Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88011
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐善慧zh_TW
dc.contributor.advisorShan-hui Hsuen
dc.contributor.author徐俊鵬zh_TW
dc.contributor.authorJunpeng Xuen
dc.date.accessioned2023-08-01T16:23:23Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-01-
dc.date.issued2023-
dc.date.submitted2023-07-06-
dc.identifier.citationChapter 1:
[1] U.P. Shinde, B. Yeon, B. Jeong, Recent progress of in situ formed gels for biomedical applications, Progress in polymer science 38(3-4) (2013) 672-701.
[2] Y. Xu, Y. Li, Q. Chen, L. Fu, L. Tao, Y. Wei, Injectable and self-healing chitosan hydrogel based on imine bonds: design and therapeutic applications, International Journal of Molecular Sciences 19(8) (2018) 2198.
[3] H. Wang, S.C. Heilshorn, Adaptable hydrogel networks with reversible linkages for tissue engineering, Advanced Materials 27(25) (2015) 3717-3736.
[4] F.-Y. Hsieh, L. Tao, Y. Wei, S.-h. Hsu, A novel biodegradable self-healing hydrogel to induce blood capillary formation, NPG Asia Materials 9(3) (2017) e363-e363.
[5] D. Zhang, B. Ren, Y. Zhang, L. Xu, Q. Huang, Y. He, X. Li, J. Wu, J. Yang, Q. Chen, Y. Chang, J. Zheng, From design to applications of stimuli-responsive hydrogel strain sensors, Journal of Materials Chemistry B 8(16) (2020) 3171-3191.
[6] L. Yu, J. Ding, Injectable hydrogels as unique biomedical materials, Chemical Society Reviews 37(8) (2008) 1473-1481.
[7] J. Xu, Y. Liu, S.-h. Hsu, Hydrogels Based on Schiff Base Linkages for Biomedical Applications, Molecules 24(16) (2019) 3005.
[8] C.S. McKay, M. Finn, Click chemistry in complex mixtures: bioorthogonal bioconjugation, Chemistry & biology 21(9) (2014) 1075-1101.
[9] Y. Liu, Y.-H. Hsu, A.P.-H. Huang, S.-h. Hsu, Semi-Interpenetrating Polymer Network of Hyaluronan and Chitosan Self-Healing Hydrogels for Central Nervous System Repair, ACS Applied Materials & Interfaces 12(36) (2020) 40108-40120.
[10] R. Trask, H.R. Williams, I. Bond, Self-healing polymer composites: mimicking nature to enhance performance, Bioinspiration & Biomimetics 2(1) (2007) P1.
[11] T.-W. Lin, S.-h. Hsu, Self-Healing Hydrogels and Cryogels from Biodegradable Polyurethane Nanoparticle Crosslinked Chitosan, Advanced Science 7(3) (2020) 1901388.
[12] S.-H. Lin, C.M. Papadakis, J.-J. Kang, J.-M. Lin, S.-h. Hsu, Injectable Phenolic-Chitosan Self-Healing Hydrogel with Hierarchical Micelle Architectures and Fast Adhesiveness, Chemistry of Materials 33(11) (2021) 3945-3958.
[13] C.-W. Wong, F.W. Pratiwi, P. Chen, C.-Y. Mou, S.-h. Hsu, Revealing the Phagosomal pH Regulation and Inflammation of Macrophages after Endocytosing Polyurethane Nanoparticles by A Ratiometric pH Nanosensor, Advanced Biology 5(1) (2021) 2000200.
[14] S. Khan, M.U. Minhas, M. Ahmad, M. Sohail, Self-assembled supramolecular thermoreversible β-cyclodextrin/ethylene glycol injectable hydrogels with difunctional Pluronic®127 as controlled delivery depot of curcumin. Development, characterization and in vitro evaluation, Journal of Biomaterials Science, Polymer Edition 29(1) (2018) 1-34.
[15] A.K. Gaharwar, M.S. Detamore, A. Khademhosseini, Emerging trends in biomaterials research, Annals of Biomedical Engineering 44(6) (2016) 1861-1862.
[16] L. Han, X. Lu, M. Wang, D. Gan, W. Deng, K. Wang, L. Fang, K. Liu, C.W. Chan, Y. Tang, A mussel‐inspired conductive, self‐adhesive, and self‐healable tough hydrogel as cell stimulators and implantable bioelectronics, Small 13(2) (2017) 1601916.
[17] Z. Deng, T. Hu, Q. Lei, J. He, P.X. Ma, B. Guo, Stimuli-responsive conductive nanocomposite hydrogels with high stretchability, self-healing, adhesiveness, and 3D printability for human motion sensing, ACS applied materials & interfaces 11(7) (2019) 6796-6808.
[18] K. Gilmore, A. Hodgson, B. Luan, C. Small, G. Wallace, Preparation of hydrogel/conducting polymer composites, Polymer Gels and Networks 2(2) (1994) 135-143.
[19] D. Mawad, A. Lauto, G.G. Wallace, Conductive polymer hydrogels, Polymeric hydrogels as smart biomaterials, Springer2016, pp. 19-44.
[20] B. Guo, P.X. Ma, Conducting polymers for tissue engineering, Biomacromolecules 19(6) (2018) 1764-1782.
[21] L. Jiang, Y. Wang, Z. Liu, C. Ma, H. Yan, N. Xu, F. Gang, X. Wang, L. Zhao, X. Sun, Three-dimensional printing and injectable conductive hydrogels for tissue engineering application, Tissue Engineering Part B: Reviews 25(5) (2019) 398-411.
[22] J. Xu, Y.-L. Tsai, S.-h. Hsu, Design Strategies of Conductive Hydrogel for Biomedical Applications, Molecules 25(22) (2020) 5296.
[23] M.A. Darabi, A. Khosrozadeh, R. Mbeleck, Y. Liu, Q. Chang, J. Jiang, J. Cai, Q. Wang, G. Luo, M. Xing, Skin‐inspired multifunctional autonomic‐intrinsic conductive self‐healing hydrogels with pressure sensitivity, stretchability, and 3D printability, Advanced Materials 29(31) (2017) 1700533.
[24] X. Zhao, P. Li, B. Guo, P.X. Ma, Antibacterial and conductive injectable hydrogels based on quaternized chitosan-graft-polyaniline/oxidized dextran for tissue engineering, Acta biomaterialia 26 (2015) 236-248.
[25] Y. Wang, X. Guo, R. Pan, D. Han, T. Chen, Z. Geng, Y. Xiong, Y. Chen, Electrodeposition of chitosan/gelatin/nanosilver: A new method for constructing biopolymer/nanoparticle composite films with conductivity and antibacterial activity, Materials Science and Engineering: C 53 (2015) 222-228.
[26] C.-T. Huang, L.K. Shrestha, K. Ariga, S.-h. Hsu, A graphene–polyurethane composite hydrogel as a potential bioink for 3D bioprinting and differentiation of neural stem cells, Journal of Materials Chemistry B 5(44) (2017) 8854-8864.
[27] S.R. Shin, C. Zihlmann, M. Akbari, P. Assawes, L. Cheung, K. Zhang, V. Manoharan, Y.S. Zhang, M. Yüksekkaya, K.t. Wan, Reduced graphene oxide‐gelMA hybrid hydrogels as scaffolds for cardiac tissue engineering, Small 12(27) (2016) 3677-3689.
[28] P. Baei, S. Jalili-Firoozinezhad, S. Rajabi-Zeleti, M. Tafazzoli-Shadpour, H. Baharvand, N. Aghdami, Electrically conductive gold nanoparticle-chitosan thermosensitive hydrogels for cardiac tissue engineering, Materials Science and Engineering: C 63 (2016) 131-141.
[29] T.-H. Lee, C.-T. Yen, S.-h. Hsu, Preparation of Polyurethane-Graphene Nanocomposite and Evaluation of Neurovascular Regeneration, ACS Biomaterials Science & Engineering 6(1) (2020) 597-609.
[30] T.H. Qazi, R. Rai, A.R. Boccaccini, Tissue engineering of electrically responsive tissues using polyaniline based polymers: A review, Biomaterials 35(33) (2014) 9068-9086.
[31] B. Guo, Z. Ma, L. Pan, Y. Shi, Properties of conductive polymer hydrogels and their application in sensors, Journal of Polymer Science Part B: Polymer Physics 57(23) (2019) 1606-1621.

Chapter 2:
[1] X. Gu, F. Ding, D.F. Williams, Neural tissue engineering options for peripheral nerve regeneration, Biomaterials 35(24) (2014) 6143-6156.
[2] Y. Wu, L. Wang, B. Guo, P.X. Ma, Interwoven aligned conductive nanofiber yarn/hydrogel composite scaffolds for engineered 3D cardiac anisotropy, ACS Nano 11(6) (2017) 5646-5659.
[3] Y. Wu, W. Ling, B. Guo, Y. Shao, P.X. Ma, Electroactive biodegradable polyurethane significantly enhanced Schwann cells myelin gene expression and neurotrophin secretion for peripheral nerve tissue engineering, Biomaterials 87 (2016) 18-31.
[4] M. Xie, L. Wang, B. Guo, Z. Wang, Y.E. Chen, P.X. Ma, Ductile electroactive biodegradable hyperbranched polylactide copolymers enhancing myoblast differentiation, Biomaterials 71 (2015) 158-167.
[5] J. Qu, X. Zhao, Y. Liang, Y. Xu, P.X. Ma, B. Guo, Degradable conductive injectable hydrogels as novel antibacterial, anti-oxidant wound dressings for wound healing, Chemical Engineering Journal 362 (2019) 548-560.
[6] M.A. Messerli, D.M. Graham, Extracellular Electrical Fields Direct Wound Healing and Regeneration, The Biological Bulletin 221(1) (2011) 79-92.
[7] L. Ghasemi-Mobarakeh, M.P. Prabhakaran, M. Morshed, M.H. Nasr-Esfahani, H. Baharvand, S. Kiani, S.S. Al-Deyab, S. Ramakrishna, Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering, Journal of Tissue Engineering and Regenerative Medicine 5(4) (2011) e17-e35.
[8] R. Dong, P.X. Ma, B. Guo, Conductive biomaterials for muscle tissue engineering, Biomaterials 229 (2020) 119584.
[9] B.S. Spearman, A.J. Hodge, J.L. Porter, J.G. Hardy, Z.D. Davis, T. Xu, X. Zhang, C.E. Schmidt, M.C. Hamilton, E.A. Lipke, Conductive interpenetrating networks of polypyrrole and polycaprolactone encourage electrophysiological development of cardiac cells, Acta Biomater. 28 (2015) 109-120.
[10] T.H. Qazi, R. Rai, A.R. Boccaccini, Tissue engineering of electrically responsive tissues using polyaniline based polymers: A review, Biomaterials 35(33) (2014) 9068-9086.
[11] C. Xu, S. Guan, S. Wang, W. Gong, T. Liu, X. Ma, C. Sun, Biodegradable and electroconductive poly(3,4-ethylenedioxythiophene)/carboxymethyl chitosan hydrogels for neural tissue engineering, Materials Science and Engineering: C 84 (2018) 32-43.
[12] B.C. Thompson, S.E. Moulton, R.T. Richardson, G.G. Wallace, Effect of the dopant anion in polypyrrole on nerve growth and release of a neurotrophic protein, Biomaterials 32(15) (2011) 3822-3831.
[13] Z. Deng, Y. Guo, X. Zhao, P.X. Ma, B. Guo, Multifunctional stimuli-responsive hydrogels with self-healing, high conductivity, and rapid recovery through host–guest interactions, Chemistry of Materials 30(5) (2018) 1729-1742.
[14] M.A. Darabi, A. Khosrozadeh, R. Mbeleck, Y. Liu, Q. Chang, J. Jiang, J. Cai, Q. Wang, G. Luo, M. Xing, Skin-Inspired multifunctional autonomic-intrinsic conductive self-healing hydrogels with pressure sensitivity, stretchability, and 3D printability, Advanced Materials 29(31) (2017) 1700533.
[15] B. Bideau, L. Cherpozat, E. Loranger, C. Daneault, Conductive nanocomposites based on TEMPO-oxidized cellulose and poly(N-3-aminopropylpyrrole-co-pyrrole), Industrial Crops and Products 93 (2016) 136-141.
[16] K. Saha, A.J. Keung, E.F. Irwin, Y. Li, L. Little, D.V. Schaffer, K.E. Healy, Substrate Modulus Directs Neural Stem Cell Behavior, Biophysical Journal 95(9) (2008) 4426-4438.
[17] D.A. Gyles, L.D. Castro, J.O.C. Silva, R.M. Ribeiro-Costa, A review of the designs and prominent biomedical advances of natural and synthetic hydrogel formulations, Eur. Polym. J. 88 (2017) 373-392.
[18] F. Lin, R. Zheng, J. Chen, W. Su, B. Dong, C. Lin, B. Huang, B. Lu, Microfibrillated cellulose enhancement to mechanical and conductive properties of biocompatible hydrogels, Carbohydrate Polymers 205 (2019) 244-254.
[19] Z. Deng, H. Wang, P.X. Ma, B. Guo, Self-healing conductive hydrogels: preparation, properties and applications, Nanoscale 12(3) (2020) 1224-1246.
[20] J. Liu, F. Cheng, H. Grénman, S. Spoljaric, J. Seppälä, J. E. Eriksson, S. Willför, C. Xu, Development of nanocellulose scaffolds with tunable structures to support 3D cell culture, Carbohydrate Polymers 148 (2016) 259-271.
[21] B. Guo, J. Qu, X. Zhao, M. Zhang, Degradable conductive self-healing hydrogels based on dextran-graft-tetraaniline and N-carboxyethyl chitosan as injectable carriers for myoblast cell therapy and muscle regeneration, Acta Biomaterialia 84 (2019) 180-193.
[22] J. Qu, X. Zhao, P.X. Ma, B. Guo, pH-responsive self-healing injectable hydrogel based on N-carboxyethyl chitosan for hepatocellular carcinoma therapy, Acta Biomater 58 (2017) 168-180.
[23] S. Yang, Q. Dong, H. Yang, X. Liu, S. Gu, Y. Zhou, W. Xu, N -carboxyethyl chitosan fibers prepared as potential use in tissue engineering, Int. J. Biol. Macromol. 82 (2015) 1018-1022.
[24] Y. Liu, S.-h. Hsu, Synthesis and Biomedical Applications of Self-healing Hydrogels, Frontiers in Chemistry 6(449) (2018).
[25] B. Yang, Y. Zhang, X. Zhang, L. Tao, S. Li, Y. Wei, Facilely prepared inexpensive and biocompatible self-healing hydrogel: a new injectable cell therapy carrier, Polymer Chemistry 3(12) (2012) 3235-3238.
[26] Y. Zhang, L. Tao, S. Li, Y. Wei, Synthesis of Multiresponsive and Dynamic Chitosan-Based Hydrogels for Controlled Release of Bioactive Molecules, Biomacromolecules 12(8) (2011) 2894-2901.
[27] T.-C. Tseng, L. Tao, F.-Y. Hsieh, Y. Wei, I.-M. Chiu, S.-h. Hsu, An Injectable, Self-Healing Hydrogel to Repair the Central Nervous System, Advanced Materials 27(23) (2015) 3518-3524.
[28] J. Ulbricht, R. Jordan, R. Luxenhofer, On the biodegradability of polyethylene glycol, polypeptoids and poly(2-oxazoline)s, Biomaterials 35(17) (2014) 4848-4861.
[29] T.-W. Lin, S.-h. Hsu, Self-Healing Hydrogels and Cryogels from Biodegradable Polyurethane Nanoparticle Crosslinked Chitosan, Advanced Science 7(3) (2020) 1901388.
[30] Y.-J. Lin, W.-T. Chuang, S.-h. Hsu, Gelation mechanism and structural dynamics of chitosan self-healing hydrogels by in situ SAXS and coherent X-ray scattering, ACS Macro Letters 8(11) (2019) 1449-1455.
[31] R. Khorramirouz, J.L. Go, C. Noble, S. Jana, E. Maxson, A. Lerman, M.D. Young, A novel surgical technique for a rat subcutaneous implantation of a tissue engineered scaffold, Acta Histochemica 120(3) (2018) 282-291.
[32] T.-H. Lee, C.-T. Yen, S.-h. Hsu, Preparation of Polyurethane-Graphene Nanocomposite and Evaluation of Neurovascular Regeneration, ACS Biomaterials Science & Engineering 6(1) (2020) 597-609.
[33] K.-C. Cheng, C.-F. Huang, Y. Wei, S.-h. Hsu, Novel chitosan–cellulose nanofiber self-healing hydrogels to correlate self-healing properties of hydrogels with neural regeneration effects, NPG Asia Materials 11(1) (2019) 25.
[34] C.-C. Wu, T.-H. Tsai, C. Chang, T.-T. Lee, C. Lin, I.H.-J. Cheng, M.-C. Sun, Y.-J. Chuang, B.-S. Chen, On the crucial cerebellar wound healing-related pathways and their cross-talks after traumatic brain injury in danio rerio, PLOS ONE 9(6) (2014) e97902.
[35] J. Lambard, P. Lesieur, T. Zemb, A triple axis double crystal multiple reflection camera for ultra small angle X-ray scattering, Journal de Physique I 2(6) (1992) 1191-1213.
[36] T. Li, A.J. Senesi, B. Lee, Small Angle X-ray Scattering for Nanoparticle Research, Chemical Reviews 116(18) (2016) 11128-11180.
[37] L. Matějka, J. Pleštil, K. Dušek, Structure evolution in epoxy–silica hybrids: sol–gel process, Journal of Non-Crystalline Solids 226(1) (1998) 114-121.
[38] M. Guvendiren, S. Fung, J. Kohn, C. De Maria, F. Montemurro, G. Vozzi, The control of stem cell morphology and differentiation using three-dimensional printed scaffold architecture, MRS Commun 7(3) (2017) 383-390.
[39] Y.-J. Huang, K.-C. Hung, H.-S. Hung, S.-h. Hsu, Modulation of Macrophage Phenotype by Biodegradable Polyurethane Nanoparticles: Possible Relation between Macrophage Polarization and Immune Response of Nanoparticles, ACS Applied Materials & Interfaces 10(23) (2018) 19436-19448.
[40] T. Xu, M. Chu, Y. Wu, J. Liu, B. Chi, H. Xu, M. Wan, C. Mao, Safer cables based on advanced materials with a self-healing technique that can be directly powered off and restored easily at any time, New Journal of Chemistry 42(7) (2018) 4803-4806.
[41] H. Sashiwa, N. Yamamori, Y. Ichinose, J. Sunamoto, S.-i. Aiba, Michael reaction of chitosan with various acryl reagents in water, Biomacromolecules 4(5) (2003) 1250-1254.
[42] R. Li, J. Chen, T. Zhou, J. Pei, Optimal synthetic conditions for oxetane-substituted chitosan (OXE-CHI) and polyethylene glycol (PEG) network self-healing agent, Materials Express 7(5) (2017) 411-416.
[43] H. Xu, J.M. Holzwarth, Y. Yan, P. Xu, H. Zheng, Y. Yin, S. Li, P.X. Ma, Conductive PPY/PDLLA conduit for peripheral nerve regeneration, Biomaterials 35(1) (2014) 225-235.
[44] A. Béduer, T. Braschler, O. Peric, G.E. Fantner, S. Mosser, P.C. Fraering, S. Benchérif, D.J. Mooney, P. Renaud, A compressible scaffold for minimally invasive delivery of large intact neuronal networks, Advanced Healthcare Materials 4(2) (2015) 301-312.
[45] B. Sun, T. Wu, J. Wang, D. Li, J. Wang, Q. Gao, M.A. Bhutto, H. El-Hamshary, S.S. Al-Deyab, X. Mo, Polypyrrole-coated poly(l-lactic acid-co-ε-caprolactone)/silk fibroin nanofibrous membranes promoting neural cell proliferation and differentiation with electrical stimulation, Journal of Materials Chemistry B 4(41) (2016) 6670-6679.
[46] Y. Bu, H.-X. Xu, X. Li, W.-J. Xu, Y.-x. Yin, H.-l. Dai, X.-b. Wang, Z.-J. Huang, P.-H. Xu, A conductive sodium alginate and carboxymethyl chitosan hydrogel doped with polypyrrole for peripheral nerve regeneration, RSC Advances 8(20) (2018) 10806-10817.
[47] Y.-J. Ren, H. Zhang, H. Huang, X.-M. Wang, Z.-Y. Zhou, F.-Z. Cui, Y.-H. An, In vitro behavior of neural stem cells in response to different chemical functional groups, Biomaterials 30(6) (2009) 1036-1044.
[48] Y. Yang, M. Liu, Y. Gu, S. Lin, F. Ding, X. Gu, Effect of chitooligosaccharide on neuronal differentiation of PC‐12 cells, Cell biology international 33(3) (2009) 352-356.
[49] M. Jiang, X. Zhuge, Y. Yang, X. Gu, F. Ding, The promotion of peripheral nerve regeneration by chitooligosaccharides in the rat nerve crush injury model, Neuroscience letters 454(3) (2009) 239-243.
[50] R. Zhu, Z. Sun, C. Li, S. Ramakrishna, K. Chiu, L. He, Electrical stimulation affects neural stem cell fate and function in vitro, Experimental Neurology 319 (2019) 112963.
[51] E. Stewart, N.R. Kobayashi, M.J. Higgins, A.F. Quigley, S. Jamali, S.E. Moulton, R.M.I. Kapsa, G.G. Wallace, J.M. Crook, Electrical stimulation using conductive polymer polypyrrole promotes differentiation of human neural stem cells: a biocompatible platform for translational neural tissue engineering, Tissue Engineering Part C: Methods 21(4) (2015) 385-393.
[52] Z. Deng, T. Hu, Q. Lei, J. He, P.X. Ma, B. Guo, Stimuli-responsive conductive nanocomposite hydrogels with high stretchability, self-healing, adhesiveness, and 3D printability for human motion sensing, ACS Applied Materials & Interfaces 11(7) (2019) 6796-6808.
[53] A. Hasan, M. Morshed, A. Memic, S. Hassan, T.J. Webster, H.E.-S. Marei, Nanoparticles in tissue engineering: applications, challenges and prospects, International journal of nanomedicine 13 (2018) 5637.
[54] T.O. Socarras, A.C. Vasconcelos, P.P. Campos, N.B. Pereira, J.P. Souza, S.P. Andrade, Foreign body response to subcutaneous implants in diabetic rats, PloS one 9(11) (2014) e110945.
[55] J.M. Morais, F. Papadimitrakopoulos, D.J. Burgess, Biomaterials/tissue interactions: possible solutions to overcome foreign body response, The AAPS journal 12(2) (2010) 188-196.
[56] T.A. Hamilton, C. Zhao, P.G. Pavicic Jr, S. Datta, Myeloid colony-stimulating factors as regulators of macrophage polarization, Frontiers in immunology 5 (2014) 554.
[57] Y.-J. Huang, K.-C. Hung, F.-Y. Hsieh, S.-h. Hsu, Carboxyl-functionalized polyurethane nanoparticles with immunosuppressive properties as a new type of anti-inflammatory platform, Nanoscale 7(48) (2015) 20352-20364.
[58] S.-H. Hsiao, S.-h. Hsu, Synthesis and Characterization of Dual Stimuli-Sensitive Biodegradable Polyurethane Soft Hydrogels for 3D Cell-Laden Bioprinting, ACS Applied Materials & Interfaces 10(35) (2018) 29273-29287.
[59] R. Bao, B. Tan, S. Liang, N. Zhang, W. Wang, W. Liu, A π-π conjugation-containing soft and conductive injectable polymer hydrogel highly efficiently rebuilds cardiac function after myocardial infarction, Biomaterials 122 (2017) 63-71.
[60] T. Wu, C. Cui, Y. Huang, Y. Liu, C. Fan, X. Han, Y. Yang, Z. Xu, B. Liu, G. Fan, W. Liu, Coadministration of an adhesive conductive hydrogel patch and an injectable hydrogel to treat myocardial infarction, ACS Applied Materials & Interfaces 12(2) (2020) 2039-2048.
[61] L. Zhou, L. Fan, X. Yi, Z. Zhou, C. Liu, R. Fu, C. Dai, Z. Wang, X. Chen, P. Yu, D. Chen, G. Tan, Q. Wang, C. Ning, Soft Conducting Polymer Hydrogels Cross-Linked and Doped by Tannic Acid for Spinal Cord Injury Repair, ACS Nano 12(11) (2018) 10957-10967.

Chapter 3:
[1] T. Nezakati, A. Seifalian, A. Tan, A.M. Seifalian, Conductive Polymers: Opportunities and Challenges in Biomedical Applications, Chemical Reviews 118(14) (2018) 6766-6843.
[2] J. Xu, Y.-L. Tsai, S.-h. Hsu, Design Strategies of Conductive Hydrogel for Biomedical Applications, Molecules 25(22) (2020) 5296.
[3] A. Noreen, K.M. Zia, M. Zuber, S. Tabasum, A.F. Zahoor, Bio-based polyurethane: An efficient and environment friendly coating systems: A review, Progress in Organic Coatings 91 (2016) 25-32.
[4] Y. Zhou, R. Azumi, S. Shimada, A highly durable, stretchable, transparent and conductive carbon nanotube–polymeric acid hybrid film, Nanoscale 11(9) (2019) 3804-3813.
[5] E. Avcu, F.E. Baştan, H.Z. Abdullah, M.A.U. Rehman, Y.Y. Avcu, A.R. Boccaccini, Electrophoretic deposition of chitosan-based composite coatings for biomedical applications: A review, Progress in Materials Science 103 (2019) 69-108.
[6] S. Kim, L.K. Jang, H.S. Park, J.Y. Lee, Electrochemical deposition of conductive and adhesive polypyrrole-dopamine films, Scientific reports 6(1) (2016) 1-8.
[7] J.Y. Lam, C.C. Shih, W.Y. Lee, C.C. Chueh, G.W. Jang, C.J. Huang, S.H. Tung, W.C. Chen, Bio‐Based Transparent Conductive Film Consisting of Polyethylene Furanoate and Silver Nanowires for Flexible Optoelectronic Devices, Macromolecular Rapid Communications 39(13) (2018) 1800271.
[8] B.J. Black, M. Ecker, A. Stiller, R. Rihani, V.R. Danda, I. Reed, W.E. Voit, J.J. Pancrazio, In vitro compatibility testing of thiol-ene/acrylate-based shape memory polymers for use in implantable neural interfaces, Journal of Biomedical Materials Research Part A 106(11) (2018) 2891-2898.
[9] J.-G. Wu, J.-H. Chen, K.-T. Liu, S.-C. Luo, Engineering antifouling conducting polymers for modern biomedical applications, ACS applied materials & interfaces 11(24) (2019) 21294-21307.
[10] B. Zhou, M. Su, D. Yang, G. Han, Y. Feng, B. Wang, J. Ma, J. Ma, C. Liu, C. Shen, Flexible MXene/Silver Nanowire-Based Transparent Conductive Film with Electromagnetic Interference Shielding and Electro-Photo-Thermal Performance, ACS Applied Materials & Interfaces 12(36) (2020) 40859-40869.
[11] S.-h. Hsu, W.-C. Chen, Improved cell adhesion by plasma-induced grafting of l-lactide onto polyurethane surface, Biomaterials 21(4) (2000) 359-367.
[12] J. Xu, S.P. McCarthy, R.A. Gross, D.L. Kaplan, Chitosan Film Acylation and Effects on Biodegradability, Macromolecules 29(10) (1996) 3436-3440.
[13] M. Joshi, B. Adak, B. Butola, Polyurethane nanocomposite based gas barrier films, membranes and coatings: A review on synthesis, characterization and potential applications, Progress in Materials Science 97 (2018) 230-282.
[14] H. Yang, B. Yu, P. Song, C. Maluk, H. Wang, Surface-coating engineering for flame retardant flexible polyurethane foams: A critical review, Composites Part B: Engineering 176 (2019) 107185.
[15] S.A.G. Thangavelu, A. Murali, M. Sharanya, S.N. Jaisankar, A.B. Mandal, Studies on biodegradable polyurethane-SWCNTs nanocomposite films by covalent approach: Physicochemical, electric and mechanical properties, Applied Surface Science 449 (2018) 745-754.
[16] H. Zhu, Y. Yang, A. Sheng, H. Duan, G. Zhao, Y. Liu, Layered structural design of flexible waterborne polyurethane conductive film for excellent electromagnetic interference shielding and low microwave reflectivity, Applied Surface Science 469 (2019) 1-9.
[17] T.-H. Lee, C.-T. Yen, S.-h. Hsu, Preparation of Polyurethane-Graphene Nanocomposite and Evaluation of Neurovascular Regeneration, ACS Biomaterials Science & Engineering 6(1) (2020) 597-609.
[18] C.-W. Ou, C.-H. Su, U.-S. Jeng, S.-h. Hsu, Characterization of biodegradable polyurethane nanoparticles and thermally induced self-assembly in water dispersion, ACS applied materials & interfaces 6(8) (2014) 5685-5694.
[19] S.-H. Hsiao, S.-h. Hsu, Synthesis and Characterization of Dual Stimuli-Sensitive Biodegradable Polyurethane Soft Hydrogels for 3D Cell-Laden Bioprinting, ACS Applied Materials & Interfaces 10(35) (2018) 29273-29287.
[20] T.-W. Lin, S.-h. Hsu, Self-Healing Hydrogels and Cryogels from Biodegradable Polyurethane Nanoparticle Crosslinked Chitosan, Advanced Science 7(3) (2020) 1901388.
[21] Z. Shi, X. Gao, M.W. Ullah, S. Li, Q. Wang, G. Yang, Electroconductive natural polymer-based hydrogels, Biomaterials 111 (2016) 40-54.
[22] J. Xu, Y. Liu, S.-h. Hsu, Hydrogels Based on Schiff Base Linkages for Biomedical Applications, Molecules 24(16) (2019) 3005.
[23] J. Qu, X. Zhao, Y. Liang, Y. Xu, P.X. Ma, B. Guo, Degradable conductive injectable hydrogels as novel antibacterial, anti-oxidant wound dressings for wound healing, Chemical Engineering Journal 362 (2019) 548-560.
[24] T.-C. Tseng, L. Tao, F.-Y. Hsieh, Y. Wei, I.-M. Chiu, S.-h. Hsu, An Injectable, Self-Healing Hydrogel to Repair the Central Nervous System, Advanced Materials 27(23) (2015) 3518-3524.
[25] S. Banerjee, B. Bagchi, S. Bhandary, A. Kool, N.A. Hoque, P. Biswas, K. Pal, P. Thakur, K. Das, P. Karmakar, Antimicrobial and biocompatible fluorescent hydroxyapatite-chitosan nanocomposite films for biomedical applications, Colloids and Surfaces B: Biointerfaces 171 (2018) 300-307.
[26] J. Huang, J. Qin, P. Zhang, X. Chen, X. You, F. Zhang, B. Zuo, M. Yao, Facile preparation of a strong chitosan-silk biocomposite film, Carbohydrate polymers 229 (2020) 115515.
[27] Kenry, B. Liu, Recent advances in biodegradable conducting polymers and their biomedical applications, Biomacromolecules 19(6) (2018) 1783-1803.
[28] J. Xu, C.-W. Wong, S.-h. Hsu, An Injectable, Electroconductive Hydrogel/Scaffold for Neural Repair and Motion Sensing, Chemistry of Materials 32(24) (2020) 10407–10422.
[29] Y.-J. Lin, W.-T. Chuang, S.-h. Hsu, Gelation mechanism and structural dynamics of chitosan self-healing hydrogels by in situ SAXS and coherent X-ray scattering, ACS Macro Letters 8(11) (2019) 1449-1455.
[30] M.A. Darabi, A. Khosrozadeh, R. Mbeleck, Y. Liu, Q. Chang, J. Jiang, J. Cai, Q. Wang, G. Luo, M. Xing, Skin-Inspired multifunctional autonomic-intrinsic conductive self-healing hydrogels with pressure sensitivity, stretchability, and 3D printability, Advanced Materials 29(31) (2017) 1700533.
[31] T. Patricio, P. Bártolo, Thermal stability of PCL/PLA blends produced by physical blending process, Procedia engineering 59 (2013) 292-297.
[32] M.A. Woodruff, D.W. Hutmacher, The return of a forgotten polymer—Polycaprolactone in the 21st century, Progress in Polymer Science 35(10) (2010) 1217-1256.
[33] Z. Deng, Y. Guo, X. Zhao, P.X. Ma, B. Guo, Multifunctional stimuli-responsive hydrogels with self-healing, high conductivity, and rapid recovery through host–guest interactions, Chemistry of Materials 30(5) (2018) 1729-1742.
[34] B. Sun, T. Wu, J. Wang, D. Li, J. Wang, Q. Gao, M.A. Bhutto, H. El-Hamshary, S.S. Al-Deyab, X. Mo, Polypyrrole-coated poly(l-lactic acid-co-ε-caprolactone)/silk fibroin nanofibrous membranes promoting neural cell proliferation and differentiation with electrical stimulation, Journal of Materials Chemistry B 4(41) (2016) 6670-6679.
[35] Y. Bu, H.-X. Xu, X. Li, W.-J. Xu, Y.-x. Yin, H.-l. Dai, X.-b. Wang, Z.-J. Huang, P.-H. Xu, A conductive sodium alginate and carboxymethyl chitosan hydrogel doped with polypyrrole for peripheral nerve regeneration, RSC Advances 8(20) (2018) 10806-10817.
[36] B. Fu, B. Cheng, X. Bao, Z. Wang, Y. Shangguan, Q. Hu, Self-healing and conductivity of chitosan-based hydrogels formed by the migration of ferric ions, Journal of Applied Polymer Science 136(34) (2019) 47885.
[37] Y. Guo, J. Bae, Z. Fang, P. Li, F. Zhao, G. Yu, Hydrogels and Hydrogel-Derived Materials for Energy and Water Sustainability, Chemical Reviews 120(15) (2020) 7642-7707.
[38] H.G. Xie, J.N. Zheng, X.X. Li, X.D. Liu, J. Zhu, F. Wang, W.Y. Xie, X.J. Ma, Effect of Surface Morphology and Charge on the Amount and Conformation of Fibrinogen Adsorbed onto Alginate/Chitosan Microcapsules, Langmuir 26(8) (2010) 5587-5594.
[39] W. Zhang, G. Li, Y. Fang, X. Wang, Maleic anhydride surface-modification of crosslinked chitosan membrane and its pervaporation performance, Journal of Membrane Science 295(1) (2007) 130-138.
[40] T.W. Chen, S.J. Chang, G.C.-C. Niu, Y.T. Hsu, S.M. Kuo, Alginate-coated chitosan membrane for guided tissue regeneration, Journal of Applied Polymer Science 102(5) (2006) 4528-4534.
[41] W. Fu, Z. Liu, B. Feng, R. Hu, X. He, H. Wang, M. Yin, H. Huang, H. Zhang, W. Wang, Electrospun gelatin/PCL and collagen/PLCL scaffolds for vascular tissue engineering, International journal of nanomedicine 9 (2014) 2335.
[42] Y.-c. Chien, W.-T. Chuang, U.-S. Jeng, S.-h. Hsu, Preparation, characterization, and mechanism for biodegradable and biocompatible polyurethane shape memory elastomers, ACS applied materials & interfaces 9(6) (2017) 5419-5429.
[43] J. Kumirska, M. Czerwicka, Z. Kaczyński, A. Bychowska, K. Brzozowski, J. Thöming, P. Stepnowski, Application of spectroscopic methods for structural analysis of chitin and chitosan, Marine drugs 8(5) (2010) 1567-1636.
[44] T.Q. Trung, T.M.L. Dang, S. Ramasundaram, P.T. Toi, S.Y. Park, N.-E. Lee, A Stretchable Strain-Insensitive Temperature Sensor Based on Free-Standing Elastomeric Composite Fibers for On-Body Monitoring of Skin Temperature, ACS Applied Materials & Interfaces 11(2) (2019) 2317-2327.
[45] S.-h. Hsu, Y. Lin, T.-C. Lin, T.-C. Tseng, H.-T. Lee, Y.-C. Liao, I.-M. Chiu, Spheroid formation from neural stem cells on chitosan membranes, J. Med. Biol. Eng 32(2) (2012) 85-90.
[46] Y.-J. Ren, H. Zhang, H. Huang, X.-M. Wang, Z.-Y. Zhou, F.-Z. Cui, Y.-H. An, In vitro behavior of neural stem cells in response to different chemical functional groups, Biomaterials 30(6) (2009) 1036-1044.
[47] Y. Yang, M. Liu, Y. Gu, S. Lin, F. Ding, X. Gu, Effect of chitooligosaccharide on neuronal differentiation of PC‐12 cells, Cell biology international 33(3) (2009) 352-356.
[48] E. Stewart, N.R. Kobayashi, M.J. Higgins, A.F. Quigley, S. Jamali, S.E. Moulton, R.M.I. Kapsa, G.G. Wallace, J.M. Crook, Electrical stimulation using conductive polymer polypyrrole promotes differentiation of human neural stem cells: a biocompatible platform for translational neural tissue engineering, Tissue Engineering Part C: Methods 21(4) (2015) 385-393.

Chapter 4:
[1] M. Saeedi, M. Eslamifar, K. Khezri, S.M. Dizaj, Applications of nanotechnology in drug delivery to the central nervous system, Biomedicine & Pharmacotherapy 111 (2019) 666-675.
[2] O. Hornykiewicz, Biochemical pathophysiology of Parkinson's disease, Parkinson's disease. Advances in Neurology 45 (1986) 19-34.
[3] B. Pakkenberg, A. Møller, H.J. Gundersen, A. Mouritzen Dam, H. Pakkenberg, The absolute number of nerve cells in substantia nigra in normal subjects and in patients with Parkinson's disease estimated with an unbiased stereological method, Journal of Neurology, Neurosurgery & Psychiatry 54(1) (1991) 30.
[4] C. Rodríguez-Nogales, E. Garbayo, M.M. Carmona-Abellán, M.R. Luquin, M.J. Blanco-Prieto, Brain aging and Parkinson’s disease: New therapeutic approaches using drug delivery systems, Maturitas 84 (2016) 25-31.
[5] W. Dauer, S. Przedborski, Parkinson's Disease: Mechanisms and Models, Neuron 39(6) (2003) 889-909.
[6] D.T. Dexter, P. Jenner, Parkinson disease: from pathology to molecular disease mechanisms, Free Radical Biology and Medicine 62 (2013) 132-144.
[7] N. Moriarty, C.L. Parish, E. Dowd, Primary tissue for cellular brain repair in Parkinson's disease: Promise, problems and the potential of biomaterials, European Journal of Neuroscience 49(4) (2019) 472-486.
[8] N. Moriarty, S. Cabré, V. Alamilla, A. Pandit, E. Dowd, Encapsulation of young donor age dopaminergic grafts in a GDNF-loaded collagen hydrogel further increases their survival, reinnervation, and functional efficacy after intrastriatal transplantation in hemi-Parkinsonian rats, European Journal of Neuroscience 49(4) (2019) 487-496.
[9] J. Li, D.J. Mooney, Designing hydrogels for controlled drug delivery, Nature Reviews Materials 1(12) (2016) 16071.
[10] J. Xu, Y. Liu, S.-h. Hsu, Hydrogels Based on Schiff Base Linkages for Biomedical Applications, Molecules 24(16) (2019) 3005.
[11] M. Uz, S.K. Mallapragada, Conductive Polymers and Hydrogels for Neural Tissue Engineering, Journal of the Indian Institute of Science 99(3) (2019) 489-510.
[12] J. Xu, Y.-L. Tsai, S.-h. Hsu, Design Strategies of Conductive Hydrogel for Biomedical Applications, Molecules 25(22) (2020) 5296.
[13] J. Xu, C.-W. Wong, S.-h. Hsu, An Injectable, Electroconductive Hydrogel/Scaffold for Neural Repair and Motion Sensing, Chemistry of Materials 32(24) (2020) 10407–10422.
[14] K. Zhang, J. Li, J. Jin, J. Dong, L. Li, B. Xue, W. Wang, Q. Jiang, Y. Cao, Injectable, anti-inflammatory and conductive hydrogels based on graphene oxide and diacerein-terminated four-armed polyethylene glycol for spinal cord injury repair, Materials & Design 196 (2020) 109092.
[15] A.Y. Abramov, T.K. Smulders-Srinivasan, D.M. Kirby, R. Acin-Perez, J.A. Enriquez, R.N. Lightowlers, M.R. Duchen, D.M. Turnbull, Mechanism of neurodegeneration of neurons with mitochondrial DNA mutations, Brain 133(3) (2010) 797-807.
[16] V. Dias, E. Junn, M.M. Mouradian, The Role of Oxidative Stress in Parkinson's Disease, Journal of Parkinson's Disease 3 (2013) 461-491.
[17] A. N. Kolodkin, R.P. Sharma, A.M. Colangelo, A. Ignatenko, F. Martorana, D. Jennen, J.J. Briedé, N. Brady, M. Barberis, T.D.G.A. Mondeel, M. Papa, V. Kumar, B. Peters, A. Skupin, L. Alberghina, R. Balling, H.V. Westerhoff, ROS networks: designs, aging, Parkinson’s disease and precision therapies, npj Systems Biology and Applications 6(1) (2020) 34.
[18] C.H. Ramamurthy, M. Padma, I.D. mariya samadanam, R. Mareeswaran, A. Suyavaran, M.S. Kumar, K. Premkumar, C. Thirunavukkarasu, The extra cellular synthesis of gold and silver nanoparticles and their free radical scavenging and antibacterial properties, Colloids and Surfaces B: Biointerfaces 102 (2013) 808-815.
[19] W. Xia, H. Xue, J. Wang, T. Wang, L. Song, H. Guo, X. Fan, H. Gong, J. He, Functionlized graphene serving as free radical scavenger and corrosion protection in gamma-irradiated epoxy composites, Carbon 101 (2016) 315-323.
[20] V.V. Sumbayev, I.M. Yasinska, C.P. Garcia, D. Gilliland, G.S. Lall, B.F. Gibbs, D.R. Bonsall, L. Varani, F. Rossi, L. Calzolai, Gold Nanoparticles Downregulate Interleukin-1β-Induced Pro-Inflammatory Responses, Small 9(3) (2013) 472-477.
[21] M.F. Hornos Carneiro, F. Barbosa, Gold nanoparticles: A critical review of therapeutic applications and toxicological aspects, Journal of Toxicology and Environmental Health, Part B 19(3-4) (2016) 129-148.
[22] Y. Liu, S.-h. Hsu, Synthesis and Biomedical Applications of Self-healing Hydrogels, Frontiers in Chemistry 6(449) (2018).
[23] Y. Xu, Y. Li, Q. Chen, L. Fu, L. Tao, Y. Wei, Injectable and self-healing chitosan hydrogel based on imine bonds: design and therapeutic applications, International Journal of Molecular Sciences 19(8) (2018) 2198.
[24] D.D. Ojeda-Hernández, A.A. Canales-Aguirre, J. Matias-Guiu, U. Gomez-Pinedo, J.C. Mateos-Díaz, Potential of Chitosan and Its Derivatives for Biomedical Applications in the Central Nervous System, Front Bioeng Biotechnol 8 (2020) 389-389.
[25] Y. Lu, W. He, T. Cao, H. Guo, Y. Zhang, Q. Li, Z. Shao, Y. Cui, X. Zhang, Elastic, Conductive, Polymeric Hydrogels and Sponges, Scientific reports 4(1) (2014) 5792.
[26] T.-W. Lin, S.-h. Hsu, Self-Healing Hydrogels and Cryogels from Biodegradable Polyurethane Nanoparticle Crosslinked Chitosan, Advanced Science 7(3) (2020) 1901388.
[27] J.-M. Lin, C.-Y. Chen, Y.-W. Tsai, Y.-S. Huang, Coherent X-ray Scattering for Microanalysis at Taiwan Photon Source, Microscopy and Microanalysis 24(S2) (2018) 262-263.
[28] A. Benazzouz, D.M. Gao, Z.G. Ni, B. Piallat, R. Bouali-Benazzouz, A.L. Benabid, Effect of high-frequency stimulation of the subthalamic nucleus on the neuronal activities of the substantia nigra pars reticulata and ventrolateral nucleus of the thalamus in the rat, Neuroscience 99(2) (2000) 289-295.
[29] G. Paxinos, C. Watson, The rat brain in stereotaxic coordinates: hard cover edition, Elsevier2006.
[30] J.L. Hudson, C.G. van Horne, I. Strömberg, S. Brock, J. Clayton, J. Masserano, B.J. Hoffer, G.A. Gerhardt, Correlation of apomorphine-and amphetamine-induced turning with nigrostriatal dopamine content in unilateral 6-hydroxydopamine lesioned rats, Brain research 626(1-2) (1993) 167-174.
[31] S. Fahn, The history of dopamine and levodopa in the treatment of Parkinson's disease, Movement disorders: official journal of the Movement Disorder Society 23(S3) (2008) S497-S508.
[32] S.-h. Hsu, C.-M. Tang, H.-J. Tseng, Gold Nanoparticles Induce Surface Morphological Transformation in Polyurethane and Affect the Cellular Response, Biomacromolecules 9(1) (2008) 241-248.
[33] J. Ilavsky, P.R. Jemian, A.J. Allen, F. Zhang, L.E. Levine, G.G. Long, Ultra-small-angle X-ray scattering at the Advanced Photon Source, Journal of Applied Crystallography 42(3) (2009) 469-479.
[34] Y.-J. Lin, W.-T. Chuang, S.-h. Hsu, Gelation mechanism and structural dynamics of chitosan self-healing hydrogels by in situ SAXS and coherent X-ray scattering, ACS Macro Letters 8(11) (2019) 1449-1455.
[35] J. Lambard, P. Lesieur, T. Zemb, A triple axis double crystal multiple reflection camera for ultra small angle X-ray scattering, Journal de Physique I 2(6) (1992) 1191-1213.
[36] Y. Liu, Y.-H. Hsu, A.P.-H. Huang, S.-h. Hsu, Semi-Interpenetrating Polymer Network of Hyaluronan and Chitosan Self-Healing Hydrogels for Central Nervous System Repair, ACS Applied Materials & Interfaces 12(36) (2020) 40108-40120.
[37] C.-W. Wong, A.V. Zhilenkov, O.A. Kraevaya, D.V. Mischenko, P.A. Troshin, S.-h. Hsu, Toward Understanding the Antitumor Effects of Water-Soluble Fullerene Derivatives on Lung Cancer Cells: Apoptosis or Autophagy Pathways?, Journal of Medicinal Chemistry 62(15) (2019) 7111-7125.
[38] C. Bate, S. Kempster, V. Last, A. Williams, Interferon-γ increases neuronal death in response to amyloid-β1-42, Journal of Neuroinflammation 3(1) (2006) 7.
[39] Y.-J. Huang, K.-C. Hung, H.-S. Hung, S.-h. Hsu, Modulation of Macrophage Phenotype by Biodegradable Polyurethane Nanoparticles: Possible Relation between Macrophage Polarization and Immune Response of Nanoparticles, ACS Applied Materials & Interfaces 10(23) (2018) 19436-19448.
[40] J. Xue, Y. Liu, M.A. Darabi, G. Tu, L. Huang, L. Ying, B. Xiao, Y. Wu, M. Xing, L. Zhang, L. Zhang, An injectable conductive Gelatin-PANI hydrogel system serves as a promising carrier to deliver BMSCs for Parkinson's disease treatment, Materials Science and Engineering: C 100 (2019) 584-597.
[41] J. Li, M. Darabi, J. Gu, J. Shi, J. Xue, L. Huang, Y. Liu, L. Zhang, N. Liu, W. Zhong, L. Zhang, M. Xing, L. Zhang, A drug delivery hydrogel system based on activin B for Parkinson's disease, Biomaterials 102 (2016) 72-86.
[42] N.P. Rocha, A.S. de Miranda, A.L. Teixeira, Insights into Neuroinflammation in Parkinson’s Disease: From Biomarkers to Anti-Inflammatory Based Therapies, BioMed Research International 2015 (2015) 628192.
[43] H.-J. Yen, S.-h. Hsu, C.-L. Tsai, Cytotoxicity and Immunological Response of Gold and Silver Nanoparticles of Different Sizes, Small 5(13) (2009) 1553-1561.
[44] M. Kushwah, M.S. Gaur, K. Arora, A.N. Berlina, Bio synthesis of colloidal AuNPs using thermally assisted pulse sonication method, Materials Research Express 6(11) (2019) 115068.
[45] X. Zhao, H. Wu, B. Guo, R. Dong, Y. Qiu, P.X. Ma, Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing, Biomaterials 122 (2017) 34-47.
[46] Y. Liu, C.-W. Wong, S.-W. Chang, S.-h. Hsu, An injectable, self-healing phenol-functionalized chitosan hydrogel with fast gelling property and visible light-crosslinking capability for 3D printing, Acta Biomaterialia 122 (2021) 211-219.
[47] H. Xu, J.M. Holzwarth, Y. Yan, P. Xu, H. Zheng, Y. Yin, S. Li, P.X. Ma, Conductive PPY/PDLLA conduit for peripheral nerve regeneration, Biomaterials 35(1) (2014) 225-235.
[48] J. Xu, C.-Y. Fu, Y.-L. Tsai, C.-W. Wong, S.-h. Hsu, Thermoresponsive and Conductive Chitosan-Polyurethane Biocompatible Thin Films with Potential Coating Application, Polymers 13(3) (2021) 326.
[49] Y.-J. Ren, H. Zhang, H. Huang, X.-M. Wang, Z.-Y. Zhou, F.-Z. Cui, Y.-H. An, In vitro behavior of neural stem cells in response to different chemical functional groups, Biomaterials 30(6) (2009) 1036-1044.
[50] M. Jiang, X. Zhuge, Y. Yang, X. Gu, F. Ding, The promotion of peripheral nerve regeneration by chitooligosaccharides in the rat nerve crush injury model, Neuroscience letters 454(3) (2009) 239-243.
[51] J. Yang, F. Nian, Z. Guo, T. Bai, G. Peng, Effect of Gold Nanoparticles with Different Diameters on Rat Neural Stem and Progenitor Cells, Nanoscience and Nanotechnology Letters 9(10) (2017) 1491-1496.
[52] P. Baei, S. Jalili-Firoozinezhad, S. Rajabi-Zeleti, M. Tafazzoli-Shadpour, H. Baharvand, N. Aghdami, Electrically conductive gold nanoparticle-chitosan thermosensitive hydrogels for cardiac tissue engineering, Materials Science and Engineering: C 63 (2016) 131-141.
[53] V. Dias, E. Junn, M.M. Mouradian, The role of oxidative stress in Parkinson's disease, Journal of Parkinson's disease 3(4) (2013) 461-491.
[54] T.-T. Ho, Y.-C. Lin, S.-h. Hsu, Human endothelial cell response to polyurethane–gold nanocomposites, Gold Bulletin 45(3) (2012) 161-170.
[55] H.-M. Gao, B. Liu, W. Zhang, J.-S. Hong, Novel anti-inflammatory therapy for Parkinson's disease, Trends in pharmacological sciences 24(8) (2003) 395-401.
[56] A. Kulkarni, P. Ganesan, L.A. O'Donnell, Interferon Gamma: Influence on Neural Stem Cell Function in Neurodegenerative and Neuroinflammatory Disease, Clin Med Insights Pathol 9(Suppl 1) (2016) 9-19.
[57] T.A. Hamilton, C. Zhao, P.G. Pavicic Jr, S. Datta, Myeloid colony-stimulating factors as regulators of macrophage polarization, Frontiers in immunology 5 (2014) 554.
[58] C.-W. Wong, F.W. Pratiwi, P. Chen, C.-Y. Mou, S.-h. Hsu, Phagosomal pH Regulation: Revealing the Phagosomal pH Regulation and Inflammation of Macrophages after Endocytosing Polyurethane Nanoparticles by A Ratiometric pH Nanosensor (Adv. Biology 1/2021), Advanced Biology 5(1) (2021) 2170013.
[59] A. Farzam, K. Chohan, M. Strmiskova, S.J. Hewitt, D.S. Park, J.P. Pezacki, D. Özcelik, A functionalized hydroxydopamine quinone links thiol modification to neuronal cell death, Redox Biology 28 (2020) 101377.
[60] S. Zhai, A. Tanimura, S.M. Graves, W. Shen, D.J. Surmeier, Striatal synapses, circuits, and Parkinson's disease, Curr Opin Neurobiol 48 (2018) 9-16.
[61] D.M. Norden, P.J. Trojanowski, E. Villanueva, E. Navarro, J.P. Godbout, Sequential activation of microglia and astrocyte cytokine expression precedes increased iba-1 or GFAP immunoreactivity following systemic immune challenge, Glia 64(2) (2016) 300-316.
[62] H. Ferreira, D. Amorim, A.C. Lima, R.P. Pirraco, A.R. Costa-Pinto, R. Almeida, A. Almeida, R.L. Reis, F. Pinto-Ribeiro, N.M. Neves, A biocompatible and injectable hydrogel to boost the efficacy of stem cells in neurodegenerative diseases treatment, Life Sciences 287 (2021) 120108.
[63] L.T.B. Nguyen, C.-C. Hsu, H. Ye, Z. Cui, Development of an in situ injectable hydrogel containing hyaluronic acid for neural regeneration, Biomedical Materials 15(5) (2020) 055005.
[64] K. Saha, A.J. Keung, E.F. Irwin, Y. Li, L. Little, D.V. Schaffer, K.E. Healy, Substrate Modulus Directs Neural Stem Cell Behavior, Biophysical Journal 95(9) (2008) 4426-4438.
[65] Y. Ren, X. Zhao, X. Liang, P.X. Ma, B. Guo, Injectable hydrogel based on quaternized chitosan, gelatin and dopamine as localized drug delivery system to treat Parkinson’s disease, International Journal of Biological Macromolecules 105 (2017) 1079-1087.

Chapter 5:
[1] A. Toulouse, A.M. Sullivan, Progress in Parkinson's disease—Where do we stand?, Progress in Neurobiology 85(4) (2008) 376-392.
[2] A.J. Lees, J. Hardy, T. Revesz, Parkinson's disease, The Lancet 373(9680) (2009) 2055-2066.
[3] M.C. Rodriguez-Oroz, M. Rodriguez, J. Guridi, K. Mewes, V. Chockkman, J. Vitek, M.R. DeLong, J.A. Obeso, The subthalamic nucleus in Parkinson's disease: somatotopic organization and physiological characteristics, Brain 124(9) (2001) 1777-1790.
[4] W. Dauer, S. Przedborski, Parkinson's Disease: Mechanisms and Models, Neuron 39(6) (2003) 889-909.
[5] D. Dexter, F. Wells, A. Lee, F. Agid, Y. Agid, P. Jenner, C. Marsden, Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson's disease, Journal of neurochemistry 52(6) (1989) 1830-1836.
[6] J. Sian, D.T. Dexter, A.J. Lees, S. Daniel, Y. Agid, F. Javoy‐Agid, P. Jenner, C.D. Marsden, Alterations in glutathione levels in Parkinson's disease and other neurodegenerative disorders affecting basal ganglia, Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society 36(3) (1994) 348-355.
[7] M.L. Block, J.-S. Hong, Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism, Progress in neurobiology 76(2) (2005) 77-98.
[8] D.T. Dexter, P. Jenner, Parkinson disease: from pathology to molecular disease mechanisms, Free Radical Biology and Medicine 62 (2013) 132-144.
[9] N. Moriarty, C.L. Parish, E. Dowd, Primary tissue for cellular brain repair in Parkinson's disease: Promise, problems and the potential of biomaterials, European Journal of Neuroscience 49(4) (2019) 472-486.
[10] J. Li, D.J. Mooney, Designing hydrogels for controlled drug delivery, Nature Reviews Materials 1(12) (2016) 1-17.
[11] J. Xu, Y. Liu, S.-h. Hsu, Hydrogels Based on Schiff Base Linkages for Biomedical Applications, Molecules 24(16) (2019) 3005.
[12] D.L. Taylor, M. in het Panhuis, Self‐healing hydrogels, Advanced Materials 28(41) (2016) 9060-9093.
[13] Y. Li, X. Wang, Y. Wei, L. Tao, Chitosan-based self-healing hydrogel for bioapplications, Chinese Chemical Letters 28(11) (2017) 2053-2057.
[14] R.-N. Chen, G.-M. Wang, C.-H. Chen, H.-O. Ho, M.-T. Sheu, Development of N, O-(carboxymethyl) chitosan/collagen matrixes as a wound dressing, Biomacromolecules 7(4) (2006) 1058-1064.
[15] Y. Chen, X. Yi, Z. Zhang, B. Ding, Z. Li, Y. Luo, High internal phase Pickering emulsions stabilized by tannic acid-ovalbumin complexes: Interfacial property and stability, Food Hydrocolloids 125 (2022) 107332.
[16] M. Caruana, R. Cauchi, N. Vassallo, Putative Role of Red Wine Polyphenols against Brain Pathology in Alzheimer’s and Parkinson’s Disease, Frontiers in Nutrition 3 (2016).
[17] S. Lin, Y. Cheng, H. Zhang, X. Wang, Y. Zhang, Y. Zhang, L. Miao, X. Zhao, H. Wei, Copper Tannic Acid Coordination Nanosheet: A Potent Nanozyme for Scavenging ROS from Cigarette Smoke, Small 16(27) (2020) 1902123.
[18] N. Sahiner, S. Sagbas, M. Sahiner, C. Silan, N. Aktas, M. Turk, Biocompatible and biodegradable poly(Tannic Acid) hydrogel with antimicrobial and antioxidant properties, International Journal of Biological Macromolecules 82 (2016) 150-159.
[19] M. Uz, S.K. Mallapragada, Conductive polymers and hydrogels for neural tissue engineering, Journal of the Indian Institute of Science 99(3) (2019) 489-510.
[20] J. Xu, Y.-L. Tsai, S.-h. Hsu, Design Strategies of Conductive Hydrogel for Biomedical Applications, Molecules 25(22) (2020) 5296.
[21] P. Baei, S. Jalili-Firoozinezhad, S. Rajabi-Zeleti, M. Tafazzoli-Shadpour, H. Baharvand, N. Aghdami, Electrically conductive gold nanoparticle-chitosan thermosensitive hydrogels for cardiac tissue engineering, Materials Science and Engineering: C 63 (2016) 131-141.
[22] G.d.B. Silveira, A.P. Muller, R.A. Machado-de-Ávila, P.C.L. Silveira, Advance in the use of gold nanoparticles in the treatment of neurodegenerative diseases: new perspectives, Neural Regen Res 16(12) (2021) 2425-2426.
[23] E. da Silva Córneo, G. de Bem Silveira, R. Scussel, M.E.A.B. Correa, J. da Silva Abel, G.P. Luiz, P.E. Feuser, P.C.L. Silveira, R.A. Machado-de-Avila, Effects of gold nanoparticles administration through behavioral and oxidative parameters in animal model of Parkinson’s disease, Colloids and Surfaces B: Biointerfaces 196 (2020) 111302.
[24] J. Xu, C.-H. Tai, T.-Y. Chen, S.-h. Hsu, An anti-inflammatory electroconductive hydrogel with self-healing property for the treatment of Parkinson’s disease, Chemical Engineering Journal 446 (2022) 137180.
[25] P. Orlowski, E. Tomaszewska, K. Ranoszek-Soliwoda, M. Gniadek, O. Labedz, T. Malewski, J. Nowakowska, G. Chodaczek, G. Celichowski, J. Grobelny, M. Krzyzowska, Tannic Acid-Modified Silver and Gold Nanoparticles as Novel Stimulators of Dendritic Cells Activation, Frontiers in Immunology 9 (2018).
[26] J. Yang, M. Li, Y. Wang, H. Wu, T. Zhen, L. Xiong, Q. Sun, Double Cross-Linked Chitosan Composite Films Developed with Oxidized Tannic Acid and Ferric Ions Exhibit High Strength and Excellent Water Resistance, Biomacromolecules 20(2) (2019) 801-812.
[27] Q. Sun, H. Fan, L. Xiong, Preparation and characterization of starch nanoparticles through ultrasonic-assisted oxidation methods, Carbohydrate Polymers 106 (2014) 359-364.
[28] Y.-C. Hsu, D.-C. Lee, S.-L. Chen, W.-C. Liao, J.-W. Lin, W.-T. Chiu, I.-M. Chiu, Brain-specific 1B promoter of FGF1 gene facilitates the isolation of neural stem/progenitor cells with self-renewal and multipotent capacities, Developmental Dynamics 238(2) (2009) 302-314.
[29] A. Benazzouz, D.M. Gao, Z.G. Ni, B. Piallat, R. Bouali-Benazzouz, A.-L. Benabid, Effect of high-frequency stimulation of the subthalamic nucleus on the neuronal activities of the substantia nigra pars reticulata and ventrolateral nucleus of the thalamus in the rat, Neuroscience 99(2) (2000) 289-295.
[30] G. Paxinos, C.R. Watson, P.C. Emson, AChE-stained horizontal sections of the rat brain in stereotaxic coordinates, Journal of neuroscience methods 3(2) (1980) 129-149.
[31] J.L. Hudson, C.G. van Horne, I. Strömberg, S. Brock, J. Clayton, J. Masserano, B.J. Hoffer, G.A. Gerhardt, Correlation of apomorphine-and amphetamine-induced turning with nigrostriatal dopamine content in unilateral 6-hydroxydopamine lesioned rats, Brain research 626(1-2) (1993) 167-174.
[32] C.-H. Tai, T. Boraud, E. Bezard, B. Bioulac, C. Gross, A. Benazzouz, Electrophysiological and metabolic evidence that high-frequency stimulation of the subthalamic nucleus bridles neuronal activity in the subthalamic nucleus and the substantia nigra reticulata, The FASEB Journal 17(13) (2003) 1820-1830.
[33] R.A. Muzzarelli, G. Littarru, C. Muzzarelli, G. Tosi, Selective reactivity of biochemically relevant quinones towards chitosans, Carbohydrate polymers 53(1) (2003) 109-115.
[34] R.M. Desentis-Mendoza, H. Hernández-Sánchez, A. Moreno, E. Rojas del C, L. Chel-Guerrero, J. Tamariz, M.E. Jaramillo-Flores, Enzymatic polymerization of phenolic compounds using laccase and tyrosinase from ustilago m aydis, Biomacromolecules 7(6) (2006) 1845-1854.
[35] Y.-J. Lin, W.-T. Chuang, S.-h. Hsu, Gelation mechanism and structural dynamics of chitosan self-healing hydrogels by in situ SAXS and coherent X-ray scattering, ACS Macro Letters 8(11) (2019) 1449-1455.
[36] T. Li, A.J. Senesi, B. Lee, Small angle X-ray scattering for nanoparticle research, Chemical reviews 116(18) (2016) 11128-11180.
[37] C.-W. Wong, A.V. Zhilenkov, O.A. Kraevaya, D.V. Mischenko, P.A. Troshin, S.-h. Hsu, Toward understanding the antitumor effects of water-soluble fullerene derivatives on lung cancer cells: apoptosis or autophagy pathways?, Journal of Medicinal Chemistry 62(15) (2019) 7111-7125.
[38] I.M. Tayler, R.S. Stowers, Engineering hydrogels for personalized disease modeling and regenerative medicine, Acta Biomaterialia 132 (2021) 4-22.
[39] B.S. Kim, S. Das, J. Jang, D.-W. Cho, Decellularized Extracellular Matrix-based Bioinks for Engineering Tissue- and Organ-specific Microenvironments, Chemical Reviews 120(19) (2020) 10608-10661.
[40] J. Xue, Y. Liu, M.A. Darabi, G. Tu, L. Huang, L. Ying, B. Xiao, Y. Wu, M. Xing, L. Zhang, L. Zhang, An injectable conductive Gelatin-PANI hydrogel system serves as a promising carrier to deliver BMSCs for Parkinson's disease treatment, Materials Science and Engineering: C 100 (2019) 584-597.
[41] J. Li, M. Darabi, J. Gu, J. Shi, J. Xue, L. Huang, Y. Liu, L. Zhang, N. Liu, W. Zhong, L. Zhang, M. Xing, L. Zhang, A drug delivery hydrogel system based on activin B for Parkinson's disease, Biomaterials 102 (2016) 72-86.
[42] C. Giordano, D. Albani, A. Gloria, M. Tunesi, S. Batelli, T. Russo, G. Forloni, L. Ambrosio, A. Cigada, Multidisciplinary Perspectives for Alzheimer's and Parkinson's Diseases: Hydrogels for Protein Delivery and Cell-Based Drug Delivery as Therapeutic Strategies, The International Journal of Artificial Organs 32(12) (2009) 836-850.
[43] K. Niikura, T. Matsunaga, T. Suzuki, S. Kobayashi, H. Yamaguchi, Y. Orba, A. Kawaguchi, H. Hasegawa, K. Kajino, T. Ninomiya, Gold nanoparticles as a vaccine platform: influence of size and shape on immunological responses in vitro and in vivo, ACS nano 7(5) (2013) 3926-3938.
[44] D.F. Moyano, M. Goldsmith, D.J. Solfiell, D. Landesman-Milo, O.R. Miranda, D. Peer, V.M. Rotello, Nanoparticle hydrophobicity dictates immune response, Journal of the American Chemical Society 134(9) (2012) 3965-3967.
[45] H.-J. Yen, S.-h. Hsu, C.-L. Tsai, Cytotoxicity and Immunological Response of Gold and Silver Nanoparticles of Different Sizes, Small 5(13) (2009) 1553-1561.
[46] A.J. Omlor, D.D. Le, J. Schlicker, M. Hannig, R. Ewen, S. Heck, C. Herr, A. Kraegeloh, C. Hein, R. Kautenburger, G. Kickelbick, R. Bals, J. Nguyen, Q.T. Dinh, Local Effects on Airway Inflammation and Systemic Uptake of 5 nm PEGylated and Citrated Gold Nanoparticles in Asthmatic Mice, Small 13(10) (2017) 1603070.
[47] P. Buzzini, P. Arapitsas, M. Goretti, E. Branda, B. Turchetti, P. Pinelli, F. Ieri, A. Romani, Antimicrobial and antiviral activity of hydrolysable tannins, Mini-Reviews in Medicinal Chemistry 8(12) (2008) 1179.
[48] Y. Wu, L. Zhong, Z. Yu, J. Qi, Anti-neuroinflammatory effects of tannic acid against lipopolysaccharide-induced BV2 microglial cells via inhibition of NF-κB activation, Drug Development Research 80(2) (2019) 262-268.
[49] E. Obreque-Slier, C. Mateluna, A. Pena-Neira, R. Lopez-Solis, Quantitative determination of interactions between tannic acid and a model protein using diffusion and precipitation assays on cellulose membranes, Journal of agricultural and food chemistry 58(14) (2010) 8375-8379.
[50] Z. Qin, Y. Huang, S. Xiao, H. Zhang, Y. Lu, K. Xu, Preparation and Characterization of High Mechanical Strength Chitosan/Oxidized Tannic Acid Composite Film with Schiff Base and Hydrogen Bond Crosslinking, International Journal of Molecular Sciences 23(16) (2022) 9284.
[51] H. Xu, J.M. Holzwarth, Y. Yan, P. Xu, H. Zheng, Y. Yin, S. Li, P.X. Ma, Conductive PPY/PDLLA conduit for peripheral nerve regeneration, Biomaterials 35(1) (2014) 225-235.
[52] A. Filarowski, T. Głowiaka, A. Koll, Strengthening of the intramolecular O⋯H⋯N hydrogen bonds in Schiff bases as a result of steric repulsion, Journal of Molecular Structure 484(1) (1999) 75-89.
[53] Y.-J. Ren, H. Zhang, H. Huang, X.-M. Wang, Z.-Y. Zhou, F.-Z. Cui, Y.-H. An, In vitro behavior of neural stem cells in response to different chemical functional groups, Biomaterials 30(6) (2009) 1036-1044.
[54] L. Zhou, L. Fan, X. Yi, Z. Zhou, C. Liu, R. Fu, C. Dai, Z. Wang, X. Chen, P. Yu, D. Chen, G. Tan, Q. Wang, C. Ning, Soft Conducting Polymer Hydrogels Cross-Linked and Doped by Tannic Acid for Spinal Cord Injury Repair, ACS Nano 12(11) (2018) 10957-10967.
[55] V. Dias, E. Junn, M.M. Mouradian, The role of oxidative stress in Parkinson's disease, Journal of Parkinson's disease 3(4) (2013) 461-491.
[56] H.-M. Gao, B. Liu, W. Zhang, J.-S. Hong, Novel anti-inflammatory therapy for Parkinson's disease, Trends in pharmacological sciences 24(8) (2003) 395-401.
[57] F.L. Maclean, M.K. Horne, R.J. Williams, D.R. Nisbet, Review: Biomaterial systems to resolve brain inflammation after traumatic injury, APL Bioeng 2(2) (2018) 021502-021502.
[58] M. Bae, D.W. Hwang, M.K. Ko, Y. Jin, W.J. Shin, W. Park, S. Chae, H.J. Lee, J. Jang, H.-G. Yi, D.S. Lee, D.-W. Cho, Neural stem cell delivery using brain-derived tissue-specific bioink for recovering from traumatic brain injury, Biofabrication 13(4) (2021) 044110.
[59] Y. Zheng, R. He, P. Wang, Y. Shi, L. Zhao, J. Liang, Exosomes from LPS-stimulated macrophages induce neuroprotection and functional improvement after ischemic stroke by modulating microglial polarization, Biomaterials science 7(5) (2019) 2037-2049.
[60] R. Zhao, M. Ying, S. Gu, W. Yin, Y. Li, H. Yuan, S. Fang, M. Li, Cysteinyl leukotriene receptor 2 is involved in inflammation and neuronal damage by mediating microglia M1/M2 polarization through NF-κB pathway, Neuroscience 422 (2019) 99-118.
[61] F. Blandini, G. Levandis, E. Bazzini, G. Nappi, M.T. Armentero, Time‐course of nigrostriatal damage, basal ganglia metabolic changes and behavioural alterations following intrastriatal injection of 6‐hydroxydopamine in the rat: new clues from an old model, European Journal of Neuroscience 25(2) (2007) 397-405.
[62] A. Schober, Classic toxin-induced animal models of Parkinson’s disease: 6-OHDA and MPTP, Cell and Tissue Research 318(1) (2004) 215-224.
[63] Y.-Y. Wang, Y. Wang, H.-F. Jiang, J.-H. Liu, J. Jia, K. Wang, F. Zhao, M.-H. Luo, M.-M. Luo, X.-M. Wang, Impaired glutamatergic projection from the motor cortex to the subthalamic nucleus in 6-hydroxydopamine-lesioned hemi-parkinsonian rats, Experimental Neurology 300 (2018) 135-148.
[64] L.-H.N. Lee, C.-S. Huang, H.-H. Chuang, H.-J. Lai, C.-K. Yang, Y.-C. Yang, C.-C. Kuo, An electrophysiological perspective on Parkinson’s disease: symptomatic pathogenesis and therapeutic approaches, Journal of Biomedical Science 28(1) (2021) 85.
[65] M.-K. Pan, C.-H. Tai, W.-C. Liu, J.-C. Pei, W.-S. Lai, C.-C. Kuo, Deranged NMDAergic cortico-subthalamic transmission underlies parkinsonian motor deficits, The Journal of Clinical Investigation 124(10) (2014) 4629-4641.
[66] J. Grosch, J. Winkler, Z. Kohl, Early degeneration of both dopaminergic and serotonergic axons–a common mechanism in Parkinson’s disease, Frontiers in cellular neuroscience 10 (2016) 293.
[67] C. Jollivet, C.N. Montero-Menei, M.-C. Venier-Julienne, A. Sapin, J.-P. Benoit, P. Menei, Striatal tyrosine hydroxylase immunoreactive neurons are induced by L-dihydroxyphenylalanine and nerve growth factor treatment in 6-hydroxydopamine lesioned rats, Neuroscience letters 362(2) (2004) 79-82.
[68] J. Yang, S. Song, J. Li, T. Liang, Neuroprotective effect of curcumin on hippocampal injury in 6-OHDA-induced Parkinson's disease rat, Pathology - Research and Practice 210(6) (2014) 357-362.
[69] S. Song, Q. Nie, Z. Li, G. Du, Curcumin improves neurofunctions of 6-OHDA-induced parkinsonian rats, Pathology - Research and Practice 212(4) (2016) 247-251.
[70] V. Zbarsky, K.P. Datla, S. Parkar, D.K. Rai, O.I. Aruoma, D.T. Dexter, Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson's disease, Free Radical Research 39(10) (2005) 1119-1125.
[71] J. Wang, X.-X. Du, H. Jiang, J.-X. Xie, Curcumin attenuates 6-hydroxydopamine-induced cytotoxicity by anti-oxidation and nuclear factor-kappaB modulation in MES23.5 cells, Biochemical Pharmacology 78(2) (2009) 178-183.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88011-
dc.description.abstract基於殼聚醣之自癒合水膠近些年在生醫領域備受關注。這類水膠網絡通常由殼聚醣及其衍生物的氨基和交聯劑材料上的醛基之間產生的動態席夫鹼鍵動態交聯形成。在這些可降解的自癒合水膠中,導電水膠因其與具有電活性的組織,尤其是神經組織,存在一定的交互作用,被視為一種極具潛力的軟材料。對於應用於生醫領域之導電自癒合水膠,其導電性常由導電高分子或者其他金屬/非金屬粒子提供。但不同的導電設計策略及材料選擇會帶給水膠多樣的特性,以符合預期之應用需求。在第一部分中,導電高分子聚吡咯經由殼聚醣修飾後製備成奈米粒子,後加入羧乙基殼聚醣和雙官能化聚胺酯奈米交聯劑系統中,製備出具導電性和可注射性之自癒合水膠及可形狀回復支架。相較於不導電的材料,體外實驗表明導電水膠/支架均為神經幹細胞生長和分化提供適合的環境,並通過皮下植入證實了此導電材料良好的生物相容性及生物降解性。同時,在體外以及斑馬魚腦損傷模型中評估了智能導電水凝膠和支架在神經修復和運動檢測中的潛在功能。在先前導電水膠的基礎上,在第二部分討論了結合導電高分子奈米粒子的殼聚醣–聚胺酯複合薄膜的製備。該導電薄膜具備足夠的導電性、良好的親水性、熱響應拉伸性及有潛力的應變感測性。通過體外實驗驗證具導電性會使薄膜上的神經幹細胞更好的增殖與更傾向膠質神經細胞分化。亦評估了其作為生醫領域作為表面塗層材料的潛力。在第三部分中,將膠體金奈米粒子作為添加物以賦予羧甲基殼聚醣與雙官能化聚胺酯水膠適宜的導電性、穩定的交聯網絡、小針頭注射性及抗發炎特性。同時,通過自己設計的體外抗發炎實驗可知導電水膠具有一定的清除自由基的能力。而後,動物實驗證實,在腦內注射導電水凝膠有助於巴金森氏症大鼠的運動功能的恢復並減輕了組織學上的神經變性。這些發現支持含膠體金奈米粒子的導電水凝膠作為用於神經保護和巴金森氏症治療的很有前途的生物材料。第四部分合成了新型氧化單寧酸修飾的金奈米交聯劑並與羧甲基殼聚醣製備具生物活性的自癒合水膠。經實驗驗證,此自癒合水膠表現出抗氧化、抗發炎、導電以及注射特性,並且可以促進神經幹細胞增殖與向神經元方向分化。在動物實驗中,與包載了藥物的自癒合水膠對比,從電生理、行為學以及組織學等多角度證實了具生物活性的自癒合水膠之於巴金森氏症的治療與包載了藥物的自癒合水膠效果沒有顯著差異。透過第三和第四部分研究可得出,開發結合具生物活性之奈米金的殼聚醣基可注射自癒合自癒合水膠具有作為治療巴金森氏症的新策略的潛力。以上研究提出了設計和開發不同導電來源之殼聚醣基自癒合水膠及相關材料在多種神經系統之生醫應用。zh_TW
dc.description.abstractSelf-healing hydrogels based on chitosan have attracted much attention in the biomedical field over the past decades. These hydrogel networks are usually formed by dynamic Schiff base bonding between the amino groups of chitosan or its derivatives and the aldehyde groups of the crosslinker. Among the degradable self-healing hydrogels, conductive hydrogels are considered as a promising soft material due to their interaction with electroactive tissues, especially neural tissues. The conductivity of self-healing hydrogels for biomedical applications is often provided by conductive polymers or other metallic/non-metallic particles. However, different design strategies and material choices will impart various functions of conductive hydrogel to satisfy the intended application requirements. In the first part, the polypyrrole, i.e., conductive polymer, was modified by chitosan to form nanoparticles, which were then added to a system of carboxyethyl chitosan and difunctional polyurethane to produce self-healing hydrogel and shape-recoverable scaffold with conductivity and injectability. Compared with the non-conductive ones, in vitro experiments demonstrated that the conductive hydrogels/scaffolds provide a suitable environment for the growth and differentiation of neural stem cells, and the good biocompatibility and biodegradability of the conductive materials were demonstrated by subcutaneous implantation. Meanwhile, the potential functions of the smart conductive hydrogel and scaffold in neural repair and motion sensing were evaluated in vitro and in a zebrafish brain injury model. The second part discussed the preparation of chitosan-polyurethane composite films incorporating conductive polypyrrole/chitosan nanoparticles, based on the conductive hydrogels in previous section. The conductive film has sufficient conductivity, good hydrophilicity, thermoresponsive stretching, and potential strain sensing properties. In vitro experiments have demonstrated that the conductivity resulted in better proliferation of neural stem cells and a greater tendency for glial cell differentiation on the film. In the third part, the colloidal gold nanoparticles were used as additives to endow the self-healing hydrogel composed of carboxymethyl chitosan and dialdehyde polyurethane with suitable conductivity, stable crosslinking network, tiny gauge needle injectability, and anti-inflammatory properties. In addition, a self-designed in vitro anti-inflammatory assay revealed that the conductive hydrogel has the capability to scavenge reactive oxygen species. Then, animal experiments confirmed that intracerebral injection of conductive hydrogel promoted motor function recovery and reduced histological neurodegeneration in Parkinsonian rat model. These findings support the use of conductive self-healing hydrogel containing colloidal nanogold as a convincing biomaterial for neuroprotection and Parkinson's disease treatment. The fourth part synthesized a new oxidized tannic acid-modified gold nano-crosslinker with carboxymethyl chitosan to prepare a bioactive self-healing hydrogel. The self-healing hydrogels were characterized to possess antioxidant, anti-inflammatory, conductive, and injectable properties, as well as to promote the proliferation and neuronal differentiation of neural stem cells. In animal experiments, the effects of the bioactive self-healing hydrogel on the treatment of Parkinson's disease were found comparable to the drug-loaded self-healing hydrogel from electrophysiological, behavioral, and histological perspectives. The development of chitosan-based injectable self-healing hydrogels incorporating bioactive gold nanoparticles has the potential to be a new strategy for treating Parkinson's disease. The above studies suggest the design and development of chitosan-based self-healing hydrogels or related materials with different sources of conductivity for multiple therapeutic applications in the nervous system.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-01T16:23:23Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-01T16:23:23Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 I
中文摘要 II
Abstract IV
Content VI
List of Figures XI
List of Tables XVI
Chapter 1 Introductory Remarks 1
Chapter 2 An injectable, electroconductive hydrogel/scaffold for neural repair and motion sensing 8
2.1. Background and Motivation 9
2.2. Materials and Methods 11
2.2.1. Synthesis of polypyrrole modified with double-bonded chitosan (DCP) 11
2.2.2. Synthesis of N-carboxyethyl chitosan (CEC) and difunctional polyurethane (DFPU) 12
2.2.3. Preparation of CEC/DFPU/DFPU (CDD) hydrogels/scaffolds 13
2.2.4. Characterization and rheological evaluation of CDD hydrogels 13
2.2.5. Characterization and compression performance of CDD scaffolds 14
2.2.6. Strain-sensing functions of CDD scaffolds 15
2.2.7. Cell culture and cell viability analysis 15
2.2.8. Gene expression of neural stem cells (NSCs) in CDD scaffolds 16
2.2.9. Cell attachment test 17
2.2.10. Subcutaneous experiments in rats 17
2.2.11. Nerve repair in the zebrafish traumatic injury model 18
2.2.12. Motion detection in human and zebrafish 18
2.2.13. Statistical analysis 19
2.3. Results 20
2.3.1. Synthesis and characterization of CEC main chain, DCP nanoparticles, and DFPU crosslinker 20
2.3.2. Characteristics and optimization of CDD hydrogels and scaffolds 21
2.3.3. Mechanical durability and strain-sensing functions of CDD scaffolds 25
2.3.4. In vitro cellular evaluation of NSCs in CDD hydrogels and scaffolds 26
2.3.5. Biocompatibility of CDD by rat subcutaneous implantation 28
2.3.6. Functional rescue in the brain injury model of adult zebrafish 29
2.3.7. Motion detection on human and zebrafish 29
2.4. Discussion 30
2.5. Summary 38
2.6. References 39
Chapter 3 Thermoresponsive and conductive chitosan-polyurethane biocompatible thin films with potential coating application 73
3.1. Background and Motivation 74
3.2. Materials and Methods 76
3.2.1. Materials 76
3.2.2. Synthesis of dialdehyde polyurethane crosslinker (DAPU) 76
3.2.3. Synthesis of N-carboxyethyl chitosan (CEC) 77
3.2.4. Synthesis of polypyrrole modified with double-bonded chitosan (DCP) 77
3.2.5. Preparation of DAPU/CEC/DCP films (DCDFs) 78
3.2.6. Physico-chemical characterization of DCDFs 78
3.2.7. Strain sensing function of DCDFs 79
3.2.8. Cell attachment and proliferation analysis 80
3.2.9. Gene Expression of neural stem cells (NSCs) on DCDFs 80
3.2.10. Evaluation of DCD materials as a conductive coating 81
3.2.11. Statistical analysis 81
3.3. Results and Discussion 82
3.3.1. Preparation and optimization of DCDFs 82
3.3.2. Physico-chemical properties of conductive DCDFs 84
3.3.3. Strain sensing functions of DCDFs 86
3.3.4. Cell morphology, proliferation, and differentiation of NSCs on DCDFs 87
3.3.5. The potential as conductive coating materials 88
3.4. Summary 89
3.5. References 90
Chapter 4 An anti-inflammatory electroconductive hydrogel with self-healing property for the treatment of Parkinson’s disease 110
4.1. Background and Motivation 111
4.2. Materials and Methods 113
4.2.1. Chemicals and raw materials 113
4.2.2. Synthesis of dialdehyde polyurethane (DAPU) and preparation of O-carboxymethyl chitosan (CMC)/DAPU/gold nanoparticles (Au-NPs) hydrogels (CDAHs) 114
4.2.3. Physico-chemical and rheological properties of CDAHs 115
4.2.4. Neural stem cells (NSCs) cultured in hydrogels 116
4.2.5. In vitro inflammatory NSC assay 118
4.2.6. In vitro macrophage inflammatory assay 118
4.2.7. Rat model of Parkinson’s disease (PD) 119
4.2.8. The stereotaxic injection of saline and hydrogels 120
4.2.9. Behavior tests 120
4.2.10. Immunofluorescence 121
4.2.11. Statistical analysis 121
4.3. Results 122
4.3.1. Preparation of CDAHs 122
4.3.2. Physico-chemical and rheological properties of self-healing hydrogels 123
4.3.3. Proliferation and differentiation of NSCs cultured in hydrogels 126
4.3.4. In vitro rescue function of CDAHs by inflammatory NSC assay 127
4.3.5. In vitro anti-inflammatory and in vivo biocompatibility evaluations of CDAHs 128
4.3.6. Efficacy evaluation by the PD rat model 129
4.4. Discussion 131
4.5. Summary 137
4.6. References 137
Chapter 5 Bioactive self-healing hydrogel based on tannic acid modified gold nano-crosslinker as an injectable brain implant for treating Parkinson’s disease 174
5.1. Background and Motivation 175
5.2. Materials and Methods 178
5.2.1. Synthesis of oxidized tannic acid (OTA) and OTA modified gold nanoparticles (OTA@Au) 178
5.2.2. Characterization of OTA and OTA@Au 179
5.2.3. Preparation of O-carboxymethyl chitosan (CMC)/OTA@Au (COA) hydrogels 180
5.2.4. Physico-chemical and rheological properties of COA hydrogels 180
5.2.5. Neural stem cells (NSCs) cultured in hydrogels 182
5.2.6. In vitro antioxidative and anti-inflammatory assay 183
5.2.7. In vivo rat model of Parkinson’s disease (PD) and the stereotaxic injection of hydrogels 184
5.2.8. Behavior tests and electrophysiological analyses 186
5.2.9. Immunofluorescent and immunohistochemical staining 187
5.2.10. Statistical analysis 188
5.3. Results 188
5.3.1. Synthesis and characterization of OTA and OTA@Au 188
5.3.2. Preparation and optimization of self-healing hydrogels 189
5.3.3. Characteristics of self-healing hydrogels 191
5.3.4. NSCs cultured in hydrogels 193
5.3.5. Antioxidative and anti-inflammatory capabilities of hydrogels 194
5.3.6. Efficacy evaluation by the PD rat model 195
5.4. Discussion 198
5.5. Summary 207
5.6. References 207
Chapter 6 Conclusion and Perspective 240
Appendix 242
-
dc.language.isoen-
dc.subject自癒合zh_TW
dc.subject巴金森氏症zh_TW
dc.subject神經修復zh_TW
dc.subject金奈米粒子zh_TW
dc.subject聚胺酯zh_TW
dc.subject殼聚醣zh_TW
dc.subject導電水膠zh_TW
dc.subjectself-healingen
dc.subjectconductive hydrogelen
dc.subjectParkinson's diseaseen
dc.subjectneural repairen
dc.subjectpolyurethaneen
dc.subjectgold nanoparticlesen
dc.subjectchitosanen
dc.title殼聚醣基導電自癒合水膠之開發及在神經系統之生醫應用zh_TW
dc.titleDevelopment of chitosan-based conductive self-healing hydrogels and biomedical applications in neural systemen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee游佳欣;戴春暉;張書瑋;陳彥榮;侯詠德zh_TW
dc.contributor.oralexamcommitteeJiashing Yu;Chun-Hwei Tai;Shu-Wei Chang;Edward Chern;Yung-Te Houen
dc.subject.keyword導電水膠,自癒合,殼聚醣,聚胺酯,金奈米粒子,神經修復,巴金森氏症,zh_TW
dc.subject.keywordconductive hydrogel,self-healing,chitosan,polyurethane,gold nanoparticles,neural repair,Parkinson's disease,en
dc.relation.page313-
dc.identifier.doi10.6342/NTU202301261-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-07-10-
dc.contributor.author-college工學院-
dc.contributor.author-dept高分子科學與工程學研究所-
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
69.63 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved