856. (27) Hsu, S.-H.; Li, C.-T.; Chien, H.-T.; Salunkhe, R. R.; Suzuki, N.; Yamauchi, Y.; Ho, K.-C.; Wu, K. C.-W. Platinum-Free Counter Electrode Comprised of Metal-Organic-Framework (MOF)-Derived Cobalt Sulfide Nanoparticles for Efficient Dye-Sensitized Solar Cells (DSSCs). Sci. Rep. 2015, 4 (1), 6983. (28) Chueh, C.-C.; Chen, C.-I.; Su, Y.-A.; Konnerth, H.; Gu, Y.-J.; Kung, C.-W.; Wu, K. C.-W. Harnessing MOF Materials in Photovoltaic Devices: Recent Advances, Challenges, and Perspectives. J. Mater. Chem. A, 2019, 7 (29), 17079–17095. (29) Davies, R. P.; Less, R. J.; Lickiss, P. D.; White, A. J. P. Framework Materials Assembled from Magnesium Carboxylate Building Units. Dalton Trans. 2007, 24, 2528-2535. (30) Dhawa, T.; Chattopadhyay, S.; De, G.; Mahanty, S. In Situ Mg/MgO-Embedded Mesoporous Carbon Derived from Magnesium 1,4-Benzenedicarboxylate Metal Organic Framework as Sustainable Li–S Battery Cathode Support. ACS Omega 2017, 2 (10), 6481–6491. (31) Erciyes, A.; Andac, M. Synthesis and Characterization of Nano-Sized Magnesium 1,4-Benzenedicarboxylate Metal Organic Framework via Electrochemical Method. J. Solid State Chem. 2022, 309, 122970. (32) Jamil, U.; Husain Khoja, A.; Liaquat, R.; Raza Naqvi, S.; Nor Nadyaini Wan Omar, W.; Aishah Saidina Amin, N. Copper and Calcium-Based Metal Organic Framework (MOF) Catalyst for Biodiesel Production from Waste Cooking Oil: A Process Optimization Study. Energy Convers. Manag. 2020, 215, 112934. (33) Farmakes, J.; Schuster, I.; Overby, A.; Alhalhooly, L.; Lenertz, M.; Li, Q.; Ugrinov, A.; Choi, Y.; Pan, Y.; Yang, Z. Enzyme Immobilization on Graphite Oxide (GO) Surface via One-Pot Synthesis of GO/Metal–Organic Framework Composites for Large-Substrate Biocatalysis. ACS Appl. Mater. Interfaces, 2020, 12 (20), 23119–23126. (34) Wu, S.-C.; Chang, P.-H.; Lin, C.-Y.; Peng, C.-H. Multi-Metals CaMgAl Metal-Organic Framework as CaO-Based Sorbent to Achieve Highly CO2 Capture Capacity and Cyclic Performance. Materials, 2020, 13 (10), 2220. (35) Liao, J.; Jin, B.; Zhao, Y.; Liang, Z. Highly Efficient and Durable Metal-Organic Framework Material Derived Ca-Based Solid Sorbents for CO2 Capture. J. Chem. Eng. 2019, 372, 1028–1037. (36) Yang, X.; Hao, Y.; Cao, L. Bio-Compatible Ca-BDC/Polymer Monolithic Composites Templated from Bio-Active Ca-BDC Co-Stabilized CO2-in-Water High Internal Phase Emulsions. Polymers, 2020, 12 (4), 931. (37) Dominici, F.; Sarasini, F.; Luzi, F.; Torre, L.; Puglia, D. Thermomechanical and Morphological Properties of Poly(Ethylene Terephthalate)/Anhydrous Calcium Terephthalate Nanocomposites. Polymers, 2020, 12 (2), 276. (38) Dominici, F.; Puglia, D.; Luzi, F.; Sarasini, F.; Rallini, M.; Torre, L. A Novel Class of Cost Effective and High Performance Composites Based on Terephthalate Salts Reinforced Polyether Ether Ketone. Polymers, 2019, 11 (12), 2097. (39) Wang, L.; Mou, C.; Wu, B.; Xue, J.; Li, J. Alkaline Earth Metal Terephthalates MC8H4O4 (M=Ca, Sr, Ba) as Anodes for Lithium Ion Batteries. Electrochim. Acta, 2016, 196, 118–124. (40) George, P.; Das, R. K.; Chowdhury, P. Facile Microwave Synthesis of Ca-BDC Metal Organic Framework for Adsorption and Controlled Release of Curcumin. Microporous Mesoporous Mater. 2019, 281, 161–171. (41) Xue, J.; Fan, C.; Wang, L.; Zhou, A.; Li, J. Silver-Mediated Calcium Terephthalate with Enhanced Electronic Conductivity as an Organic Anode for Efficient Li-Ion Batteries. RSC Adv. 2016, 6 (35), 29404–29409. (42) Wang, L.; Mou, C.; Sun, Y.; Liu, W.; Deng, Q.; Li, J. Structure-Property of Metal Organic Frameworks Calcium Terephthalates Anodes for Lithium-Ion Batteries. Electrochim. Acta, 2015, 173, 235–241. (43) Mou, C.; Wang, L.; Deng, Q.; Huang, Z.; Li, J. Calcium Terephthalate/Graphite Composites as Anode Materials for Lithium-Ion Batteries. Ionics, 2015, 21 (7), 1893–1899. (44) Zolgharnein, J.; Dermanaki Farahani, S. Experimental Design Optimization and Isotherm Modeling for Removal of Copper(II) by Calcium‐terephthalate MOF Synthesized from Recycled PET Waste. J. Chemom. 2023, 37, e3396. (45) Crickmore, T. S.; Sana, H. B.; Mitchell, H.; Clark, M.; Bradshaw, D. Toward Sustainable Syntheses of Ca-Based MOFs. Chem. Commun. 2021, 57 (81), 10592–10595. (46) Mazaj, M.; Zabukovec Logar, N. Phase Formation Study of Ca-Terephthalate MOF-Type Materials. Cryst. Growth Des. 2015, 15 (2), 617–624. (47) Mazaj, M.; Mali, G.; Rangus, M.; Žunkovič, E.; Kaučič, V.; Zabukovec Logar, N. Spectroscopic Studies of Structural Dynamics Induced by Heating and Hydration: A Case of Calcium-Terephthalate Metal–Organic Framework. J. Phys. Chem. C, 2013, 117 (15), 7552–7564. (48) Scholz, G.; Abdulkader, A.; Kemnitz, E. Mechanochemical Synthesis and Characterization of Alkaline Earth Metal Terephthalates: M (C8H4O4)·nH2O (M = Ca, Sr, Ba). Z. Anorg. Allg. Chem. 2014, 640 (2), 317–324. (49) Dermanaki Farahani, S.; Zolgharnein, J. Sulfate Removal by Barium-Terephthalate MOF Synthesized from Recycled PET-Waste Using Doehlert Design Optimization. Inorg. Chem. Commun. 2022, 140, 109388. (50) Gomollón-Bel, F. Ten Chemical Innovations That Will Change Our World: IUPAC Identifies Emerging Technologies in Chemistry with Potential to Make Our Planet More Sustainable. Chem. Int. 2019, 41 (2), 12–17. (51) El-Sayed, E.-S. M.; Yuan, D. Waste to MOFs: Sustainable Linker, Metal, and Solvent Sources for Value-Added MOF Synthesis and Applications. Green Chem. 2020, 22 (13), 4082–4104. (52) Deleu, W. P. R.; Stassen, I.; Jonckheere, D.; Ameloot, R.; de Vos, D. E. Waste PET (Bottles) as a Resource or Substrate for MOF Synthesis. J. Mater. Chem. A, 2016, 4 (24), 9519–9525. (53) Ren, J.; Dyosiba, X.; Musyoka, N. M.; Langmi, H. W.; North, B. C.; Mathe, M.; Onyango, M. S. Green Synthesis of Chromium-Based Metal-Organic Framework (Cr-MOF) from Waste Polyethylene Terephthalate (PET) Bottles for Hydrogen Storage Applications. Int. J. Hydrog. Energy, 2016, 41 (40), 18141–18146. (54) Lo, S.-H.; Senthil Raja, D.; Chen, C.-W.; Kang, Y.-H.; Chen, J.-J.; Lin, C.-H. Waste Polyethylene Terephthalate (PET) Materials as Sustainable Precursors for the Synthesis of Nanoporous MOFs, MIL-47, MIL-53(Cr, Al, Ga) and MIL-101(Cr). Dalton Trans. 2016, 45 (23), 9565–9573. (55) Dyosiba, X.; Ren, J.; Musyoka, N. M.; Langmi, H. W.; Mathe, M.; Onyango, M. S. Feasibility of Varied Polyethylene Terephthalate Wastes as a Linker Source in Metal–Organic Framework UiO-66(Zr) Synthesis. Ind. Eng. Chem. Res. 2019, 58 (36), 17010–17016. (56) Scheffran, J.; Felkers, M.; Froese, R. (2020). Green Energy to Sustainability. Wiley, pp 1–44. (57) Milano, J.; Ong, H. C.; Masjuki, H. H.; Chong, W. T.; Lam, M. K.; Loh, P. K.; Vellayan, V. Microalgae Biofuels as an Alternative to Fossil Fuel for Power Generation. Renew. Sust. Energ. Rev. 2016, 58, 180–197. (58) Scrosati, B.; Hassoun, J.; Sun, Y.-K. Lithium-Ion Batteries. A Look into the Future. Energy Environ. Sci. 2011, 4 (9), 3287-3295. (59) Kim, T.; Song, W.; Son, D.-Y.; Ono, L. K.; Qi, Y. Lithium-Ion Batteries: Outlook on Present, Future, and Hybridized Technologies. J. Mater. Chem. A, 2019, 7 (7), 2942–2964. (60) Goodenough, J. B.; Park, K.-S. The Li-Ion Rechargeable Battery: A Perspective. J. Am. Chem. Soc. 2013, 135 (4), 1167–1176. (61) Armand, M.; Tarascon, J.-M. Building Better Batteries. Nature, 2008, 451 (7179), 652–657. (62) Roy, J. J.; Rarotra, S.; Krikstolaityte, V.; Zhuoran, K. W.; Cindy, Y. D.; Tan, X. Y.; Carboni, M.; Meyer, D.; Yan, Q.; Srinivasan, M. Green Recycling Methods to Treat Lithium‐Ion Batteries E‐Waste: A Circular Approach to Sustainability. Adv. Mater. 2022, 34 (25), 2103346. (63) Du, M.; Li, Q.; Zhao, Y.; Liu, C.-S.; Pang, H. A Review of Electrochemical Energy Storage Behaviors Based on Pristine Metal–Organic Frameworks and Their Composites. Coord. Chem. Rev. 2020, 416, 213341. (64) Zhao, L.; Ding, B.; Qin, X.; Wang, Z.; Lv, W.; He, Y.; Yang, Q.; Kang, F. Revisiting the Roles of Natural Graphite in Ongoing Lithium‐Ion Batteries. Adv. Mater. 2022, 34 (18), 2106704. (65) Li, X.; Cheng, F.; Zhang, S.; Chen, J. Shape-Controlled Synthesis and Lithium-Storage Study of Metal-Organic Frameworks Zn4O(1,3,5-Benzenetribenzoate)2. J. Power Sources, 2006, 160 (1), 542–547. (66) An, T.; Wang, Y.; Tang, J.; Wang, Y.; Zhang, L.; Zheng, G. A Flexible Ligand-Based Wavy Layered Metal–Organic Framework for Lithium-Ion Storage. J. Colloid Interface Sci. 2015, 445, 320–325. (67) Zhang, Y.; Niu, Y.-B.; Liu, T.; Li, Y.-T.; Wang, M.-Q.; Hou, J.; Xu, M. A Nickel-Based Metal-Organic Framework: A Novel Optimized Anode Material for Li-Ion Batteries. Mater. Lett. 2015, 161, 712–715. (68) Gan, Q.; He, H.; Zhao, K.; He, Z.; Liu, S. Morphology-Dependent Electrochemical Performance of Ni-1,3,5-Benzenetricarboxylate Metal-Organic Frameworks as an Anode Material for Li-Ion Batteries. J. Colloid Interface Sci. 2018, 530, 127–136. (69) Hu, X.; Lou, X.; Li, C.; Ning, Y.; Liao, Y.; Chen, Q.; Mananga, E. S.; Shen, M.; Hu, B. Facile Synthesis of the Basolite F300-like Nanoscale Fe-BTC Framework and Its Lithium Storage Properties. RSC Adv. 2016, 6 (115), 114483–114490. (70) Li, C.; Hu, X.; Tong, W.; Yan, W.; Lou, X.; Shen, M.; Hu, B. Ultrathin Manganese-Based Metal–Organic Framework Nanosheets: Low-Cost and Energy-Dense Lithium Storage Anodes with the Coexistence of Metal and Ligand Redox Activities. ACS Appl. Mater. Interfaces, 2017, 9 (35), 29829–29838. (71) Gong, T.; Lou, X.; Gao, E.-Q.; Hu, B. Pillared-Layer Metal–Organic Frameworks for Improved Lithium-Ion Storage Performance. ACS Appl. Mater. Interfaces, 2017, 9 (26), 21839–21847. (72) Li, C.; Hu, X.; Lou, X.; Zhang, L.; Wang, Y.; Amoureux, J.-P.; Shen, M.; Chen, Q.; Hu, B. The Organic-Moiety-Dominated Li+ Intercalation/Deintercalation Mechanism of a Cobalt-Based Metal–Organic Framework. J. Mater. Chem. A, 2016, 4 (41), 16245–16251. (73) Ning, Y.; Lou, X.; Li, C.; Hu, X.; Hu, B. Ultrathin Cobalt-Based Metal-Organic Framework Nanosheets with Both Metal and Ligand Redox Activities for Superior Lithium Storage. Eur. J. Chem. 2017, 23 (63), 15984–15990. (74) Hu, L.; Lin, X.-M.; Mo, J.-T.; Lin, J.; Gan, H.-L.; Yang, X.-L.; Cai, Y.-P. Lead-Based Metal–Organic Framework with Stable Lithium Anodic Performance. Inorg. Chem. 2017, 56 (8), 4289–4295. (75) Xia, S.-B.; Yu, S.-W.; Yao, L.-F.; Li, F.-S.; Li, X.; Cheng, F.-X.; Shen, X.; Sun, C.-K.; Guo, H.; Liu, J.-J. Robust Hexagonal Nut-Shaped Titanium(IV) MOF with Porous Structure for Ultra-High Performance Lithium Storage. Electrochim. Acta, 2019, 296, 746–754. (76) Xu, J.; Thomas, H. R.; Francis, R. W.; Lum, K. R.; Wang, J.; Liang, B. A Review of Processes and Technologies for the Recycling of Lithium-Ion Secondary Batteries. J. Power Sources, 2008, 177 (2), 512–527. (77) Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M. R.; Sadeghi, M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front. Pharmacol. 2021, 12, 643972. (78) Suess, H. E.; Urey, H. C. Abundances of the Elements. Rev. Mod. Phys. 1956, 28 (1), 53–74. (79) Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R. E.; Serre, C. Metal–Organic Frameworks in Biomedicine. Chem. Rev. 2012, 112 (2), 1232–1268. (80) Tomás, R. A. F.; Bordado, J. C. M.; Gomes, J. F. P. P-Xylene Oxidation to Terephthalic Acid: A Literature Review Oriented toward Process Optimization and Development. Chem. Rev. 2013, 113 (10), 7421–7469. (81) Ashraf, M. T.; Chebbi, R.; Darwish, N. A. Process of p-Xylene Production by Highly Selective Methylation of Toluene. Ind. Eng. Chem. Res. 2013, 52 (38), 13730–13737. (82) Xiao, F.; Gao, W.; Wang, H.; Wang, Q.; Bao, S.; Xu, M. A New Calcium Metal Organic Frameworks (Ca-MOF) for Sodium Ion Batteries. Mater. Lett. 2021, 286, 129264. (83) Ropp, R. C. (2013). Group 16 (O, S, Se, Te) Alkaline Earth Compounds. Elsevier. (84) Solubility of calcium hydroxide. https://www.ncbi.nlm.nih.gov/books/NBK216453/. (85) Westheimer, F. H.; Huang, Shaw.; Covitz, Frank. Rates and Mechanisms of Hydrolysis of Esters of Phosphorous Acid. J. Am. Chem. Soc. 1988, 110 (1), 181–185. (86) Theodorou, V.; Skobridis, K.; Tzakos, A. G.; Ragoussis, V. A Simple Method for the Alkaline Hydrolysis of Esters. Tetrahedron Lett. 2007, 48 (46), 8230–8233. (87) Solubility of barium hydroxide. https://www.chembk.com/en/chem/Barium%20hydroxide. (88) Li, J.; Sun, J. Application of X-Ray Diffraction and Electron Crystallography for Solving Complex Structure Problems. Acc. Chem. Res. 2017, 50 (11), 2737–2745. (89) Martí-Rujas, J. Structural Elucidation of Microcrystalline MOFs from Powder X-Ray Diffraction. Dalton Trans. 2020, 49 (40), 13897–13916. (90) Sheldrick, G. M. SHELXT – Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. A, 2015, 71 (1), 3–8. (91) Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87 (9–10), 1051–1069. (92) Heiskanen, S. K.; Kim, J.; Lucht, B. L. Generation and Evolution of the Solid Electrolyte Interphase of Lithium-Ion Batteries. Joule 2019, 3 (10), 2322–2333. (93) Liu, W.-R.; Guo, Z.-Z.; Young, W.-S.; Shieh, D.-T.; Wu, H.-C.; Yang, M.-H.; Wu, N.-L. Effect of Electrode Structure on Performance of Si Anode in Li-Ion Batteries: Si Particle Size and Conductive Additive. J. Power Sources, 2005, 140 (1), 139–144. (94) Drezen, T.; Kwon, N.-H.; Bowen, P.; Teerlinck, I.; Isono, M.; Exnar, I. Effect of Particle Size on LiMnPO4 Cathodes. J. Power Sources, 2007, 174 (2), 949–953. (95) Fey, G. T.-K.; Chen, Y. G.; Kao, H.-M. Electrochemical Properties of LiFePO4 Prepared via Ball-Milling. J. Power Sources, 2009, 189 (1), 169–178. (96) Gao, C.; Wang, P.; Wang, Z.; Kær, S. K.; Zhang, Y.; Yue, Y. The Disordering-Enhanced Performances of the Al-MOF/Graphene Composite Anodes for Lithium Ion Batteries. Nano Energy 2019, 65, 104032. (97) Petříček, V.; Dušek, M.; Palatinus, L. Crystallographic Computing System JANA2006: General Features. Z. Kristallogr. Cryst. Mater. 2014, 229 (5), 345–352. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88050 | - |
| dc.description.abstract | 能源和環境議題是二十一世紀裡非常重要的其中兩個議題。為了能同時解決這兩大議題,我們開發了一條透過簡單的水熱反應和使用聚對苯二甲酸乙二醇酯(PET)的乙二醇解產物,即對苯二甲酸雙(2-羥乙基)酯(BHET),作為配體以合成鹼土族對苯二甲酸基金屬有機框架(MOFs),即Ca-和Ba-BDC,並將它們應用於鋰離子電池之負極。我們發現對苯二甲酸雙(2-羥乙基)酯會透過金屬氫氧化物溶解在水中產生的氫氧根離子水解為對苯二甲酸離子以合成鹼土族對苯二甲酸基金屬有機框架。在我們的合成技術下,兩種金屬有機框架都能在相對於文獻中較溫和的反應條件下合成,其中Ca-BDC可以在130 °C下15分鐘或50 °C下12小時內合成,而Ba-BDC可以在130 °C下1小時或50 °C下12小時內合成。除此之外,我們也在室溫下合成出Ba-BDC的新相,並透過從頭計算(Ab initio)粉末X光繞射結構分析法解出其晶體結構。而當我們將合成出的金屬有機框架應用於鋰離子電池之負極時,我們發現鋰離子在連續充放電過程中會造成結構失序,進而在結構中產生更多空間儲存鋰離子,因此其電容量會隨著循環圈數增加而上升,其中Ca-BDC_130°C15min和Ba-BDC_RT12h在50 mAg-1的電流密度下循環100圈後的電容量分別提升到403和390 mAhg-1。本研究除了開發了一條利用廢PET塑膠解聚之單體在溫和條件下合成Ca-和Ba-BDC的路徑外,也將合成的金屬有機框架應用於鋰離子電池之負極以期能同時解決環境和能源問題。 | zh_TW |
| dc.description.abstract | Environmental and energy issues are two of the most significant issues in the 21st century. To cope with these two issues simultaneously, we demonstrate that alkaline-earth BDC-based Metal-organic frameworks (MOFs), e.g., Ca- and Ba-BDC, can be synthesized through a simple and convenient hydrothermal technique by using bis(2-hydroxyethyl) terephthalate (BHET) as a linker source, which is the glycolysis product of polyethylene terephthalate (PET). Besides, the as-synthesized MOFs also show the potential of being applied as anodes for lithium-ion batteries (LIBs). We found that the hydrolysis of BHET to terephthalic acid ions (BDC) by OH– ions from the dissolved metal hydroxide (Ca(OH)2 or Ba(OH)2), i.e., the metal precursors used in this work, is the key for the crystal growth of Ca- and Ba-BDC MOFs. The results showed that while Ca-BDC can be synthesized just within 15 min at 130 °C or 12 h at 50 °C, Ba-BDC can be synthesized within 1 h at 130 °C or 12 h at 50 °C. These conditions were mild compared to the reported literature regarding the synthesis of Ca- and Ba-BDC MOFs. In addition, a new phase of Ba-BDC was observed when the material was synthesized under room temperature stirring for 12 h, and the crystal structure was successfully solved via ab initio powder XRD structural analysis. Moreover, the as-synthesized MOFs possessed unprecedented performances as anodes in LIBs, in which the disordered structure during the charge-discharge process led to the increase in capacity with increasing cycles, where the capacities of Ca-BDC_130°C15min and Ba-BDC_RT12h reached 403 and 390 mAhg-1 after 100 cycles at a current density of 50 mAg-1, respectively. This work not only realizes the idea of PET waste-to-MOFs with milder conditions, more convenience, and green compared to any reported solvent approaches but also reveals the potential of applying as-synthesized MOFs as anodes for LIBs to deal with the real-world environment and energy issues at the same time. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-01T16:36:58Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-01T16:36:58Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii Abstract iii 摘要 v Table of Contents vi List of Figures ix List of Tables xvi 1. Introduction 1 1.1. Global plastic production and pollution 1 1.2. PET recycling 4 1.3. Metal-organic frameworks (MOFs) 6 1.4. Plastic to MOFs 9 1.5. MOFs as anodes in lithium-ion batteries (LIBs) 12 2. Literature Review 17 3. Objective 21 4. Experimental 22 4.1. Chemicals and materials 22 4.2. Equipment 24 4.3. Synthesis of alkaline-earth BDC-based MOFs with BHET as a linker source 27 4.4. Fabrication of the electrode and LIB 28 4.5. Electrochemical measurements of the as-synthesized MOFs 30 4.6. Material characterizations 31 4.6.1. X-ray diffractometer (XRD) 31 4.6.2. High-resolution powder X-ray diffractometer (HRPXRD) 32 4.6.3. Field-emission scanning electron microscope (FE-SEM) 32 4.6.4. Specific surface area 33 4.6.5. Thermogravimetric analysis (TGA) 33 4.6.6. Fourier transform infrared (FTIR) 33 4.6.7. Gas chromatography-flame ionization detector (GC-FID) 34 4.6.8. High-performance liquid chromatography (HPLC) 34 4.6.9. Carbon-13 solid-state nuclear magnetic resonance spectroscopy (13C SSNMR) 35 5. Results and Discussion 36 5.1. Screening of alkaline-earth metal precursors 36 5.2. Plausible reaction mechanism 40 5.3. Effect of the H2O amount 42 5.4. Characterizations of the as-synthesized Ca- and Ba-BDC 45 5.5. Effect of the synthesis time 49 5.6. Effect of the synthesis temperature 53 5.7. New phase of Ba-BDC synthesized under room temperature stirring 57 5.8. Electrochemical performances of the as-synthesized Ca- and Ba-BDC 69 5.9. Effect of the synthesis conditions of Ca- and Ba-BDC on their electrochemical performances 72 5.10. Plausible mechanism for the increase in capacity with increasing cycles of the as-synthesized Ca- and Ba-BDC 85 6. Conclusion 92 7. Future Work 94 References 95 Appendix 111 | - |
| dc.language.iso | en | - |
| dc.subject | 水熱法 | zh_TW |
| dc.subject | 鋰離子電池 | zh_TW |
| dc.subject | 金屬有機框架 | zh_TW |
| dc.subject | 水解 | zh_TW |
| dc.subject | 對苯二甲酸雙(2-羥乙基)酯 | zh_TW |
| dc.subject | hydrolysis | en |
| dc.subject | Ca-BDC | en |
| dc.subject | Ba-BDC | en |
| dc.subject | metal-organic frameworks | en |
| dc.subject | hydrothermal | en |
| dc.subject | Bis(2-hydroxyethyl) terephthalate | en |
| dc.subject | lithium-ion batteries | en |
| dc.title | 對苯二甲酸雙(2-羥乙基)酯衍生之鹼土族對苯二甲酸基金屬有機框架應用於鋰離子電池之負極 | zh_TW |
| dc.title | Bis(2-hydroxyethyl) Terephthalate-derived Alkaline-earth BDC-based MOFs as Anodes for Lithium-ion Batteries | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 郭紹偉;謝發坤;龔仲偉;陳嘉晉 | zh_TW |
| dc.contributor.oralexamcommittee | Shiao-Wei Kuo;Fa-Kuen Hsieh;Chung-Wei Kung;Chia-Chin Chen | en |
| dc.subject.keyword | 對苯二甲酸雙(2-羥乙基)酯,水熱法,水解,金屬有機框架,鋰離子電池, | zh_TW |
| dc.subject.keyword | Bis(2-hydroxyethyl) terephthalate,hydrothermal,hydrolysis,metal-organic frameworks,Ca-BDC,Ba-BDC,lithium-ion batteries, | en |
| dc.relation.page | 112 | - |
| dc.identifier.doi | 10.6342/NTU202301402 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-07-11 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 10.48 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
