Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88044
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor薛人愷zh_TW
dc.contributor.advisorREN-KAE SHIUEen
dc.contributor.author鄭勝隆zh_TW
dc.contributor.authorSheng-Lung Chengen
dc.date.accessioned2023-08-01T16:34:52Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-01-
dc.date.issued2023-
dc.date.submitted2023-07-05-
dc.identifier.citation[1] P. Fili, J. Lausmaa, J. Musialek, K. Mazanec, Structure and surface of TiNi human implants, Biomaterials 22 (2001) 2131-8.
[2] K. Otsuka, X. Ren, Physical metallurgy of Ti–Ni-based shape memory alloys, Prog. Mater Sci. 50(5) (2005) 511-678.
[3] G.S. Firstov, R.G. Vitchev, H. Kumar, B. Blanpain, J. Van Humbeeck, Surface oxidation of NiTi shape memory alloy, Biomaterials 23(24) (2002) 4863-4871.
[4] P. Rocher, L. El Medawar, J.C. Hornez, M. Traisnel, J. Breme, H.F. Hildebrand, Biocorrosion and cytocompatibility assessment of NiTi shape memory alloys, Scripta Mater. 50(2) (2004) 255-260.
[5] M.C. Chen, S.K. Wu, Surface analyses and biocompatibility study of 500 °C oxidized Ni50Ti50 and Ni40Ti50Cu10 shape memory alloys, Surf. Coat. Technol. 203 (2009) 1715-1721.
[6] H.E. Karaca, E. ACRE, H. Tobe, et al. NiTiHf-based shape memory alloys. Materials Science and Technology, 30(13) (2014) 530-544.
[7] 薛人豪,鈦鎳形狀記憶合金紅外線硬銲接合之研究,國立台灣大學材料科學與 工程學研究所博士論文,2006。
[8] T.A. Schroeder, C.M. Wayman, Pseudoelastic effects in Cu-Zn single crystals, Acta 102 Metall. 27(3) (1979) 405-417.
[9] 李芝媛,吳錫侃,淺談形狀記憶合金,科儀新知第十六卷,6(1995) 6-17.
[10] K. Otsuka, C.M. Wayman, P. Feltham ed., in: Reviews on the Deformation Behavior of Materials, Freund Publ. House Ltd, 1977, p.81.
[11] K. Otsuka, K. Shimizu, Pseudoelasticity and shape memory effects in alloys, 31 (1986) 93-114.
[12] K. Otsuka, in: Proc. Int. Conf. On Solid to Solid Phase Transformations, TMS-AIME Pittsburgh, Pa. (USA), 1981, p. 1267.
[13] K. Otsuka, C.M. Wayman, Shape memory materials, Cambridge University Press, 1999.
[14] K. Otsuka, T. Kakeshita, Science and Technology of Shape-Memory Alloys:New Developments, 27 (2002) 91-100.
[15] X.L. Meng, W. Cai, L.M. Wang, et al. Microstructure of stress-induced martensite in a Ti-Ni-Hf high temperature shape memory alloy. Scripta Materialia, 45 (2001) 1177-1182.
[16] Y.Q. Wang, Y. F. Zheng, W. Cai, et al. Tensile behavior of Ti36Ni49Hf15 high temperature shape memory alloy. Scripta Materialia, 40(12) (1999) 1327-1331.
[17] 衣曉洋,孟祥龍,蔡偉,王海振,Ti-Ni-Hf 高溫形狀記憶合金的研究進展, 2021。
[18] X.L. Meng, W. Cai, Y.F. Zheng, Y.X. Tong, L.C. Zhao, L.M. Zhou, Stress-induced martensitic transformation behavior of a Ti–Ni–Hf high temperature shape memory alloy, 55 (2002), 111 – 115.
[19] X.L. Meng, W. Cai, K.T. Lau, L.C. Zhao, L.M. Zhou, Phase transformation and microstructure of quaternary TiNiHfCu high temperature shape memory alloys, 13 (2005), 197-201.
[20] X. Meng, W. Cai, F. Chen & L. Zhao, Effect of aging on martensitic transformation and microstructure in Ni-rich TiNiHf shape memory alloy. Scripta Materialia, 54(9) (2006) 1599-1604.
[21] D.L. Olson, T.A. Siewert, S. Liu, G.R. Edwards, ASM Handbook Volume 6: Welding, Brazing, and Soldering, ASM International, OH, 1993.
[22] 林杰,紅外線硬銲接合鈦合金及高熵合金之研究,國立台灣大學材料科學與 工程學研究所博士論文,2020。
[23] M.M. Schwartz, Brazing, ASM International, 2003.
[24] S. American Welding, B. Committee on, Soldering, Brazing Manual, American Welding Society; trade distributor: Reinhold Pub. Corp., New York, 1963.
[25] M. Schwartz, Brazing: For the Engineering Technologist, Springer, 1995.
[26] D.L. Olson, T.A. Siewert, S. Liu, G.R. Edwards, ASM Handbook Volume 6: Welding, Brazing, and Soldering, ASM International, OH, 1993.
[27] K. Otsuka, C.M. Wayman, Shape memory materials, Cambridge University Press, 1999.
[28] 楊宗恩,紅外線硬銲接合 Ti50Ni50/純 Ti 或 Ti-15-3 合金及開發新型銅基填料 之研究,國立台灣大學材料科學與工程學研究所碩士論文,2011。
[29] 詹志鴻,利用銀基填料紅外線硬銲接合異質金屬之研究,國立台灣大學機械 工程研究所碩士論文,2003。
[30] T. B. Massalasi, Binary Alloy Phase Diagrams, American Society of Metals, 1990.
[31] 戴傳諭,紅外線硬銲接合 Ti50Ni40Cu10 及 Ti50Ni30Cu20 形狀記憶合金之研究,國立台灣大學材料科學與工程學研究所碩士論文,2017。
[32] P. Villars, A. Prince, & J. Okamoto, Handbook of ternary alloys phase diagrams. ASM International, 1995.
[33] K. P. Gupta, The Cu-Ni-Y (Copper-Nickel-Yttrium) System. Journal of Phase Equilibria and Diffusion, 30(6) (2009) 651-656. https://doi.org/10.1007/s11669-009-9578-y
[34] Y. Tong, A. Shuitcev, & Y. Zheng, Recent development of TiNi-based shape memory alloys with high cycle stability and high transformation temperature. Advanced Engineering Materials, 22(4) (2020). https://doi.org/10.1002/adem.201900496
[35] K. P. Gupta, Phase diagram of ternary nickel alloys. Indian Institute of Metals, Calcutta, India, 1990.
[36] J. L. Liu, L. L. Zhu, X. M. Huang, G. M. Cai, & Z. P. Jin, Investigation of the phase equilibria in Ti-Ni-Hf system using diffusion triples and equilibrated alloys. Calphad, 58 (2017) 160-168. https://doi.org/10.1016/j.calphad.2017.07.004
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88044-
dc.description.abstract本研究旨在改善BAg-8填料對TiNi基合金之潤濕性,透過添加第三元素在TiNi基合金中或在銀基填料中添加小於5 wt%Ti元素之方式,以提高銲道機械性質,並提升銲道可靠度。在高真空環境下,使用三種銀基填料BAg-8、Cusil-ABA、Ticusil,紅外線硬銲同質接合Ti25Ni50Hf25形狀記憶合金;使用 BAg-8填料,同質接合Ti25Ni25Cu25Hf25形狀記憶合金。利用紅外線快速接合之特性,探討硬銲時間為3分鐘或5分鐘之銲道金相顯微組織、破壞模式以及剪應力強度。從實驗結果得知,Ti25Ni50Hf25/BAg-8/Ti25Ni50Hf25銲道中主要存在Ag-rich 相,Ag-Cu共晶組織和CuNiTi 相,微裂縫主要產生在CuNiTi相,硬銲之最佳條件為830°C持溫5分鐘,平均剪應力強度為100 MPa; Ti25Ni50Hf25/Cusil-ABA/Ti25Ni50Hf25銲道中主要存在 Ag-Cu 共晶組織、CuNiTi 相和少量 Cu5Hf 析出,微裂縫主要產生在CuNiTi、Cu5Hf相,硬銲之最佳條件為900°C持溫3分鐘,平均剪應力強度高達207MPa; Ti25Ni50Hf25/Ticusil/Ti25Ni50Hf25銲道中主要存在 Ag-rich 相、Cu-rich 相、Ag-Cu 共晶組織、TiCu2、散布在 TiCu2 相旁的 CuTi2 析出物、以及少量 Cu5Hf 相,微裂縫主要產生在TiCu2相與富Ti、Hf、Ni介金屬相,硬銲條件將900°C持溫5分鐘降為3分鐘時,平均剪應力強度差異不大,但其標準差下降11%,使銲道之可靠性提升。Ti25Ni25Cu25Hf25/BAg-8/Ti25Ni25Cu25Hf25銲道中主要存在 Ag-rich 相、Ag-Cu 共晶組織、Cu5Hf 和 CuNiTi 相所組成,微裂縫主要產生在CuNiTi、Cu5Hf介金屬相,硬銲條件為800°C持溫5分鐘,平均剪力強度77MPa,由於其銲道在基材與填料間界面產生較多脆性相,導致其標準差較高,達36%,使銲道偏脆性,可靠性較不佳。以上四種銲道均屬於脆性破壞。zh_TW
dc.description.abstractThis study aims to improve the wettability of BAg-8 filler on TiNi-based alloys. This is achieved by adding third elements to the TiNi-based alloy or incorporating less than 5 wt% of Ti element into the silver-based filler to enhance the joint mechanical properties and reliability. Under a high vacuum environment, three types of silver-based fillers, BAg-8, Cusil-ABA, and Ticusil, were used for infrared brazing of Ti25Ni50Hf25 shape memory alloy. BAg-8 filler was used for infrared brazing of Ti25Ni25Cu25Hf25 shape memory alloy. The characteristics of rapid infrared brazing were utilized to investigate the microstructure, failure mode, and shear strengths of brazed joints with a brazing time of either 3 minutes or 5 minutes. From the experimental results, it was found that in the Ti25Ni50Hf25/BAg-8/Ti25Ni50Hf25 joint, the main phases were the Ag-rich phase, Ag-Cu eutectic, and CuNiTi phase. Microcracks primarily occurred in the CuNiTi phase. The optimal brazing condition was 830°C holding for 5 minutes, resulting in an average shear strength of 100 MPa. In the Ti25Ni50Hf25/Cusil-ABA/Ti25Ni50Hf25 joint, the main phases were Ag-Cu eutectic, CuNiTi, and a small amount of Cu5Hf precipitates. Microcracks mainly formed in the CuNiTi and Cu5Hf compounds. The optimal brazing condition was 900°C holding for 3 minutes, with an impressive average shear strength of 207 MPa. In the Ti25Ni50Hf25/Ticusil/Ti25Ni50Hf25 joint, the main phases identified were the Ag-rich phase, Cu-rich phase, Ag-Cu eutectic, TiCu2, CuTi2 precipitates dispersed near the TiCu2, and a small amount of Cu5Hf. Microcracks primarily occurred at the interfaces between TiCu2 and (Ti,Hf,Ni)-rich intermetallic compounds. Reducing the brazing condition from 900°C holding for 5 minutes to 3 minutes showed minimal difference in average shear strength but reduced the standard deviation by 11%, thereby improving the reliability of the joint. In the Ti25Ni25Cu25Hf25/BAg-8/Ti25Ni25Cu25Hf25 joint, the main phases were the Ag-rich phase, Ag-Cu eutectic, Cu5Hf, and CuNiTi compounds. Microcracks primarily formed in the CuNiTi and Cu5Hf intermetallics. The brazing condition was 800°C holding for 5 minutes, resulting in an average shear strength of 77 MPa. Due to more brittle phases at the interface between the base metal and filler, the joint exhibited a higher standard deviation of 36% and lower reliability. All four types of brazed joints mentioned above showed brittle failure.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-01T16:34:52Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-01T16:34:52Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 i
Abstract ii
目錄 iv
第一章 前言 1
第二章 文獻回顧 3
2.1 形狀記憶合金(Shape Memory Alloys, SMAs) 3
2.1.1 形狀記憶合金特性 3
2.1.2 形狀記憶效應(SME)之分類 4
2.1.3 形狀記憶效應(SME)與偽彈性(PE)之比較 5
2.1.4 高溫形狀記憶合金 7
2.2 接合製程 10
2.2.1 硬銲(Brazing) 10
第三章 實驗方法 30
3.1 Ti25Ni50Hf25、Ti25Ni25Cu25Hf25試片製作之方法 30
3.2 硬銲使用之金屬填料 31
3.3 紅外線硬銲接合使用之設備 32
3.4 剪力試驗 32
3.5 儀器分析 33
3.5.1 FE-EPMA 33
3.5.2 SEM 33
3.5.3 HT-DSC 33
3.6 實驗流程 34
第四章 紅外線硬銲接合TiNiHf形狀記憶合金 43
4.1 探討銀基填料對Ti50Ni50 SMA的潤濕性 43
4.2 探討Cusil-ABA活性填料之紅外線硬銲接合Ti25Ni50Hf25 SMA的銲道顯微組織分析與剪力強度 44
4.2.1 銲道顯微組織分析 44
4.2.2 銲點剪力強度與破壞分析 46
4.3 探討Ticusil活性填料之紅外線硬銲接合Ti25Ni50Hf25 SMA的銲道顯微組織分析與剪力強度 47
4.3.1 銲道顯微組織分析 47
4.3.2 銲點剪力強度與破壞分析 47
4.4 探討BAg-8填料之紅外線硬銲接合Ti25Ni50Hf25 SMA的銲道顯微組織分析與剪力強度 48
4.4.1 銲道顯微組織分析 48
4.4.2 銲點剪力強度與破壞分析 48
4.5 金相組織之演化 49
4.6 章節總結 50
第五章 紅外線硬銲接合與形狀記憶合金變態行為之研究 79
5.1 探討銀基填料對TiNiCuHf SMA的潤濕性 79
5.2 探討BAg-8填料之紅外線硬銲接合TiNiCuHf SMA的銲道顯微組織分析與剪力強度 80
5.2.1 銲道顯微組織分析 80
5.2.2 銲點剪力強度與破壞分析 80
5.3 TiNiHf、TiNiCuHf形狀記憶合金變態行為 81
5.4 章節總結 82
第六章 結論 96
附錄 相關三元相圖 98
參考文獻 101
-
dc.language.isozh_TW-
dc.subject顯微組織zh_TW
dc.subject紅外線硬銲接合zh_TW
dc.subject形狀記憶合金zh_TW
dc.subject銀基填料zh_TW
dc.subject脆性破壞zh_TW
dc.subject剪應力強度zh_TW
dc.subjectMicrostructureen
dc.subjectSilver-based filleren
dc.subjectInfrared brazingen
dc.subjectShape memory alloyen
dc.subjectShear strengthen
dc.subjectBrittle fractureen
dc.title紅外線硬銲接合Ti25Ni50Hf25及Ti25Ni25Cu25Hf25形狀記憶合金之研究zh_TW
dc.titleThe Study of Infrared Brazing Ti25Ni50Hf25 and Ti25Ni25Cu25Hf25 Shape Memory Alloysen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee吳錫侃;張世航;周棟勝zh_TW
dc.contributor.oralexamcommitteeSHYI-KAAN WU;SHIH-HANG CHANG;TONG-SHENG CHOUen
dc.subject.keyword紅外線硬銲接合,形狀記憶合金,銀基填料,脆性破壞,剪應力強度,顯微組織,zh_TW
dc.subject.keywordInfrared brazing,Shape memory alloy,Silver-based filler,Brittle fracture,Shear strength,Microstructure,en
dc.relation.page104-
dc.identifier.doi10.6342/NTU202301359-
dc.rights.note未授權-
dc.date.accepted2023-07-06-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
11.82 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved