請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88049
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 丁健芳 | zh_TW |
dc.contributor.advisor | Chien-Fang Ding | en |
dc.contributor.author | Ankit Das | zh_TW |
dc.contributor.author | Ankit Das | en |
dc.date.accessioned | 2023-08-01T16:36:37Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-08-01 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-07-12 | - |
dc.identifier.citation | ADRIAN, F., BOHANDY, J., KIM, B., JETTE, A. N. & THOMPSON, P. 1987. A study of the mechanism of metal deposition by the laser‐induced forward transfer process. Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena, 5, 1490-1494.
ARDUINI, F., MICHELI, L., MOSCONE, D., PALLESCHI, G., PIERMARINI, S., RICCI, F. & VOLPE, G. 2016. Electrochemical biosensors based on nanomodified screen-printed electrodes: Recent applications in clinical analysis. TrAC Trends in Analytical Chemistry, 79, 114-126. ASSAEL, M. J., KALYVA, A. E., ANTONIADIS, K. D., MICHAEL BANISH, R., EGRY, I., WU, J., KASCHNITZ, E. & WAKEHAM, W. A. 2010. Reference data for the density and viscosity of liquid copper and liquid tin. Journal of Physical and Chemical Reference Data, 39, 033105. ASTM, S. 2009. Standard test methods for measuring adhesion by tape test. Annu. B. ASTM Stand, 6, 1-8. BACK, S. & KANG, B. 2018. Low-cost optical fabrication of flexible copper electrode via laser-induced reductive sintering and adhesive transfer. Optics and Lasers in Engineering, 101, 78-84. BANKS, D. P., GRIVAS, C., ZERGIOTI, I. & ROBERT, W. E. 2008. Ballistic laser-assisted solid transfer (BLAST) from a thin film precursor. Optics Express, 16, 3249-3254. BANKS, D. P., KAUR, K. & EASON, R. W. 2009. Influence of optical standing waves on the femtosecond laser-induced forward transfer of transparent thin films. Applied optics, 48, 2058-2066. BENNETT, J. M. & ASHLEY, E. 1965. Infrared reflectance and emittance of silver and gold evaporated in ultrahigh vacuum. Applied Optics, 4, 221-224. BERG, Y., ZENOU, M., DOLEV, O. & KOTLER, Z. 2015. Temporal pulse shaping for smoothing of printed metal surfaces. Optical Engineering, 54, 011010-011010. BIONDI, M. A. 1956. Optical absorption of copper and silver at 4.2 K. Physical review, 102, 964. BIRNBAUM, A. J., KIM, H., CHARIPAR, N. A. & PIQUÉ, A. 2010. Laser printing of multi-layered polymer/metal heterostructures for electronic and MEMS devices. Applied Physics A, 99, 711-716. BOHANDY, J., KIM, B. & ADRIAN, F. 1986. Metal deposition from a supported metal film using an excimer laser. Journal of Applied Physics, 60, 1538-1539. BONCIU, A. F., ANDREI, F. & PALLA-PAPAVLU, A. 2023. Fabrication of Hybrid Electrodes by Laser-Induced Forward Transfer for the Detection of Cu2+ Ions. Materials, 16, 1744. BOSE, S., SARKAR, N., VAHABZADEH, S., KE, D. & BANDYOPADHYAY, A. 2019. Additive manufacturing of ceramics. Additive Manufacturing. CRC Press. BOUTOPOULOS, C., TOULOUPAKIS, E., PEZZOTTI, I., GIARDI, M. T. & ZERGIOTI, I. 2011. Direct laser immobilization of photosynthetic material on screen printed electrodes for amperometric biosensor. Applied Physics Letters, 98, 093703. BRASZ, C. F. 2015. Liquid jet formation in laser-induced forward transfer. Princeton University. BRECKENFELD, E., KIM, H., AUYEUNG, R., CHARIPAR, N., SERRA, P. & PIQUÉ, A. 2015. Laser-induced forward transfer of silver nanopaste for microwave interconnects. Applied Surface Science, 331, 254-261. BRECKENFELD, E., KIM, H., AUYEUNG, R. C. & PIQUÉ, A. 2016. Laser-induced forward transfer of Ag nanopaste. Journal of Visualized Experiments: JoVE. BRITLAND, S., PEREZ‐ARNAUD, E., CLARK, P., MCGINN, B., CONNOLLY, P. & MOORES, G. 1992. Micropatterning proteins and synthetic peptides on solid supports: a novel application for microelectronics fabrication technology. Biotechnology progress, 8, 155-160. BROWN, M. S., BRASZ, C. F., VENTIKOS, Y. & ARNOLD, C. B. 2012. Impulsively actuated jets from thin liquid films for high-resolution printing applications. Journal of Fluid Mechanics, 709, 341-370. CASH, K. J. & CLARK, H. A. 2010. Nanosensors and nanomaterials for monitoring glucose in diabetes. Trends in molecular medicine, 16, 584-593. CHAKRABORTY, S., SAKATA, H., YOKOYAMA, E., WAKAKI, M. & CHAKRAVORTY, D. 2007. Laser-induced forward transfer technique for maskless patterning of amorphous V2O5 thin film. Applied Surface Science, 254, 638-643. CHANDRA, R., SINGH, S. & GUPTA, K. 1999. Damping studies in fiber-reinforced composites–a review. Composite structures, 46, 41-51. CHARIPAR, K. M., DÍAZ-RIVERA, R. E., CHARIPAR, N. A. & PIQUÉ, A. Laser-induced forward transfer (LIFT) of 3D microstructures. Laser 3D Manufacturing V, 2018. SPIE, 101-106. CHATZIPETROU, M., TSEKENIS, G., TSOUTI, V., CHATZANDROULIS, S. & ZERGIOTI, I. 2013. Biosensors by means of the laser induced forward transfer technique. Applied surface science, 278, 250-254. CHEKHOVSKOI, V. Y., TARASOV, V. D. & GUSEV, Y. V. 2000. Calorific properties of liquid copper. High Temperature, 38, 394-399. CHEN, Z., MOCHIZUKI, D., MAITANI, M. M. & WADA, Y. 2013. Facile synthesis of bimetallic Cu–Ag nanoparticles under microwave irradiation and their oxidation resistance. Nanotechnology, 24, 265602. CULLEN, D., SETHI, R. & LOWE, C. 1990. Multi-analyte miniature conductance biosensor. Analytica Chimica Acta, 231, 33-40. D'AMICO, A. & DI NATALE, C. 2001. A contribution on some basic definitions of sensors properties. IEEE Sensors Journal, 1, 183-190. D-17, A. 2017. Standard test methods for rating adhesion by tape test. ASTM international West Conshohocken, PA, USA. DE GANS, B. J. & SCHUBERT, U. S. 2003. Inkjet printing of polymer micro‐arrays and libraries: Instrumentation, requirements, and perspectives. Macromolecular Rapid Communications, 24, 659-666. DELAPORTE, P. & ALLONCLE, A.-P. 2016. Laser-induced forward transfer: A high resolution additive manufacturing technology. Optics & Laser Technology, 78, 33-41. DEMIN, M., KOROLEVA, O., ALEKSASHKINA, A. & MAZHUKIN, V. 2020. Molecular-dynamic modeling of thermophysical properties of phonon subsystem of copper in wide temperature range. Math. Montis, 47, 137-151. DI PIETRANTONIO, F., BENETTI, M., CANNATÀ, D., VARRIALE, A., D'AURIA, S., PALLA-PAPAVLU, A., SERRA, P. & VERONA, E. Surface acoustic wave biosensor based on odorant binding proteins deposited by laser induced forward transfer. 2013 IEEE International Ultrasonics Symposium (IUS), 2013a. IEEE, 2144-2147. DI PIETRANTONIO, F., BENETTI, M., CANNATÀ, D., VERONA, E., PALLA-PAPAVLU, A., DINCA, V., DINESCU, M., MATTLE, T. & LIPPERT, T. 2012. Volatile toxic compound detection by surface acoustic wave sensor array coated with chemoselective polymers deposited by laser induced forward transfer: Application to sarin. Sensors and Actuators B: Chemical, 174, 158-167. DI PIETRANTONIO, F., CANNATÀ, D., BENETTI, M., VERONA, E., VARRIALE, A., STAIANO, M. & D'AURIA, S. 2013b. Detection of odorant molecules via surface acoustic wave biosensor array based on odorant-binding proteins. Biosensors and Bioelectronics, 41, 328-334. DINCA, V., FARSARI, M., KAFETZOPOULOS, D., POPESCU, A., DINESCU, M. & FOTAKIS, C. 2008. Patterning parameters for biomolecules microarrays constructed with nanosecond and femtosecond UV lasers. Thin Solid Films, 516, 6504-6511. DING, X., ZOU, Y., YE, F., YANG, J. & JIANG, J. 2013. Pt–CuS heterodimers by sulfidation of CuPt alloy nanoparticles and their selective catalytic activity toward methanol oxidation. Journal of Materials Chemistry A, 1, 11880-11886. DORAISWAMY, A., NARAYAN, R., LIPPERT, T., URECH, L., WOKAUN, A., NAGEL, M., HOPP, B., DINESCU, M., MODI, R. & AUYEUNG, R. 2006. Excimer laser forward transfer of mammalian cells using a novel triazene absorbing layer. Applied Surface Science, 252, 4743-4747. DUOCASTELLA, M., FERNÁNDEZ-PRADAS, J., MORENZA, J., ZAFRA, D. & SERRA, P. 2010. Novel laser printing technique for miniaturized biosensors preparation. Sensors and Actuators B: Chemical, 145, 596-600. EHRLICH, D. J., HIGASHI, G. S. & OPRYSKO, M. M. 1988. Laser and particle-beam chemical processing for microelectronics. FARDEL, R., NAGEL, M., NUESCH, F., LIPPERT, T. & WOKAUN, A. 2010. Laser-induced forward transfer of organic LED building blocks studied by time-resolved shadowgraphy. The Journal of Physical Chemistry C, 114, 5617-5636. FARDEL, R., NAGEL, M., NÜESCH, F., LIPPERT, T. & WOKAUN, A. 2007. Fabrication of organic light-emitting diode pixels by laser-assisted forward transfer. Applied Physics Letters, 91, 061103. FARDEL, R., NAGEL, M., NÜESCH, F., LIPPERT, T. & WOKAUN, A. 2009a. Shadowgraphy investigation of laser-induced forward transfer: Front side and back side ablation of the triazene polymer sacrificial layer. Applied Surface Science, 255, 5430-5434. FARDEL, R., NAGEL, M., NÜESCH, F., LIPPERT, T. & WOKAUN, A. 2009b. Energy balance in a laser-induced forward transfer process studied by shadowgraphy. The Journal of Physical Chemistry C, 113, 11628-11633. FEINAEUGLE, M., ALLONCLE, A., DELAPORTE, P., SONES, C. & EASON, R. 2012. Time-resolved shadowgraph imaging of femtosecond laser-induced forward transfer of solid materials. Applied surface science, 258, 8475-8483. FEINAEUGLE, M., GREGORČIČ, P., HEATH, D., MILLS, B. & EASON, R. 2017. Time-resolved imaging of flyer dynamics for femtosecond laser-induced backward transfer of solid polymer thin films. Applied Surface Science, 396, 1231-1238. FEINAEUGLE, M., POHL, R., BOR, T., VANEKER, T. & RÖMER, G.-W. 2018. Printing of complex free-standing microstructures via laser-induced forward transfer (LIFT) of pure metal thin films. AddItive manufacturing, 24, 391-399. FERNÁNDEZ-PRADAS, J., DUOCASTELLA, M., COLINA, M., SERRA, P. & MORENZA, J. Production of miniaturized biosensors through laser-induced forward transfer. Bioengineered and Bioinspired Systems III, 2007. SPIE, 281-288. FLORIAN, C., CABALLERO-LUCAS, F., FERNÁNDEZ-PRADAS, J., ARTIGAS, R., OGIER, S., KARNAKIS, D. & SERRA, P. 2015. Conductive silver ink printing through the laser-induced forward transfer technique. Applied Surface Science, 336, 304-308. FLORIAN, C. & SERRA, P. 2023. Printing via laser-induced forward transfer and the future of digital manufacturing. Materials, 16, 698. FREIWALD, D. & AXFORD, R. A. 1975. Approximate spherical blast theory including source mass. Journal of Applied Physics, 46, 1171-1174. FUJISAWA, K., OHKI, M. & FUJISAWA, N. 2019. Influence of surface roughness on liquid droplet impingement erosion. Wear, 432, 202955. FUJISAWA, K., YAMAGATA, T. & FUJISAWA, N. 2018. Liquid droplet impingement erosion on groove roughness. Nuclear Engineering and Design, 330, 368-376. GAMELLA, M., CAMPUZANO, S., MANSO, J., DE RIVERA, G. G., LÓPEZ-COLINO, F., REVIEJO, A. & PINGARRÓN, J. 2014. A novel non-invasive electrochemical biosensing device for in situ determination of the alcohol content in blood by monitoring ethanol in sweat. Analytica chimica acta, 806, 1-7. GERMAIN, C., CHARRON, L., LILGE, L. & TSUI, Y. Y. 2007. Electrodes for microfluidic devices produced by laser induced forward transfer. Applied surface science, 253, 8328-8333. GHINDILIS, A. L., ATANASOV, P., WILKINS, M. & WILKINS, E. 1998. Immunosensors: electrochemical sensing and other engineering approaches. Biosensors and Bioelectronics, 13, 113-131. GONZALEZ-MACIA, L., MORRIN, A., SMYTH, M. R. & KILLARD, A. J. 2010. Advanced printing and deposition methodologies for the fabrication of biosensors and biodevices. Analyst, 135, 845-867. GORODESKY, N., SEDGHANI-COHEN, S., FOGEL, O., ALTMAN, M., COHEN-TAGURI, G., KOTLER, Z. & ZALEVSKY, Z. 2022. Printed Cu–Ag Phases Using Laser‐Induced Forward Transfer. Advanced Engineering Materials, 24, 2100952. GRANT-JACOB, J. A., MILLS, B., FEINAEUGLE, M., SONES, C. L., OOSTERHUIS, G., HOPPENBROUWERS, M. B. & EASON, R. W. 2013. Micron-scale copper wires printed using femtosecond laser-induced forward transfer with automated donor replenishment. Optical Materials Express, 3, 747-754. HARRISON, D., YAN, D. & BLAIRS, S. 1977. The surface tension of liquid copper. The Journal of Chemical Thermodynamics, 9, 1111-1119. HASENBANK, M. S., EDWARDS, T., FU, E., GARZON, R., KOSAR, T. F., LOOK, M., MASHADI-HOSSEIN, A. & YAGER, P. 2008. Demonstration of multi-analyte patterning using piezoelectric inkjet printing of multiple layers. Analytica chimica acta, 611, 80-88. HE, J., JIANG, Y., PENG, J., LI, C., YAN, B. & WANG, X. 2016. Fast synthesis of hierarchical cuprous oxide for nonenzymatic glucose biosensors with enhanced sensitivity. Journal of Materials Science, 51, 9696-9704. HESS, A., SCHUSTER, R., HEIDER, A., WEBER, R. & GRAF, T. 2011. Continuous wave laser welding of copper with combined beams at wavelengths of 1030 nm and of 515 nm. Physics Procedia, 12, 88-94. HONEYCHURCH, K. C. 2012. Screen-Printed Electrochemical Biosensors and Sensors for Monitoring Metal Pollutants. Insciences J., 2, 1-51. HOPP, B., SMAUSZ, T., BARNA, N., VASS, C., ANTAL, Z., KREDICS, L. & CHRISEY, D. 2005. Time-resolved study of absorbing film assisted laser induced forward transfer of Trichoderma longibrachiatum conidia. Journal of Physics D: Applied Physics, 38, 833. HOPP, B., SMAUSZ, T., SZABÓ, G., KOLOZSVÁRI, L., KAFETZOPOULOS, D., FOTAKIS, C. & NÓGRÁDI, A. 2012. Femtosecond laser printing of living cells using absorbing film-assisted laser-induced forward transfer. Optical Engineering, 51, 014302-014302. HUANG, Y.-J., XIE, X.-Z., CUI, J.-Q. & LONG, J.-Y. 2023. Fabrication of high-performance copper circuits using laser-induced forward transfer with large receiving gaps based on beam modulation technology. Journal of Manufacturing Processes, 87, 54-64. HUSSAIN, A., ABBAS, N. & ALI, A. 2022. Inkjet printing: a viable technology for biosensor fabrication. Chemosensors, 10, 103. IVANOV, D. S., RETHFELD, B., O’CONNOR, G. M., GLYNN, T. J., VOLKOV, A. N. & ZHIGILEI, L. V. 2008. The mechanism of nanobump formation in femtosecond pulse laser nanostructuring of thin metal films. Applied Physics A, 92, 791-796. JADIN, A., FILIOUGUINE, I. V., WAUTELET, M. & LAUDE, L. D. Plasma formation during excimer laser irradiation of thin selenium films in air. Laser-Assisted Processing II, 1990. SPIE, 112-117. JALAAL, M., LI, S., KLEIN SCHAARSBERG, M., QIN, Y. & LOHSE, D. 2019. Destructive mechanisms in laser induced forward transfer. Applied physics letters, 114, 213703. JAMES, J., SPITTLE, J., BROWN, S. & EVANS, R. 2001. A review of measurement techniques for the thermal expansion coefficient of metals and alloys at elevated temperatures. Measurement science and technology, 12, R1. JIA, W., BANDODKAR, A. J., VALDÉS-RAMÍREZ, G., WINDMILLER, J. R., YANG, Z., RAMÍREZ, J., CHAN, G. & WANG, J. 2013. Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration. Analytical chemistry, 85, 6553-6560. KAMPFRATH, G. & HINTSCHE, R. 1989. Plasma-polymerized thin films for enzyme immobilization in biosensors. Analytical letters, 22, 2423-2431. KANE, R. S., TAKAYAMA, S., OSTUNI, E., INGBER, D. E. & WHITESIDES, G. M. 1999. Patterning proteins and cells using soft lithography. Biomaterials, 20, 2363-2376. KÁNTOR, Z. & SZÖRÉNYI, T. 1995. Dynamics of long‐pulse laser transfer of micrometer‐sized metal patterns as followed by time‐resolved measurements of reflectivity and transmittance. Journal of applied physics, 78, 2775-2781. KANTOR, Z., TOTH, Z. & SZÖRÉNYI, T. 1995. Metal pattern deposition by laser-induced forward transfer. Applied surface science, 86, 196-201. KÁNTOR, Z., TÓTH, Z. & SZÖRÉNYI, T. 1992. Laser induced forward transfer: The effect of support-film interface and film-to-substrate distance on transfer. Applied Physics A, 54, 170-175. KÁNTOR, Z., TOTH, Z., SZÖRÉNYI, T. & TÓTH, A. 1994. Deposition of micrometer‐sized tungsten patterns by laser transfer technique. Applied physics letters, 64, 3506-3508. KATTAMIS, N. T., MCDANIEL, N. D., BERNHARD, S. & ARNOLD, C. B. 2011. Ambient laser direct-write printing of a patterned organo-metallic electroluminescent device. Organic Electronics, 12, 1152-1158. KATTAMIS, N. T., PURNICK, P. E., WEISS, R. & ARNOLD, C. B. 2007. Thick film laser induced forward transfer for deposition of thermally and mechanically sensitive materials. Applied Physics Letters, 91, 171120. KAUR, K., FARDEL, R., MAY-SMITH, T., NAGEL, M., BANKS, D., GRIVAS, C., LIPPERT, T. & EASON, R. 2009. Shadowgraphic studies of triazene assisted laser-induced forward transfer of ceramic thin films. Journal of Applied Physics, 105, 113119. KAUR, K., FEINAEUGLE, M., BANKS, D., OU, J., DI PIETRANTONIO, F., VERONA, E., SONES, C. & EASON, R. 2011. Laser-induced forward transfer of focussed ion beam pre-machined donors. Applied surface science, 257, 6650-6653. KAUR, K., MISSINNE, J. & VAN STEENBERGE, G. 2014. Flip-chip bonding of vertical-cavity surface-emitting lasers using laser-induced forward transfer. Applied Physics Letters, 104, 061102. KHAIRULLINA, E. M., PANOV, M. S., ANDRIIANOV, V. S., RATAUTAS, K., TUMKIN, I. I. & RAČIUKAITIS, G. 2021. High rate fabrication of copper and copper–gold electrodes by laser-induced selective electroless plating for enzyme-free glucose sensing. RSC advances, 11, 19521-19530. KIM, H., AUYEUNG, R., LEE, S., HUSTON, A. & PIQUÉ, A. 2009. Laser forward transfer of silver electrodes for organic thin-film transistors. Applied Physics A, 96, 441-445. KIM, H., DUOCASTELLA, M., CHARIPAR, K., AUYEUNG, R. & PIQUÉ, A. 2013. Laser printing of conformal and multi-level 3D interconnects. Applied Physics A, 113, 5-8. KLINI, A., LOUKAKOS, P., GRAY, D., MANOUSAKI, A. & FOTAKIS, C. 2008. Laser induced forward transfer of metals by temporally shaped femtosecond laser pulses. Optics Express, 16, 11300-11309. KLONOFF, D. C. 1997. Noninvasive blood glucose monitoring. Diabetes care, 20, 433-437. KONG, F.-Y., GU, S.-X., LI, W.-W., CHEN, T.-T., XU, Q. & WANG, W. 2014. A paper disk equipped with graphene/polyaniline/Au nanoparticles/glucose oxidase biocomposite modified screen-printed electrode: Toward whole blood glucose determination. Biosensors and Bioelectronics, 56, 77-82. KONONENKO, T. V., ALLONCLE, P., KONOV, V. & SENTIS, M. 2009. Laser transfer of diamond nanopowder induced by metal film blistering. Applied Physics A, 94, 531-536. KUMYKOV, V., SERGEEV, I., SOZAEV, V. & GEDGAGOVA, M. 2017. Surface tension of copper in solid phase. Bulletin of the Russian Academy of Sciences: Physics, 81, 357-359. KUZNETSOV, A., KIYAN, R. & CHICHKOV, B. 2010. Laser fabrication of 2D and 3D metal nanoparticle structures and arrays. Optics express, 18, 21198-21203. LATIF, H., RAFIQUE, M. S., KHALEEQ-UR-RAHAMAN, M., SATTAR, A., ANJUM, S., USMAN, A., ZAHEER, S. & RAWAT, R. 2014. Surface modification of platinum by laser-produced X-rays. Radiation Effects and Defects in Solids, 169, 942-953. LEVENE, M., SCOTT, R. & SIRYJ, B. 1970. Material transfer recording. applied optics, 9, 2260-2265. LEVY, A., BERNSTEIN TOKER, G., WINTER, S., COHEN, S. S., ERMAK, O., PELED, I., KOTLER, Z. & GELBSTEIN, Y. 2021. Hybrid structural electronics printing by novel dry film stereolithography and laser induced forward transfer. Nano Select, 2, 979-991. LI, Y. & CHING-YUE, W. 2009. Experimental study on microdeposition of the copper thin film by femtosecond laser-induced forward transfer. Chinese Physics B, 18, 4292. LI, Y., ZHOU, X., CHEN, J., GUO, W., HE, S., GAO, S. & PENG, P. 2020. Laser‐Patterned Copper Electrodes for Proximity and Tactile Sensors. Advanced Materials Interfaces, 7, 1901845. LIM, J. H. & MIRKIN, C. A. 2002. Electrostatically driven dip‐pen nanolithography of conducting polymers. Advanced Materials, 14, 1474-1477. LIMITED, H. P. F. Available: https://www.hififilm.com/polyester-films/#:~:text=Polyester%20film%2C%20often%20referred%20to,thermal%20and%20electrical%20insulation%20properties [Accessed 1st February 2023]. LIN, Y., HUANG, G., HUANG, Y., JEREMY TZENG, T. R. & CHRISEY, D. 2010. Effect of laser fluence in laser‐assisted direct writing of human colon cancer cell. Rapid Prototyping Journal, 16, 202-208. LIN, Y., HUANG, Y., WANG, G., TZENG, T.-R. J. & CHRISEY, D. B. 2009. Effect of laser fluence on yeast cell viability in laser-assisted cell transfer. Journal of Applied Physics, 106, 043106. LIU, D., CHEN, N., SONG, Y., SONG, X., SUN, J., TAN, C., LONG, W., ZHONG, S. & JIA, L. 2023. Mechanical and heat transfer properties of AlN/Cu joints based on nanosecond laser-induced metallization. Journal of the European Ceramic Society, 43, 1897-1903. LIU, D., ZENG, Q., HU, C., CHEN, D., LIU, H., HAN, Y., XU, L., ZHANG, Q. & YANG, J. 2022. Light doping of tungsten into copper-platinum nanoalloys for boosting their electrocatalytic performance in methanol oxidation. Nano Research Energy, 1, e9120017. LIU, H., LIU, Y., GUO, W., ZHOU, X., LIN, L. & PENG, P. 2020a. Laser assisted ink-printing of copper oxide nanoplates for memory device. Materials Letters, 261, 127097. LIU, W., ZHU, K., WANG, C., ZHENG, Z., AN, R., ZHANG, W., ZHU, M., WEN, Z., WANG, X. & LIU, Y. 2020b. Laser induced forward transfer of brittle Cu3Sn thin film. Journal of Manufacturing Processes, 60, 48-53. LUO, G., WU, D., ZHOU, Y., HU, Y. & YAO, Z. 2022. Elucidating ejection regimes of metal microdroplets in voxel-based laser-induced forward transfer. Additive Manufacturing, 55, 102814. MADDIPATLA, D., NARAKATHU, B. B. & ATASHBAR, M. 2020. Recent progress in manufacturing techniques of printed and flexible sensors: a review. Biosensors, 10, 199. MAFUNÉ, F., KOHNO, J.-Y., TAKEDA, Y. & KONDOW, T. 2003. Formation of stable platinum nanoparticles by laser ablation in water. The Journal of Physical Chemistry B, 107, 4218-4223. MAHMOOD, M. A. & POPESCU, A. C. 2021. 3D printing at micro-level: Laser-induced forward transfer and two-photon polymerization. Polymers, 13, 2034. MAKRYGIANNI, M., VERRELLI, E., BOUKOS, N., CHATZANDROULIS, S., TSOUKALAS, D. & ZERGIOTI, I. 2013. Laser printing and characterization of semiconducting polymers for organic electronics. Applied Physics A, 110, 559-563. MATHPAL, M. C., KUMAR, P., KUMAR, S., TRIPATHI, A. K., SINGH, M. K., PRAKASH, J. & AGARWAL, A. 2015. Opacity and plasmonic properties of Ag embedded glass based metamaterials. RSC advances, 5, 12555-12562. MATSUMOTO, T., FUJII, H., UEDA, T., KAMAI, M. & NOGI, K. 2005. Measurement of surface tension of molten copper using the free-fall oscillating drop method. Measurement Science and Technology, 16, 432. MATTLE, T., HINTENNACH, A., LIPPERT, T. & WOKAUN, A. 2013a. Laser induced forward transfer of SnO 2 for sensing applications using different precursors systems. Applied Physics A, 110, 309-316. MATTLE, T., SHAW-STEWART, J., HINTENNACH, A., SCHNEIDER, C. W., LIPPERT, T. & WOKAUN, A. 2013b. Shadowgraphic investigations into the laser-induced forward transfer of different SnO2 precursor films. Applied surface science, 278, 77-81. MATTLE, T., SHAW-STEWART, J., SCHNEIDER, C. W., LIPPERT, T. & WOKAUN, A. 2012. Laser induced forward transfer aluminum layers: Process investigation by time resolved imaging. Applied surface science, 258, 9352-9354. MENEZES, V., TAKAYAMA, K., GOJANI, A. & HOSSEINI, S. 2008. Shock wave driven microparticles for pharmaceutical applications. Shock Waves, 18, 393-400. MO, X., CHAN, K. & TSE, E. C. 2019. A scalable laser-assisted method to produce active and robust graphene-supported nanoparticle electrocatalysts. Chemistry of Materials, 31, 8230-8238. MOGYORÓSI, P., SZÖRÉNYI, T., BALI, K., TÓTH, Z. & HEVESI, I. 1989. Pulsed laser ablative deposition of thin metal films. Applied surface science, 36, 157-163. MORALES, M., MORENO, J., MUNOZ-MARTIN, D., MOLPECERES, C. & CENTRO LÁSER, U. COMSOL® Simulation of Blister Actuated Laser Induced Forward Transfer (BA-LIFT). Proceedings of the 2017 COMSOL Conference in Rotterdam, 2017. MORENO-LABELLA, J., MORALES, M., MUNOZ-MARTIN, D., MÁRQUEZ, A. & MOLPECERES, C. Influence of pressure history on jet dynamics in LIFT processes: simulation and experimental analysis. 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), 2019. IEEE, 1-1. MORENO-LABELLA, J., MUNOZ-MARTIN, D., MARQUEZ, A., MORALES, M. & MOLPECERES, C. 2020. Simulation of direct and blister-assisted laser-induced forward transfer techniques. Procedia CIRP, 94, 873-878. MORENO-LABELLA, J. J., MUNOZ-MARTIN, D., VALLEJO, G., MOLPECERES, C. & MORALES, M. 2021. Influence of the Gap between Substrates in the Laser-Induced Transference of High-Viscosity Pastes. Materials, 14, 5567. MORENO LABELLA, J. J. 2021. Parametrization and simulation of blister-actuated laser-induced forward transfer (BA-LIFT) and LIFT for high-viscosity pastes. Industriales. MOYER, J., WILSON, D., FINKELSHTEIN, I., WONG, B. & POTTS, R. 2012. Correlation between sweat glucose and blood glucose in subjects with diabetes. Diabetes technology & therapeutics, 14, 398-402. MUGURUMA, H., KASE, Y. & UEHARA, H. 2005. Nanothin ferrocene film plasma polymerized over physisorbed glucose oxidase: high-throughput fabrication of bioelectronic devices without chemical modifications. Analytical chemistry, 77, 6557-6562. NAGEL, M. & LIPPERT, T. 2012. Laser-induced forward transfer for the fabrication of devices. Nanomaterials: processing and characterization with lasers, 255-316. NG, M. C., LEE, S.-C., KO, G. T., LI, J. K., SO, W.-Y., HASHIM, Y., BARNETT, A. H., MACKAY, I. R., CRITCHLEY, J. A. & COCKRAM, C. S. 2001. Familial early-onset type 2 diabetes in Chinese patients: obesity and genetics have more significant roles than autoimmunity. Diabetes Care, 24, 663-671. OHRING, M. 2002. Mechanical properties of thin films. Materials Science of Thin Films, 711-781. PALLA-PAPAVLU, A., DINCA, V., LUCULESCU, C., SHAW-STEWART, J., NAGEL, M., LIPPERT, T. & DINESCU, M. 2010a. Laser induced forward transfer of soft materials. Journal of Optics, 12, 124014. PALLA-PAPAVLU, A., DINCA, V., PARAICO, I., MOLDOVAN, A., SHAW-STEWART, J., SCHNEIDER, C. W., KOVACS, E., LIPPERT, T. & DINESCU, M. 2010b. Microfabrication of polystyrene microbead arrays by laser induced forward transfer. Journal of applied physics, 108, 033111. PALLA-PAPAVLU, A., PARAICO, I., SHAW-STEWART, J., DINCA, V., SAVOPOL, T., KOVACS, E., LIPPERT, T., WOKAUN, A. & DINESCU, M. 2011. Liposome micropatterning based on laser-induced forward transfer. Applied Physics A, 102, 651-659. PALLA-PAPAVLU, A., PATRASCIOIU, A., DI PIETRANTONIO, F., FERNANDEZ-PRADAS, J.-M., CANNATA, D., BENETTI, M., D’AURIA, S., VERONA, E. & SERRA, P. 2014. Preparation of surface acoustic wave odor sensors by laser-induced forward transfer. Sensors and Actuators B: Chemical, 192, 369-377. PAPAKONSTANTINOU, P., VAINOS, N. & FOTAKIS, C. 1999. Microfabrication by UV femtosecond laser ablation of Pt, Cr and indium oxide thin films. Applied surface science, 151, 159-170. PAPAZOGLOU, D., KARAISKOU, A., ZERGIOTI, I. & FOTAKIS, C. 2002. Shadowgraphic imaging of the sub-ps laser-induced forward transfer process. Applied physics letters, 81, 1594-1596. PAPAZOGLOU, S. & ZERGIOTI, I. 2017. Laser Induced Forward Transfer (LIFT) of nano-micro patterns for sensor applications. Microelectronic Engineering, 182, 25-34. PARASHKOV, R., BECKER, E., RIEDL, T., JOHANNES, H.-H. & KOWALSKY, W. 2005. Large area electronics using printing methods. Proceedings of the IEEE, 93, 1321-1329. PAULA, K. T., SANTOS, S. N., FACURE, M. H., ARAUJO, F. L., ANDRADE, M. M., CORREA, D. S. & MENDONÇA, C. R. 2023. Fabrication of interdigitated electrodes of graphene oxide/silica by femtosecond laser-induced forward transfer for sensing applications. Journal of Applied Physics, 133, 053103. PENG, P., LI, L., HE, P., ZHU, Y., FU, J., HUANG, Y. & GUO, W. 2019. One-step selective laser patterning of copper/graphene flexible electrodes. Nanotechnology, 30, 185301. PIQUÉ, A., CHRISEY, D., AUYEUNG, R., FITZ-GERALD, J., WU, H., MCGILL, R., LAKEOU, S., WU, P., NGUYEN, V. & DUIGNAN, M. 1999. A novel laser transfer process for direct writing of electronic and sensor materials. Applied Physics A, 69, S279-S284. POHANKA, M. & SKLÁDAL, P. 2008. Electrochemical biosensors--principles and applications. Journal of applied biomedicine, 6. POHL, R. 2015. Laser-Induced Forward Transfer of Pure Metals. University of Twente. POHL, R., VISSER, C., ROMER, G., SUN, C. & LOHSE, D. 2015a. Imaging of the ejection process of nanosecond laser-induced forward transfer of gold. Journal of laser micro nanoengineering, 10, 154-158. POHL, R., VISSER, C. W., RÖMER, G.-W., LOHSE, D., SUN, C. & HUIS, B. 2015b. Ejection regimes in picosecond laser-induced forward transfer of metals. Physical review applied, 3, 024001. POWNER, E. & YALCINKAYA, F. 1995. From basic sensors to intelligent sensors: definitions and examples. Sensor Review. RAPP, L., AILUNO, J., ALLONCLE, A. P. & DELAPORTE, P. 2011. Pulsed-laser printing of silver nanoparticles ink: control of morphological properties. Optics express, 19, 21563-21574. RAPP, L., CIBERT, C., ALLONCLE, A. P. & DELAPORTE, P. 2009a. Characterization of organic material micro-structures transferred by laser in nanosecond and picosecond regimes. Applied surface science, 255, 5439-5443. RAPP, L., CONSTANTINESCU, C., DELAPORTE, P. & ALLONCLE, A. P. 2014a. Laser-induced forward transfer of polythiophene-based derivatives for fully polymeric thin film transistors. Organic electronics, 15, 1868-1875. RAPP, L., CONSTANTINESCU, C., LARMANDE, Y., ALLONCLE, A. P. & DELAPORTE, P. 2014b. Smart beam shaping for the deposition of solid polymeric material by laser forward transfer. Applied Physics A, 117, 333-339. RAPP, L., CONSTANTINESCU, C., LARMANDE, Y., DIALLO, A. K., VIDELOT-ACKERMANN, C., DELAPORTE, P. & ALLONCLE, A. P. 2015. Functional multilayered capacitor pixels printed by picosecond laser-induced forward transfer using a smart beam shaping technique. Sensors and Actuators A: Physical, 224, 111-118. RAPP, L., DIALLO, A. K., ALLONCLE, A. P., VIDELOT-ACKERMANN, C., FAGES, F. & DELAPORTE, P. 2009b. Pulsed-laser printing of organic thin-film transistors. Applied Physics Letters, 95, 171109. RAPP, L., SEREIN-SPIRAU, F., LÈRE-PORTE, J.-P., ALLONCLE, A.-P., DELAPORTE, P., FAGES, F. & VIDELOT-ACKERMANN, C. 2012. Laser printing of air-stable high performing organic thin film transistors. Organic Electronics, 13, 2035-2041. RINGEISEN, B., CALLAHAN, J., WU, P., PIQUE, A., SPARGO, B., MCGILL, R., BUCARO, M., KIM, H., BUBB, D. & CHRISEY, D. 2001. Novel laser-based deposition of active protein thin films. Langmuir, 17, 3472-3479. RODA, A., GUARDIGLI, M., RUSSO, C., PASINI, P. & BARALDINI, M. 2000. Protein microdeposition using a conventional ink-jet printer. Biotechniques, 28, 492-496. SANO, T., YAMADA, H., NAKAYAMA, T. & MIYAMOTO, I. 2002. Experimental investigation of laser induced forward transfer process of metal thin films. Applied surface science, 186, 221-226. SANTA-NOKKI, H., KALLIOINEN, J., KOLOLUOMA, T., TUBOLTSEV, V. & KORPPI-TOMMOLA, J. 2006. Dynamic preparation of TiO2 films for fabrication of dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 182, 187-191. SCHAAF, P. 2010. Laser processing of materials: fundamentals, applications and developments, Springer Science & Business Media. SEDAGHAT, S., NEJATI, S., BERMEJO, L. H., HE, Z., ALCARAZ, A. M., ROTH, A., LI, Z., POL, V. G., WANG, H. & RAHIMI, R. 2021. Laser-induced atmospheric Cu x O formation on copper surface with enhanced electrochemical performance for non-enzymatic glucose sensing. Journal of Materials Chemistry C, 9, 14997-15010. SEIFERT, N. & BETZ, G. 1998. Computer simulations of laser-induced ejection of droplets. Applied surface science, 133, 189-194. SEIFERT, N., BETZ, G. & HUSINSKY, W. 1996a. Droplet formation on metallic surfaces during low-fluence laser irradiation. Applied surface science, 103, 63-70. SEIFERT, N., BETZ, G. & HUSINSKY, W. 1996b. Hydrodynamic phenomena during laser irradiation: a finite difference approach. Applied surface science, 96, 33-38. SEMPIONATTO, J. R., MOON, J.-M. & WANG, J. 2021. Touch-based fingertip blood-free reliable glucose monitoring: Personalized data processing for predicting blood glucose concentrations. ACS sensors, 6, 1875-1883. SERRA, P., COLINA, M., FERNÁNDEZ-PRADAS, J. M., SEVILLA, L. & MORENZA, J. L. 2004. Preparation of functional DNA microarrays through laser-induced forward transfer. Applied physics letters, 85, 1639-1641. SERRA, P., DUOCASTELLA, M., FERNÁNDEZ-PRADAS, J. & MORENZA, J. 2010. Laser-induced forward transfer: a laser-based technique for biomolecules printing. Cell and Organ Printing, 53-80. SERRA, P., FERNANDEZ-PRADAS, J. M., COLINA, M., DUOCASTELLA, M., DOMINGUEZ, J. & MORENZA, J. L. 2006. Laser-induced forward transfer: a direct-writing technique for biosensors preparation. J. Laser Micro/Nanoeng, 1, 236-242. SERRA, P. & PIQUÉ, A. 2019. Laser‐induced forward transfer: fundamentals and applications. Advanced Materials Technologies, 4, 1800099. SETTI, L., FRALEONI-MORGERA, A., BALLARIN, B., FILIPPINI, A., FRASCARO, D. & PIANA, C. 2005. An amperometric glucose biosensor prototype fabricated by thermal inkjet printing. Biosensors and Bioelectronics, 20, 2019-2026. SHAW-STEWART, J., CHU, B., LIPPERT, T., MANIGLIO, Y., NAGEL, M., NŘESCH, F. & WOKAUN, A. 2011. Improved laser-induced forward transfer of organic semiconductor thin films by reducing the environmental pressure and controlling the substrate–substrate gap width. Applied Physics A, 105, 713-722. SHAW-STEWART, J., MATTLE, T., LIPPERT, T., NAGEL, M., NÜESCH, F. & WOKAUN, A. 2013. The fabrication of small molecule organic light-emitting diode pixels by laser-induced forward transfer. Journal of Applied Physics, 113, 043104. SICREE, R., SHAW, J. & ZIMMET, P. 2006. Prevalence and projections. Diabetes atlas, 3, 16-104. SKOTADIS, E., VOUTYRAS, K., CHATZIPETROU, M., TSEKENIS, G., PATSIOURAS, L., MADIANOS, L., CHATZANDROULIS, S., ZERGIOTI, I. & TSOUKALAS, D. 2016. Label-free DNA biosensor based on resistance change of platinum nanoparticles assemblies. Biosensors and Bioelectronics, 81, 388-394. SMOOTH-ON. Durometer Shore Hardness Scale [Online]. Available: https://www.smooth-on.com/page/durometer-shore-hardness-scale/ [Accessed]. SOLTANI, A., VAHED, B. K., MARDOUKHI, A. & MÄNTYSALO, M. 2015. Laser sintering of copper nanoparticles on top of silicon substrates. Nanotechnology, 27, 035203. STEWART, J. S., FARDEL, R., NAGEL, M., DELAPORTE, P., RAPP, L., CIBERT, C., ALLONCLE, A., NÜESCH, F., LIPPERT, T. & WOKAUN, A. 2010a. The effect of laser pulse length upon laser-induced forward transfer using a triazene polymer as a dynamic release layer. Journal of Optoelectronics and Advanced Materials, 12, 605-609. STEWART, J. S., LIPPERT, T., NAGEL, M., NÜESCH, F. & WOKAUN, A. Laser‐Induced Forward Transfer Using Triazene Polymer Dynamic Releaser Layer. AIP Conference Proceedings, 2010b. American Institute of Physics, 789-799. STRUTT, J. W. & RAYLEIGH, L. 1878. On the instability of jets. Proc. London Math. Soc, 10, 4-13. TANG, Q. & SHI, S.-Q. 2008. Preparation of gas sensors via dip-pen nanolithography. Sensors and Actuators B: Chemical, 131, 379-383. TAYLOR, G. I. 1950. The formation of a blast wave by a very intense explosion I. Theoretical discussion. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 201, 159-174. TEE, S. Y., TENG, C. P. & YE, E. 2017. Metal nanostructures for non-enzymatic glucose sensing. Materials Science and Engineering: C, 70, 1018-1030. THOMAS, B., ALLONCLE, A. P., DELAPORTE, P., SENTIS, M., SANAUR, S., BARRET, M. & COLLOT, P. 2007. Experimental investigations of laser-induced forward transfer process of organic thin films. Applied Surface Science, 254, 1206-1210. TOOLBOX, T. E. Metals and Alloys - Young's Modulus of Elasticity [Online]. Available: https://www.engineeringtoolbox.com/young-modulus-d_773.html [Accessed 20 January 2023]. TOTH, Z., HOPP, B., KANTOR, Z., IGNACZ, F., SZOERENYI, T. & BOR, Z. Dynamics of excimer laser ablation of thin tungsten films studied by fast photography. Laser Materials Processing: Industrial and Microelectronics Applications, 1994. SPIE, 776-783. TÓTH, Z., SZÖRÉNYI, T. & TOTH, A. 1993. Ar+ laser-induced forward transfer (LIFT): a novel method for micrometer-size surface patterning. Applied surface science, 69, 317-320. TOULOUPAKIS, E., BOUTOPOULOS, C., BUONASERA, K., ZERGIOTI, I. & GIARDI, M. T. 2012. A photosynthetic biosensor with enhanced electron transfer generation realized by laser printing technology. Analytical and bioanalytical chemistry, 402, 3237-3244. TOULOUPAKIS, E., CHATZIPETROU, M., BOUTOPOULOS, C., GKOUZOU, A. & ZERGIOTI, I. 2014. A polyphenol biosensor realized by laser printing technology. Sensors and Actuators B: Chemical, 193, 301-305. TSEKENIS, G., CHATZIPETROU, M., TANNER, J., CHATZANDROULIS, S., THANOS, D., TSOUKALAS, D. & ZERGIOTI, I. 2012. Surface functionalization studies and direct laser printing of oligonucleotides toward the fabrication of a micromembrane DNA capacitive biosensor. Sensors and actuators B: Chemical, 175, 123-131. TSEKENIS, G., FILIPPIDOU, M., CHATZIPETROU, M., TSOUTI, V., ZERGIOTI, I. & CHATZANDROULIS, S. 2015. Heavy metal ion detection using a capacitive micromechanical biosensor array for environmental monitoring. Sensors and actuators B: Chemical, 208, 628-635. TSUBOI, Y., FURUHATA, Y. & KITAMURA, N. 2007. A sensor for adenosine triphosphate fabricated by laser-induced forward transfer of luciferase onto a poly (dimethylsiloxane) microchip. Applied surface science, 253, 8422-8427. TUOMIKOSKI, M., SUHONEN, R., VÄLIMÄKI, M., MAANINEN, T., MAANINEN, A., SAUER, M., ROGIN, P., MENNIG, M., HEUSING, S. & PUETZ, J. Manufacturing of polymer light-emitting device structures. Organic Optoelectronics and Photonics II, 2006. SPIE, 14-22. TURNER, A. P. 2013. Biosensors: sense and sensibility. Chemical Society Reviews, 42, 3184-3196. UDIN, H. 1949. Surface tension of solid copper. Massachusetts Institute of Technology. VISSER, C., POHL, R., SUN, C. & RÖMER, G. 2015. Huis in ‘t Veld B, Lohse D. Toward 3D printing of pure metals by laser-induced forward transfer. Adv. Mater, 27, 4087-4092. VISWANATHAN, M., MCCARTHY, M., SNEHALATHA, C., HITMAN, G. & RAMACHANDRAN, A. 1996. Familial aggregation of type 2 (non‐insulin‐dependent) diabetes mellitus in South India; absence of excess maternal transmission. Diabetic medicine, 13, 232-237. VOLINSKY, A., TYMIAK, N., KRIESE, M., GERBERICH, W. W. & HUTCHINSON, J. 1998. Quantitative modeling and measurement of copper thin film adhesion. MRS Online Proceedings Library (OPL), 539, 277. VORA, H. D., SANTHANAKRISHNAN, S., HARIMKAR, S. P., BOETCHER, S. K. & DAHOTRE, N. B. 2013. One-dimensional multipulse laser machining of structural alumina: evolution of surface topography. The International Journal of Advanced Manufacturing Technology, 68, 69-83. WANG, J., AUYEUNG, R. C., KIM, H., CHARIPAR, N. A. & PIQUÉ, A. 2010. Three‐dimensional printing of interconnects by laser direct‐write of silver nanopastes. Advanced Materials, 22, 4462-4466. WILD, S., ROGLIC, G., GREEN, A., SICREE, R. & KING, H. 2004. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes care, 27, 1047-1053. WILLIS, D. A. & GROSU, V. 2005. Microdroplet deposition by laser-induced forward transfer. Applied Physics Letters, 86, 244103. WILLIS, D. A. & GROSU, V. 2007. The effect of melting-induced volumetric expansion on initiation of laser-induced forward transfer. Applied surface science, 253, 4759-4763. WU, P., RINGEISEN, B., CALLAHAN, J., BROOKS, M., BUBB, D., WU, H., PIQUÉ, A., SPARGO, B., MCGILL, R. & CHRISEY, D. 2001. The deposition, structure, pattern deposition, and activity of biomaterial thin-films by matrix-assisted pulsed-laser evaporation (MAPLE) and MAPLE direct write. Thin Solid Films, 398, 607-614. WYSOCKA, I., KOWALSKA, E., RYL, J., NOWACZYK, G. & ZIELIŃSKA-JUREK, A. 2019. Morphology, photocatalytic and antimicrobial properties of TiO2 modified with mono-and bimetallic copper, platinum and silver nanoparticles. Nanomaterials, 9, 1129. YAMANAKA, K., VESTERGAARD, M. D. C. & TAMIYA, E. 2016. Printable electrochemical biosensors: A focus on screen-printed electrodes and their application. Sensors, 16, 1761. YAN, J., HUANG, Y. & CHRISEY, D. B. 2012. Laser-assisted printing of alginate long tubes and annular constructs. Biofabrication, 5, 015002. YANG, G. & ZHOU, J. The annealing effect on optical properties of silver copper alloy films. Applied Mechanics and Materials, 2013. Trans Tech Publ, 329-335. YENER, T., YENER, Ş. Ç. & MUTLU, R. 2019. Convection Coefficient Estimation of Still Air Using an Infrared Thermometer and Curve-Fitting. Journal of Engineering Technology and Applied Sciences, 4, 95-103. YOSHIMURA, K. & HOZUMI, K. 1996. Response characteristics of a glucose electrode with a sensing membrane prepared by plasma polymerization. Microchemical journal, 53, 404-412. YOSHIMURA, K., KITADE, T., KITAMURA, K. & HOZUMI, K. 1991. Preparation of immobilized glucose oxidase membrane by the plasma polymerization technique. Microchemical journal, 43, 133-142. YUNG, W. K., SUN, B., MENG, Z., HUANG, J., JIN, Y., CHOY, H. S., CAI, Z., LI, G., HO, C. L. & YANG, J. 2016. Additive and photochemical manufacturing of copper. Scientific reports, 6, 1-9. ZAIDI, S. A. & SHIN, J. H. 2016. Recent developments in nanostructure based electrochemical glucose sensors. Talanta, 149, 30-42. ZENG, X., MAO, X., GREIF, R. & RUSSO, R. 2005. Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon. Applied Physics A, 80, 237-241. ZENOU, M., SA'AR, A. & KOTLER, Z. 2015a. Laser transfer of metals and metal alloys for digital microfabrication of 3D objects. Small, 11, 4082-4089. ZENOU, M., SA'AR, A. & KOTLER, Z. 2015b. Supersonic laser-induced jetting of aluminum micro-droplets. Applied Physics Letters, 106, 181905. ZENOU, M., SA’AR, A. & KOTLER, Z. 2015c. Digital laser printing of aluminum micro-structure on thermally sensitive substrates. Journal of Physics D: Applied Physics, 48, 205303. ZENOU, M., SA’AR, A. & KOTLER, Z. 2015d. Laser jetting of femto-liter metal droplets for high resolution 3D printed structures. Scientific reports, 5, 17265. ZERGIOTI, I., KARAISKOU, A., PAPAZOGLOU, D., FOTAKIS, C., KAPSETAKI, M. & KAFETZOPOULOS, D. 2005. Time resolved schlieren study of sub-pecosecond and nanosecond laser transfer of biomaterials. Applied Surface Science, 247, 584-589. ZERGIOTI, I., MAILIS, S., VAINOS, N., FOTAKIS, C., CHEN, S. & GRIGOROPOULOS, C. 1998a. Microdeposition of metals by femtosecond excimer laser. Applied Surface Science, 127, 601-605. ZERGIOTI, I., MAILIS, S., VAINOS, N., PAPAKONSTANTINOU, P., KALPOUZOS, C., GRIGOROPOULOS, C. & FOTAKIS, C. 1998b. Microdeposition of metal and oxide structures using ultrashort laser pulses. Applied Physics A: Materials Science & Processing, 66, 579-582. ZHOU, X., GUO, W., FU, J., ZHU, Y., HUANG, Y. & PENG, P. 2019. Laser writing of Cu/CuxO integrated structure on flexible substrate for humidity sensing. Applied Surface Science, 494, 684-690. ZHOU, X., GUO, W., YAO, Y., PENG, R. & PENG, P. 2021. Flexible Nonenzymatic Glucose Sensing with One‐Step Laser‐Fabricated Cu2O/Cu Porous Structure. Advanced Engineering Materials, 23, 2100192. ZHU, J., CAO, W., JIANG, B., ZHANG, D., ZHENG, H., ZHOU, Q. & SHUNG, K. 2008. Nano-structured TiO2 film fabricated at room temperature and its acoustic properties. Journal of physics D: Applied physics, 41, 162001. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88049 | - |
dc.description.abstract | 近年來,雷射誘導前向轉移 (Laser-induced forward transfer, LIFT) 已成為一種廣泛使用的製造技術。這種先進的一步式、非接觸式、省時且經濟高效的方法已在各種電子、生物和化學應用的各種感測器的製造中得到普及。基於 LIFT 的製程技術具有高分辨率和靈活性等優點,因此,使用LIFT在積層製造上之各種應用中有著巨大的潛力。LIFT幾乎有能力轉移任何材料,可利用這種技術可以製作出各種具有複雜細節的結構。本論文聚焦在使用 LIFT 對金屬進行積層製造以展示未來的應用,因此,利用 LIFT 來轉移銅 (Cu)、銀 (Ag) 和鉑 (Pt)等金屬。
先期實驗顯示,沉積金屬材料和接收基板之間有低的附著力;沉積結構中的不連續性降低了導電率,再者,Ag 和 Pt 薄膜的脆性和不同材料特性的差異使得通過 LIFT 進行的積層製造極具挑戰性。因此,在本論文中作出了許多實驗來提高轉移質量。例如,使用雷射表面紋理化 (Laser surface texturing, LST) 和光聚合固化技術將表面粗糙度引入接收基板。此外,探討了在低壓和大氣環境中進行LIFT實驗。最後,LIFT轉移過程是根據實驗和相關表徵來進行優化,包括SEM、EDS、XRD 和電阻測試,以了解沉積材料作為軟性感測元件電極的可行性。此外,本論文也使用有限元素法 (Finite element method, FEM)來分析 LIFT 轉移過程,以有效地將實驗參數優化。最後,使用已建立的理論和FEM結果進行了能量研究,以實現影響 LIFT 過程的主要物理現象。 | zh_TW |
dc.description.abstract | Laser-induced forward transfer (LIFT) has been a widely used manufacturing technique in recent times. The novel one-step and contactless method have gained popularity in the manufacturing of a wide range of sensors for various electronic, biological, and chemical applications. Nevertheless, LIFT based printing has advantages such as high resolution and flexibility. Additive manufacturing has shown significant potential in various applications. LIFT has the ability to manufacture almost any materials; therefore, utilizing such a process in additive manufacturing enables printing of a wide range of materials with intricate details. This research concerns about the additive manufacturing of metals via LIFT to demonstrate future applications. Therefore, this research utilizes LIFT for printing copper (Cu), silver (Ag) and platinum (Pt).
However, experimental evidence has shown weak adhesion between the deposited material and receiver substrate. Moreover, the discontinuities in the deposit structure reduces the conductivity. In addition, the brittle nature and difference in distinct material properties of Ag and Pt thin films make additive manufacturing via LIFT extremely challenging. Therefore, numerous efforts are made in this work to enhance the printing quality. For instance, surface roughness is introduced to the receiver substrate using laser surface texturing (LST) and vat photopolymerization. Furthermore, conducting LIFT in low pressure and ambient environments are investigated. Simultaneously, the effects of the aforementioned efforts shall be investigated on soft and hard polymers with variable thickness based on their shore hardness. Finally, the LIFT process shall be optimized based on the aforementioned experiments and relevant characterizations. Scotch tape tests are carried out for determining the adhesion strength. Further characterizations include SEM, EDS, XRD and conductivity tests for understanding the feasibility of the deposited materials as flexible sensor electrodes. In addition, finite element methods (FEM) has been utilized for the LIFT process for effective implementation in process optimization. Finally, energy studies have been made using pre-established theory and FEM results for realizing the major physical phenomena affecting the LIFT process. Considering the potential benefits of the LIFT process, successful fabrication of sensor electrodes may be carried out in future. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-01T16:36:37Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-08-01T16:36:37Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Master dissertation acceptance certificate............................. i
Acknowledgement....................................................... ii 摘要................................................................... iii Abstract............................................................... iv Table of Contents...................................................... v List of Figures........................................................ vii List of Tables......................................................... xiii Chapter 1 Introduction.............................................. 1 Chapter 2 Theoretical background.................................. 5 2.1. Laser-induced forward transfer (LIFT)......................... 6 2.2. LIFT challenges............................................... 15 2.3. Future application: LIFT for biosensor manufacturing.......... 39 2.4. Finite element methods for LIFT............................... 47 Chapter 3 Research Methods............................................ 52 3.1. Materials..................................................... 56 3.2. Donor ablation and conventional LIFT ......................... 57 3.3. LIFT modifications............................................ 57 3.4. Characterizations.............................................. 65 3.5. Finite element method setup.................................... 68 3.6. Theoretical studies............................................ 74 Chapter 4 Results and discussion ..................................... 77 4.1. Laser heating and ablation results............................ 77 4.2. Laser surface texturing and Vat photopolymerization........... 84 4.3. LIFT results.................................................. 86 4.4. Characterization results...................................... 106 4.5. Finite element method results................................. 119 4.6. Energy analysis............................................... 126 Chapter 5 Conclusion and outlook.................................... 133 References............................................................. 135 | - |
dc.language.iso | en | - |
dc.title | 基於實驗、理論和有限元素法增加雷射誘導前向轉移於金屬積層製造之附著力與電特性 | zh_TW |
dc.title | Enhancing adhesion and electrical properties for laser-induced forward transfer based additive manufacturing of metals | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 黃振康;李貫銘 | zh_TW |
dc.contributor.oralexamcommittee | Zhenkang Huang ;Kuan-Ming Li | en |
dc.subject.keyword | 雷射誘導前向轉移(LIFT),雷射表面紋理化(LST),積層製造(AM),能量分析,有限元素法 (FEM), | zh_TW |
dc.subject.keyword | Laser-induced forward transfer (LIFT),Laser surface texturing (LST),Additive manufacturing (AM),Energy analysis,Finite element methods (FEM), | en |
dc.relation.page | 149 | - |
dc.identifier.doi | 10.6342/NTU202301493 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-07-13 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 生物機電工程學系 | - |
顯示於系所單位: | 生物機電工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf | 8.73 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。