Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88020
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡克銓zh_TW
dc.contributor.advisorKeh-Chyuan Tsaien
dc.contributor.author林和毅zh_TW
dc.contributor.authorHo-Yi Linen
dc.date.accessioned2023-08-01T16:26:36Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-01-
dc.date.issued2023-
dc.date.submitted2023-06-26-
dc.identifier.citationAISC (2016). “Seismic Provisions for Structural Steel Buildings,” American Institute of Steel Construction.
Chen, C.C., Lai, C.L., and Lin, K.C. (2009). “Finite Element Analysis of Electro-Slag Welding for Diaphragms in Steel Box Column.” Proceedings, The Eleventh Taiwan-Korea-Japan Joint Seminar on Earthquake Engineering for Building Structures SEEBUS 2009, Kyoto, Japan, December 3-5, 2009.
D’Escata, Y., and Devaux, J.C. (1979). “Numerical Study of Initiation, Stable Crack Growth and Maximum Load with a Ductile Fracture Criterion Based on the Growth of Holes.” ASTM STP 668, American Society of Testing and Materials, Philadelphia, pp. 229-248.
Kanvinde, A. M. and Deierlein, G.G. (2004). “Micromechanical Simulation of Earthquake-Induced Fracture in Steel Structures.” Report No. BLUME-145, Stan-ford, California: The John A. Blume Earthquake Engineering Center, July.
Kanvinde, A. M. and Deierlein, G.G. (2006). “Void Growth Model and Stress Modified Critical Strain Model to Predict Ductile Fracture in Structural Steels.” Journal of Engineering Mechanics, ASCE/June 2006/1907.
Kanvinde, A. M. and Deierlein, G.G. (2007). “Cyclic Void Growth Model to Assess Ductile Fracture Initiation in Structural Steels due to Ultra Low Cycle Fatigue.” Journal of Engineering Mechanics, ASCE/June 2007/701.
Kiran, R., and Khandelwal, K. (2013). “A Micromechanical Model for Ductile Fracture Prediction in ASTM A992 Steels.” Engineering Fracture Mechanics, 102:101–117.
Kiran, R., and Khandelwal, K. (2014). “A Triaxiality and Lode Parameter Dependent Ductile Fracture Criterion.” Engineering Fracture Mechanics, 128:121–138.
Kiran, R., and Khandelwal, K. (2014). “Fast-To-Compute Weakly Coupled Ductile Fracture Model for Structural Steels” Journal of Structural Engineering, 140(6):04014018.
Kiran, R., and Khandelwal, K. (2015). “A Micromechanical Cyclic Void Growth Model for Ultra-Low Cycle Fatigue” International Journal of Fatigue, 70:24–37.
McClintock, F. A. (1968), “A Criterion for Ductile Fracture by the Growth of Holes,” Journal of Applied Mechanics, 35: 363-371.
Myers, A.T., Deierlein, G.G., and Kanvinde, A.M. (2009), “Testing and Probabilistic Simulation of Ductile Fracture Initiation in Structural Steel Components and Weldments.” Report No. BLUME-170, Stanford, California: The John A. Blume Earthquake Engineering Center, May.
Rice, J.R. and Tracey, D.M. (1969), “On the Ductile Enlargement of Voids in Triaxial Stress Fields,” Journal of the Mechanics and Physics of Solids, 17: 201-207.
Song, Y.H., Ishii, T., Harada, Y. and Morita, K. (2011), “Study on fracture behavior of electro-slag welded joints in beam-to-built-up box column connection.” Proceedings, The 6th International Symposium on Steel Structures, November 3-5, 2011, Seoul, Korea.
Tsai, C.Y., Tsai, K.C., Li, C.H., Wu, C.C., Lin, K.C., Jhuang, S.J., “Seismic fracture evaluation of diaphragm joints in welded beam-to-box column moment connections,” International Association for Earthquake Engineering, 10.1002/eqe.3293
張智星 (2004),「MATLAB 程式設計入門篇」,清蔚科技與鈦思科技共同出版。
吳家慶 (2005),「削切蓋板鋼骨梁柱接頭之耐震行為研究」,國立交通大學土木工程學系,碩士論文,周中哲教授指導。
林克強、莊勝智 (2011),電熔渣焊裝置。中華民國新型專利第100204073號。
謝欣倫 (2012),「鋼梁與箱型柱接合內橫隔板耐震設計研究」,國立台灣大學土木工程學系,碩士論文,蔡克銓教授指導。
林克強、莊勝智、張福全、張柏彥 (2008),「台灣典型鋼梁與箱型柱採梁翼切削或梁翼加蓋板抗彎接頭之破壞模式」,鋼結構耐震設計與分析研討會論文集,國家地震工程研究中心,研究報告NCREE-08-037,台南。
陳正偉 (2008),「電熱熔渣銲接應用於ASTM A992建築結構用鋼之研究」,國立台灣科技大學機械工程系,碩士論文,吳冀貽教授指導,蔡顯榮教授共同指導。
鄭元良、李台光、蔡克銓、汪家銘、林克強、莊勝智 (2011),「鋼骨梁柱接頭橫隔板耐震性能研究」,國家地震工程研究中心,內政部建築研究所委託研究報告。
吳忠哲 (2016),「鋼梁接箱型柱之內橫隔斷裂試驗與有限元素模型分析研究」,國立台灣大學土木工程學系,碩士論文,蔡克銓教授指導。
覃志光 (2017),「電熱熔渣焊及梁翼板偏心對SM570M-CHW鋼梁柱接頭耐震性能影響」,國立台灣大學土木工程學系,碩士論文,蔡克銓教授指導。
胡祐瑋 (2018),「高強度鋼梁翼板偏心與柱翼板厚度對電熱熔渣焊破壞效應」,國立台灣大學土木工程學系,碩士論文,蔡克銓教授指導。
吳忠哲、李昭賢、蔡青宜、林克強、莊勝智、蔡克銓 (2018),「鋼梁接箱型柱之內橫隔斷裂試驗與有限元素模型分析研究」,結構工程,第33卷,第4期。
黃昱竣 (2019),「高強度鋼箱型柱翼厚與橫隔梁翼交疊高對電熱熔渣焊破壞時機影響」,國立台灣大學土木工程學系,碩士論文,蔡克銓教授指導。
黃昱竣、胡祐瑋、覃志光、蔡青宜、李昭賢、莊勝智、林克強、蔡克銓 (2020),「SM570-CHW 高強度鋼箱型柱翼厚度與梁翼板高程偏心對電熱熔渣焊破壞效應」,結構工程,第35卷,第3期。
楊鈞堯 (2021),「電熱熔渣銲儲倉口形狀對其破壞時機之影響」,國立台灣大學土木工程學系,碩士論文,蔡克銓教授指導。
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88020-
dc.description.abstract鋼箱型柱因具雙強軸特性,廣泛用在鋼結構建築中。為傳遞梁端彎矩至柱構件,須在柱內配置橫隔板。常用電熱熔渣銲(Electro-Slag Welding, ESW)連接橫隔板與柱板,此工法效率高但高入熱量會改變銲道周圍母材的結晶排列。施工失誤或箱型柱兩向梁深不同時,常造成梁翼板與橫隔板的偏心,易在銲道周圍熱影響區(Heat Affected Zone, HAZ)與柱板間的初始縫隙(Initial Slit)發生脆性破壞。將ESW熔填池的截面形狀(儲倉口)從傳統矩形改為喇叭形,以提升韌性容量,熔透範圍增加之優點可勝過入熱量增加之缺點。本研究以SM570M-CHW高強度鋼,製作ESW試體元件以探討儲倉口形狀及柱翼板厚度對脆性破壞的影響。本研究設計兩種儲倉口形狀,以兩種內橫膈板厚度,兩種柱板厚度及不同之梁翼偏心,進行八組ESW元件之單向拉伸試驗。試驗結果顯示,在梁翼厚放大1.25倍且內橫隔板厚等同柱翼板厚時,梁翼板偏心量增加到1倍內隔板厚度,會於ESW處發生非預期之破壞;柱翼板厚度為1.6倍內隔板厚的情況下,梁翼板偏心量能增加到1.25倍內隔板厚度,試體足以乘載強度發展。證實使用較厚的柱翼可使脆性破壞發生在ESW銲道周圍的機會降低。另將儲倉口改為喇叭型、或提升內橫隔板厚度,可使ESW熔幅範圍提升,提供更多韌性,增加對梁翼偏心的容忍度,延後破壞時機。
本研究引用Kiran and Khandelwal於2015年提出之MM-CVGM破壞預測模型,採用楊鈞堯(2021)材料試驗所獲得的模型參數,再針對銲接區域製成之圓周刻痕試棒進行單向拉伸試驗,以獲得MM-CVGM模型中材料的破壞曲線及臨界值,本研究證實MM-CVGM模型可用在ESW元件單向受載的破壞預測。分析結果顯示,SM570M-CHW的HAZ材料與ESW材料相比,HAZ更容易累積塑性應變,但兩者具有相近的韌性容量。另從有限元素模型分析所得ESW元件破壞位置以及破裂路徑,比對試體力學行為與試驗後切片觀察,相互應證MM-CVGM與有限元素模型都具有高準確度。最後建議ESW儲倉口可考慮採喇叭形、且背襯板應加厚至30mm,若柱翼板厚大於1.6倍內隔板,梁翼偏心不宜高於1.25倍內隔板厚;若柱翼板厚等於梁翼板,梁翼偏心更不宜高於0.75倍內隔板厚。
zh_TW
dc.description.abstractSteel box columns are widely used in steel structures in Taiwan due to the strong axes in two directions. In order to effectively transfer the steel beam moment to the column, diaphragm plates are welded inside the box column at the beam flange elevations. Electro slag welding (ESW) process is commonly used to attach the diaphragms to the column. Although this process provides a high welding efficiency, the high thermal input will change the lattice orientation of the base metal. When there exists construction imperfection or the two framing beam depths are slightly different, eccentricity between beam flange and diaphragm may be presented. This situation could lead to unpredictable brittle fracture in heat affected zone (HAZ) and initial slit between ESW and column plate. The fusion zone can be increased by changing the ESW chamber from a rectangular to a flared cross section. The advantage of a flared ESW section may out-weigh the disadvantage of the increased thermal input. In this study, SM570M-CHW high strength steel is selected for the column plates made into a few of ESW components to investigate the effect of chamber geometry and column flange thickness. In order to quantify the effectiveness of predicting the ESW fractures, this study utilizes finite element model (FEM) analysis together with the micro-mechanical cyclic void growth model (MM-CVGM) proposed by Kiran and Khandelwal in 2015 to predict the crack initiation, location, and crack path in the welded beam-to-box column joints under monotonic tensile loading.
Eight ESW Components specimens were fabricated and tested. The key design parameters include two different chamber shapes, two diaphragm thicknesses, two column flange thicknesses with corresponding beam flange eccentricities. Test results show that when the thickness of column flange is equal to the diaphragm and the beam flange eccentricity exceed one time of diaphragm thickness, the component fails. When the thickness of column flange is 1.6 times as diaphragm and the beam flange eccentricity exceeds 1.25 times of diaphragm thickness, the component is strong enough for strength development. It demonstrates the benefits of increasing column flange thickness compensate the increase of beam flange eccentricity. While changing the ESW shape to the flared section, the fractures were highly delayed suggesting that the use of the flared ESW sections can significantly delay the crack initiation and enhance the ductility.
This study follows Yang (2021), the results of material property, through micro-mechanical models and FEMA, in order to build the material failure curve and find the critical values in the MM-CVGM. Monotonic Circumferential notched tensile (CNT) coupon tests were also conducted at the related regions to examine the efficiency of using MM-CVGM on ESW components. Analytical results indicate that the HAZ zone in the SM570M-CHW base metal is able to accumulate a larger plastic strain than that in the ESW zone. However, both two regions have almost the same ductility capacity. Test and analysis results confirm that SM570M-CHW can sustain the high thermal input of ESW process. The locations and paths of the fractures were investigated using FEMA. Comparing the analytical results to the test results of the eight ESW components, confirmed that both the MM-CVGM and the finite element model have highly satisfactory accuracy. Based on the research results, it’s recommended that the flared ESW chamber can be implemented and backings should be thickened up to 30mm. When the column flange thickness is greater than 1.6 times of diaphragm, it is suggested that the beam flange eccentricity be no greater than 1.25 times of diaphragm. When the thickness of the column flange is equal to the diaphragm, it’s recommended that the beam flange eccentricity be no greater than three-quarters of the diaphragm thickness.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-01T16:26:36Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-01T16:26:36Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 I
摘要 II
ABSTRACT IV
目錄 VI
表目錄 X
圖目錄 XI
照片目錄 XIV
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 2
1.3 研究方法 3
1.4 論文架構 4
第二章 文獻回顧 6
2.1 電熱熔渣銲(ESW)相關研究 6
2.1.1 林克強等(2008) 6
2.1.2 Chen et al.(2009) 6
2.1.3 鄭元良等(2011) 7
2.1.4 Chen and Liang(2011) 7
2.2 金屬韌性破壞預測模型(KANVINDE & DEIERLEIN, 2004) 8
2.2.1 VGM(2004) 9
2.2.2 SMCS(2004) 10
2.2.3 CVGM(2004) 10
2.2.4 DSPS(2004) 11
2.3 破壞預測模型之應用實例 13
2.3.1 吳忠哲(2016) 13
2.3.2 覃志光(2017) 14
2.3.3 胡祐瑋(2018) 14
2.3.4 黃昱竣(2019) 15
2.3.5 楊鈞堯(2021) 15
2.4 改良型金屬破壞預測模型 16
2.4.1 MM-VGM(2013) 17
2.4.2 WC-DFM(2014) 19
2.4.3 MM-CVGM(2015) 20
2.4.4 NLAM(2019) 22
第三章 MM-CVGM破壞預測與應用實例 24
3.1 模型適用範疇 24
3.2 代表性體積單元之有限元素分析 25
3.2.1 材料來源 25
3.2.2 圓周刻痕拉伸(CNT)試驗 26
3.2.3 有限元素模型 26
3.2.4 材料破壞曲線與破壞臨界值 29
3.3 過往梁柱接頭試驗之預測結果 30
3.3.1 楊鈞堯(2021) 30
第四章 ESW元件單向拉伸試驗 32
4.1 概述 32
4.2 ESW元件試體介紹 32
4.2.1 試體設計 32
4.2.2 試體製作 33
4.3 量測計畫 34
4.4 試驗過程 35
4.5 試驗結果與討論 38
第五章 試體材料試驗與分析 40
5.1 母材拉伸試驗 40
5.1.1 試片規劃 40
5.1.2 試驗結果 40
5.2 圓周刻痕單向拉伸試驗 41
5.2.1 試片切割計畫 41
5.2.2 圓周刻痕單向試驗(Circumferentially Notched Tensile) 42
5.3 圓周刻痕試片有限元素分析 43
5.4 代表性體積單元之有限元素分析 45
5.5 材料分析結果比較與討論 46
第六章 ESW元件有限元素分析 47
6.1 有限元素模型介紹 47
6.2 關鍵區域模擬方法 50
6.2.1 關鍵區域定義 50
6.2.2 電熱熔渣銲銲接區域模擬方法 51
6.2.3 初始縫隙模擬方法 52
6.3 有限元素分析結果 53
6.3.1 結果輸出 53
6.3.2 預測破壞時機 54
6.3.3 預測破壞時機與試驗結果之比較 58
第七章 結論 60
7.1 研究結論 60
7.2 相關建議 61
參考文獻 62
附錄一 箱型柱試體之超音波檢測報告 144
附錄二 試體用鋼之鋼板材證 151
-
dc.language.isozh_TW-
dc.title高強度鋼梁柱接頭之幾何及梁翼偏心與儲倉口形狀對電熱熔渣銲破壞時機影響zh_TW
dc.titleEffects of Eccentricity and Chamber Shape on ESW Failure among Geometry of SM570M-CHW Steel Beam-to-Column Jointsen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林克強;陳誠直zh_TW
dc.contributor.oralexamcommitteeKer-Chun Lin;Cheng-Chih Chenen
dc.subject.keywordESW元件,梁柱接頭,ESW電熱熔渣銲,SM570M-CHW高強度鋼,喇叭形儲倉口,有限元素模型分析,金屬破壞預測模型,zh_TW
dc.subject.keywordESW component,welded steel beam-to-column moment connection,column diaphragm plate,electro slag welding,FEMA,steel fracture model,en
dc.relation.page153-
dc.identifier.doi10.6342/NTU202301121-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-06-27-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf34.11 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved