Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88005
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曾雪峰zh_TW
dc.contributor.advisorSnow H. Tsengen
dc.contributor.author李宜閎zh_TW
dc.contributor.authorYi-Hong Lien
dc.date.accessioned2023-08-01T16:21:25Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-01-
dc.date.issued2023-
dc.date.submitted2023-06-28-
dc.identifier.citation[1] R. G. Hunsperger, Integrated Optics: Theory and Technology. Springer New York, 2009.
[2] P. Vukusic and D. G. Stavenga, "Physical methods for investigating structural colours in biological systems," Journal of The Royal Society Interface, vol. 6, no. suppl_2, pp. S133-S148, 2009/01/21 2009, doi: 10.1098/rsif.2008.0386.focus.
[3] H. Nilsson Sköld, S. Aspengren, and M. Wallin, "Rapid color change in fish and amphibians - function, regulation, and emerging applications," Pigment Cell Melanoma Res., vol. 26, no. 1, pp. 29-38, 2013/1 2013, doi: 10.1111/pcmr.12040.
[4] E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Physical Review Letters, vol. 58, no. 20, pp. 2059-2062, 05/18/ 1987, doi: 10.1103/PhysRevLett.58.2059.
[5] S. John, "Strong localization of photons in certain disordered dielectric superlattices," Physical Review Letters, vol. 58, no. 23, pp. 2486-2489, 06/08/ 1987, doi: 10.1103/PhysRevLett.58.2486.
[6] M. A. X. Born, "Wave Propagation in Periodic Structures," Nature, vol. 158, no. 4026, pp. 926-926, 1946/12/01 1946, doi: 10.1038/158926a0.
[7] T. Zijlstra, E. Drift, M. de Dood, E. Snoeks, and A. Polman, "Fabrication of two-dimensional photonic crystal waveguides for 1.5 µm in silicon by deep anisotropic dry etching," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 17, pp. 2734-2739, 11/01 1999, doi: 10.1116/1.591054.
[8] C. Jamois, R. B. Wehrspohn, L. C. Andreani, C. Hermann, O. Hess, and U. Gösele, "Silicon-based two-dimensional photonic crystal waveguides," Photonics and Nanostructures - Fundamentals and Applications, vol. 1, no. 1, pp. 1-13, 2003/12/01/ 2003, doi: https://doi.org/10.1016/j.photonics.2003.10.001.
[9] F. Guo S Fau - Wu, S. Wu F Fau - Albin, R. Albin S Fau - Rogowski, and R. Rogowski, "Photonic band gap analysis using finite-difference frequency-domain method," (in eng), no. 1094-4087 (Electronic).
[10] A. V. Dyogtyev, "The influence of photonic crystal (PHC) parameters on the photonic band-gap (PBG)," in Proceedings of LFNM 2005. 7th International Conference on Laser and Fiber-Optical Networks Modeling, 2005., 15-17 Sept. 2005 2005, pp. 42-45, doi: 10.1109/LFNM.2005.1553185.
[11] Y. Zhang and B. Li, "Photonic crystal-based bending waveguides for optical interconnections," Optics Express, Article vol. 14, no. 12, pp. 5723-5732, 2006, doi: 10.1364/OE.14.005723.
[12] L. O et al., "Low-loss propagation in photonic crystal waveguides," Electronics Letters, vol. 42, no. 25, pp. 1454-1455. [Online]. Available: https://digital-library.theiet.org/content/journals/10.1049/el_20063077
[13] B. Salski, M. Celuch, and W. Gwarek, "FDTD for Nanoscale and Optical Problems," Microwave Magazine, IEEE, vol. 11, pp. 50-59, 05/01 2010, doi: 10.1109/MMM.2010.935777.
[14] H. Butt, Q. Dai, T. D. Wilkinson, and G. A. J. Amaratunga, "PHOTONIC CRYSTALS & METAMATERIAL FILTERS BASED ON 2D ARRAYS OF SILICON NANOPILLARS," Progress in Electromagnetics Research-pier, vol. 113, pp. 179-194, 2011.
[15] A. Assali, F. Arab, R. Graine, and F. Kanouni, "The effect of radius and size on Photonic band gap of a triangular lattice of rods Si/air-based 2D-photonic crystals," NANOCON 2013 - Conference Proceedings, 5th International Conference, pp. 380-385, 01/01 2013.
[16] H. A. Badaoui and M. Abri, "New Design of Integrated 2D Photonic Crystal Narrow Band Filters Using the FDTD-2D Method," vol. 68, no. 11-12, pp. 511-518, 2014, doi: doi:10.1515/freq-2014-0043.
[17] C. Harshita, S. K. Rajinder, and P. Balveer, "Photonic crystal waveguide-based biosensor for detection of diseases," Journal of Nanophotonics, vol. 10, no. 3, p. 036011, 8/1 2016, doi: 10.1117/1.JNP.10.036011.
[18] F. Segovia-Chaves, H. Vinck-Posada, and E. Navarro-Barón, "Linear defect in two-dimensional photonic crystals of equilateral triangles," Optik, vol. 200, p. 163320, 2020/01/01/ 2020, doi: https://doi.org/10.1016/j.ijleo.2019.163320.
[19] Y. Kane, "Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media," IEEE Transactions on Antennas and Propagation, vol. 14, no. 3, pp. 302-307, 1966, doi: 10.1109/TAP.1966.1138693.
[20] A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method. Artech House, 2005.
[21] J.-P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," Journal of Computational Physics, vol. 114, no. 2, pp. 185-200, 1994/10/01/ 1994, doi: https://doi.org/10.1006/jcph.1994.1159.
[22] K. M. Leung and Y. Qiu, "Multiple-scattering calculation of the two-dimensional photonic band structure," Physical Review B, vol. 48, no. 11, pp. 7767-7771, 09/15/ 1993, doi: 10.1103/PhysRevB.48.7767.
[23] X. Wang, X. G. Zhang, Q. Yu, and B. N. Harmon, "Multiple-scattering theory for electromagnetic waves," Physical Review B, vol. 47, no. 8, pp. 4161-4167, 02/15/ 1993, doi: 10.1103/PhysRevB.47.4161.
[24] J. B. Pendry and A. MacKinnon, "Calculation of photon dispersion relations," Physical Review Letters, vol. 69, no. 19, pp. 2772-2775, 11/09/ 1992, doi: 10.1103/PhysRevLett.69.2772.
[25] S. H. Simon, The Oxford solid state basics, First edition, reprinted (with corrections) ed. Oxford: Oxford University Press (in eng), 2016.
[26] F. Bloch, "Über die Quantenmechanik der Elektronen in Kristallgittern," Zeitschrift für Physik, vol. 52, no. 7, pp. 555-600, 1929/07/01 1929, doi: 10.1007/BF01339455.
[27] K. M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Physical Review Letters, vol. 65, no. 25, pp. 3152-3155, 12/17/ 1990, doi: 10.1103/PhysRevLett.65.3152.
[28] M. Plihal and A. A. Maradudin, "Photonic band structure of two-dimensional systems: The triangular lattice," Physical Review B, vol. 44, no. 16, pp. 8565-8571, 10/15/ 1991, doi: 10.1103/PhysRevB.44.8565.
[29] J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, "Photonic crystals: putting a new twist on light," Nature, vol. 386, no. 6621, pp. 143-149, 1997/03/01 1997, doi: 10.1038/386143a0.
[30] P.-G. L. a. Z. Ye, "Two dimensional photonic crystals," 2001. [Online]. Available: arXiv:cond-mat/0105428.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88005-
dc.description.abstract在本研究中,我們模擬二維光子晶體的模型並且分析了它的波導與光學特性。首先,我們採用平面波展開法計算二維正方晶格的能帶結構,並且探討其晶格參數對於能隙的影響。其次,我們採用時域有限差分法(finite-difference time-domain, FDTD)來動態分析光子晶體在電磁波傳播下的光學特性與過程。在我們的模擬中,我們分別改變了光子晶體波導的物理參數,例如:波長、光子晶體層數和介電圓柱尺寸。此外,我們探討二維光子晶體中的線缺陷對於直線或彎曲波導的特性與應用,並定量分析電磁波傳播時的穿透率頻譜。zh_TW
dc.description.abstractIn this research, we simulate a two-dimensional photonic crystal model and analyze its waveguide properties. Firstly, we employ the plane-wave expansion method to calculate the band structure of a 2D square lattice and investigate how the lattice parameters affect the energy gap. Secondly, We employ the finite-difference time-domain (FDTD) simulation technique to analyze the optical characteristics of the photonic crystal waveguides. In our simulation, we vary the physical parameters of the photonic crystal waveguides such as wavelength, the number of layers in the photonic crystal, and the size of the dielectric cylinders. Furthermore, we explore the properties and application of straight or curved waveguides with line defects in a two-dimensional photonic crystal and analyze the energy variation of electromagnetic wave propagation.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-01T16:21:25Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-01T16:21:25Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 II
中文摘要 III
Abstract IV
目錄 V
圖目錄 VII
表目錄 XI
第一章 導論 1
1.1 前言 1
1.2 本文內容 3
1.3 文獻回顧 3
1.4 研究動機與目標 6
第二章 模擬方法:時域有限差分法 7
2.1 時域有限差分法(Finite-difference time-domain) 8
2.2 中央有限差分(Central finite difference) 10
2.3 馬克士威方程離散化 11
2.4 The Yee Algorithm 12
2.5 Courant Limit 15
2.6 完美吸收邊界條件(Perfectly Matched Layer Absorbing Boundary Condition, PMLABC) 18
第三章 光子晶體理論分析 21
3.1 週期性函數與倒空間 21
3.2 Bloch’s theorem 26
3.3 平面波展開法 30
3.4 平面波展開法程式驗證 32
第四章 模擬結果討論與分析 33
4.1 模擬無缺陷二維光子晶體-時域有限差分法 33
4.1.1 層數與穿透率關係 35
4.1.2 填充圓柱半徑與穿透率關係 38
4.2 模擬無缺陷二維正方光子晶體-平面波展開法 41
4.3 模擬無缺陷二維正方光子晶體-小結 43
4.4 模擬線缺陷二維正方光子晶體 46
4.5 模擬彎曲波導 51
第五章 結論與未來展望 54
5.1 結論 54
5.2 研究限制與討論 55
5.3 未來展望 56
參考文獻 57
-
dc.language.isozh_TW-
dc.title以時域有限差分法分析光子晶體波導之光學特性zh_TW
dc.titleSimulation of a photonic crystal waveguide using the FDTD methoden
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃定洧;蕭惠心zh_TW
dc.contributor.oralexamcommitteeDing-wei Huang;Hui-Hsin Hsiaoen
dc.subject.keyword時域有限差分法,光子晶體波導,數值模擬,zh_TW
dc.subject.keywordFDTD method,photonic crystal waveguide,numerical simulation,en
dc.relation.page59-
dc.identifier.doi10.6342/NTU202301177-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-06-29-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept光電工程學研究所-
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf5.93 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved