請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88042完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳素雲 | zh_TW |
| dc.contributor.advisor | Su-Yun Huang | en |
| dc.contributor.author | 韓呈宥 | zh_TW |
| dc.contributor.author | Cheng-Yu Han | en |
| dc.date.accessioned | 2023-08-01T16:34:11Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-01 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-05 | - |
| dc.identifier.citation | S. Arora, R. Ge, B. Neyshabur, and Y. Zhang. Stronger generalization bounds for deep nets via a compression approach. In International Conference on Machine Learning, pages 254–263. PMLR, 2018.
S. Arora, N. Cohen, W. Hu, and Y. Luo. Implicit regularization in deep matrix factoriza tion. Advances in Neural Information Processing Systems, 32, 2019. A. Cichocki, N. Lee, I. Oseledets, A.-H. Phan, Q. Zhao, D. P. Mandic, et al. Tensor networks for dimensionality reduction and large-scale optimization: Part 1 low-rank tensor decompositions. Foundations and Trends® in Machine Learning, 9(4-5):249–429, 2016. T. Galanti and T. Poggio. Sgd noise and implicit low-rank bias in deep neural networks. Technical report, Center for Brains, Minds and Machines (CBMM), 2022. W. Hackbusch. Tensor Spaces and Numerical Tensor Calculus, volume 42. Springer, 2012. S. Laue, M. Mitterreiter, and J. Giesen. A simple and efficient tensor calculus. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 4527–4534, 2020. A. Novikov, D. Podoprikhin, A. Osokin, and D. P. Vetrov. Tensorizing neural networks. Advances in Neural Information Processing Systems, 28, 2015. A. Novikov, P. Izmailov, V. Khrulkov, M. Figurnov, and I. V. Oseledets. Tensor train decomposition on tensorflow (t3f). J. Mach. Learn. Res., 21(30):1–7, 2020. I. V. Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Computing, 33 (5):2295–2317, 2011. N. Razin, A. Maman, and N. Cohen. Implicit regularization in tensor factorization. In International Conference on Machine Learning, pages 8913–8924. PMLR, 2021. M. Yin, Y. Sui, S. Liao, and B. Yuan. Towards efficient tensor decomposition-based dnn model compression with optimization framework. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10674–10683, 2021. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88042 | - |
| dc.description.abstract | 本論文的其中一個目標是探討Tensor Train模型壓縮法在醫學影像預測模型上的有效性。此外,我們還旨在澄清這種壓縮方法對壓縮模型之泛化能力的影響。為了評估Tensor Train模型壓縮的有效性,我們在兩個不同的數據集上進行了實驗,分別是chest X-ray dataset和low-grad glioma dataset (LGG)。 具體來說,我們對使用chest X-ray dataset訓練的模型中的dense layer進行了壓縮,並對使用LGG dataset訓練的U-Net模型中的convolution layer進行壓縮。值得注意的是,在chest X-ray dataset的實驗上,與模型的壓縮率相比,壓縮後的測試準確率損失幾乎可以忽略不計。據我們所知,目前尚無其他文獻將此模型壓縮技術應用於U-Net模型。至於泛化能力這方面的討論,我們采用Arora的Compression Framework來建立壓縮模型的泛化誤差與原始模型的訓練損失之間的定量關係。為了驗證這個泛化誤差上界的準確性,我們在MNIST數據集上進行了額外的實驗。這個實驗的結果顯示,儘管此泛化誤差上界和真實的測試誤差之間存在一段差距,但在fine-tune這個階段它們的整體行為是保持一致的。 | zh_TW |
| dc.description.abstract | This thesis primarily focuses on investigating the effectiveness of the Tensor Train model compression method on prediction models of medical image data sets. Additionally, we also aim to clarify how this compression technique impacts the generalization ability of the compressed models. To assess the effectiveness of the Tensor Train compression method, experiments were conducted on two distinct datasets: chest X-ray and low-grade glioma (LGG). Specifically, we applied compression to the dense layer in the models using chest X-ray dataset and the convolution layer in the U-Net model trained on LGG dataset. It is worth noting that in the experiment conducted on the chest X-ray dataset, the loss in testing accuracies after compression was minimal compared to the achieved compression ratio. To the best of our knowledge, there is no existing studies have explored the application of this model compression technique specifically on U-Net models. As for the issue of generalization ability, we adopt Arora's compression framework [Arora et al., 2018] to build a quantitative relationship between the generalization error of the compressed model and training loss of the original model. To validate the performance of this bound, we conducted an additional experiment on the MNIST dataset. Our findings reveal that although a discrepancy exists between the generalization bound and the true testing error, their overall behavior coincides during the fine-tuning phase. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-01T16:34:11Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-01T16:34:11Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i
Acknowledgements iii 摘要 v Abstract vii Contents ix List of Figures xi List of Tables xiii Chapter 1 Introduction 1 Chapter 2 Method 3 2.1 Tensor train decomposition and approximation ............ 3 2.2 TT decomposition for dense layer compression ............ 6 2.3 TT decomposition for convolution layer compression ......... 8 Chapter 3 A Generalization Bound for Compressed TT Model 9 3.1 Generalization bound .......................... 9 3.2 Demo example using MNIST dataset . . . . . . . . . . . . . . . . . 13 Chapter 4 Applications 17 4.1 Hardware and software setup . . . . . . . . . . . . . . . . . . . . . . 17 4.2 Chest X-ray (pneumonia) image classification with dense layer com pression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.2.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.2.2 Neural network model . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.2.3 Model compression and results . . . . . . . . . . . . . . . . . . . . 19 4.3 LGG image segmentation with convolution layer compression . . . . 20 4.3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.3.2 Neural network model . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Chapter 5 Concluding Remarks 27 References 29 Appendix A — Automatic differentiation and tensor calculus 31 Appendix B — Proofs of Theorem and Lemmas 35 B.1 Proof of Lemma A.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 35 B.2 Proof of Lemma 3.1.2 . . . . . . . . . . . . . . . . . . . . . . . . . 36 B.3 Proof of Theorem 3.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . 37 | - |
| dc.language.iso | en | - |
| dc.subject | 張量分解 | zh_TW |
| dc.subject | 影像分割 | zh_TW |
| dc.subject | 影像分類 | zh_TW |
| dc.subject | 張量分析 | zh_TW |
| dc.subject | 泛化誤差上界 | zh_TW |
| dc.subject | 模型壓縮 | zh_TW |
| dc.subject | 神經網路 | zh_TW |
| dc.subject | Model Compression | en |
| dc.subject | Tensor Train Decomposition | en |
| dc.subject | Image classification | en |
| dc.subject | Image segmentation | en |
| dc.subject | Generalization Bound | en |
| dc.subject | Tensor analysis | en |
| dc.subject | Neural Network | en |
| dc.title | 基於Tensor Train張量分解之神經網路壓縮及其在影像分類與分割上的應用 | zh_TW |
| dc.title | Neural Network Model Compression via Tensor Train Decomposition with Applications to Image Classification and Segmentation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳君厚;王偉仲;王紹宣 | zh_TW |
| dc.contributor.oralexamcommittee | Chun-Houh Chen;Wei-Chung Wang;Shao-Hsuan Wang | en |
| dc.subject.keyword | 張量分解,神經網路,模型壓縮,泛化誤差上界,張量分析,影像分類,影像分割, | zh_TW |
| dc.subject.keyword | Tensor Train Decomposition,Neural Network,Model Compression,Generalization Bound,Tensor analysis,Image classification,Image segmentation, | en |
| dc.relation.page | 37 | - |
| dc.identifier.doi | 10.6342/NTU202301310 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-07-07 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 應用數學科學研究所 | - |
| 顯示於系所單位: | 應用數學科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 2.34 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
