Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87993
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor羅世強zh_TW
dc.contributor.advisorShyh-Chyang Luoen
dc.contributor.author林姿妤zh_TW
dc.contributor.authorTzu-Yu Linen
dc.date.accessioned2023-08-01T16:16:58Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-01-
dc.date.issued2023-
dc.date.submitted2023-07-05-
dc.identifier.citation(1) Guo, X.; Facchetti, A. The Journey of Conducting Polymers from Discovery to Application. Nat. Mater. 2020, 19 (9), 922-928.
(2) Rivnay, J.; Owens, R. M.; Malliaras, G. G. The Rise of Organic Bioelectronics. Chem. Mater. 2013, 26 (1), 679-685.
(3) Simon, D. T.; Gabrielsson, E. O.; Tybrandt, K.; Berggren, M. Organic Bioelectronics: Bridging the Signaling Gap between Biology and Technology. Chem. Rev. 2016, 116 (21), 13009-13041.
(4) Guimard, N. K.; Gomez, N.; Schmidt, C. E. Conducting Polymers in Biomedical Engineering. Prog. Polym. Sci. 2007, 32 (8-9), 876-921.
(5) Luo, S.-C. Conducting Polymers as Biointerfaces and Biomaterials: A Perspective for a Special Issue of Polymer Reviews. Polym. Rev. 2013, 53 (3), 303-310.
(6) Peng, Y.; Pi, M.; Zhang, X.; Yan, B.; Li, Y.; Shi, L.; Ran, R. High Strength, Antifreeze, and Moisturizing Conductive Hydrogel for Human‐motion Detection. Polymer 2020, 196.
(7) Choi, J. S.; Park, J. S.; Kim, B.; Lee, B.-T.; Yim, J.-H. In Vitro Biocompatibility of Vapour Phase Polymerised Conductive Scaffolds for Cell Lines. Polymer 2017, 124, 95-100.
(8) Zhu, B.; Luo, S. C.; Zhao, H.; Lin, H. A.; Sekine, J.; Nakao, A.; Chen, C.; Yamashita, Y.; Yu, H. H. Large Enhancement in Neurite Outgrowth on a Cell Membrane-Mimicking Conducting Polymer. Nat. Commun. 2014, 5, 4523.
(9) Chin, M.; Tada, S.; Tsai, M. H.; Ito, Y.; Luo, S. C. Strategy to Immobilize Peptide Probe Selected through In Vitro Ribosome Display for Electrochemical Aptasensor Application. Anal. Chem. 2020, 92 (16), 11260-11267.
(10) Pitsalidis, C.; Pappa, A. M.; Boys, A. J.; Fu, Y.; Moysidou, C. M.; van Niekerk, D.; Saez, J.; Savva, A.; Iandolo, D.; Owens, R. M. Organic Bioelectronics for In Vitro Systems. Chem. Rev. 2022, 122 (4), 4700-4790.
(11) Berggren, M.; Glowacki, E. D.; Simon, D. T.; Stavrinidou, E.; Tybrandt, K. In Vivo Organic Bioelectronics for Neuromodulation. Chem. Rev. 2022, 122 (4), 4826-4846.
(12) Hsiao, Y. S.; Liao, Y. H.; Chen, H. L.; Chen, P.; Chen, F. C. Organic Photovoltaics and Bioelectrodes Providing Electrical Stimulation for PC12 Cell Differentiation and Neurite Outgrowth. ACS Appl. Mater. Interfaces 2016, 8 (14), 9275-9284.
(13) Aerathupalathu Janardhanan, J.; Chen, Y. L.; Liu, C. T.; Tseng, H. S.; Wu, P. I.; She, J. W.; Hsiao, Y. S.; Yu, H. H. Sensitive Detection of Sweat Cortisol Using an Organic Electrochemical Transistor Featuring Nanostructured Poly(3,4-Ethylenedioxythiophene) Derivatives in the Channel Layer. Anal. Chem. 2022, 94 (21), 7584-7593.
(14) Lin, H. A.; Zhu, B.; Wu, Y. W.; Sekine, J.; Nakao, A.; Luo, S. C.; Yamashita, Y.; Yu, H. H. Dynamic Poly(3,4‐ethylenedioxythiophene)s Integrate Low Impedance with Redox‐Switchable Biofunction. Adv. Funct. Mater. 2018, 28 (12).
(15) Ludwig, K. A.; Uram, J. D.; Yang, J.; Martin, D. C.; Kipke, D. R. Chronic Neural Recordings Using Silicon Microelectrode Arrays Electrochemically Deposited with a Poly(3,4-ethylenedioxythiophene) (PEDOT) Film. J. Neural Eng. 2006, 3 (1), 59-70.
(16) Cui, X.; Martin, D. C. Electrochemical Deposition and Characterization of Poly(3,4-ethylenedioxythiophene) on Neural Microelectrode Arrays. Sens. Actuators, B 2003, 89 (1), 92-102.
(17) Bodart, C.; Rossetti, N.; Hagler, J. E.; Chevreau, P.; Chhin, D.; Soavi, F.; Schougaard, S. B.; Amzica, F.; Cicoira, F. Electropolymerized Poly(3,4-ethylenedioxythiophene) (PEDOT) Coatings for Implantable Deep-Brain-Stimulating Microelectrodes. ACS Appl. Mater. Interfaces 2019, 11 (19), 17226-17233.
(18) Ludwig, K. A.; Langhals, N. B.; Joseph, M. D.; Richardson-Burns, S. M.; Hendricks, J. L.; Kipke, D. R. Poly(3,4-ethylenedioxythiophene) (PEDOT) Polymer Coatings Facilitate Smaller Neural Recording Electrodes. J. Neural Eng. 2011, 8 (1), 014001.
(19) Wilks, S.; Richardson-Burn, S.; Hendricks, J.; Martin, D.; Otto, K. Poly(3,4-ethylenedioxythiophene) (PEDOT) as a Micro-Neural Interface Material for Electrostimulation. Front. Neuroeng. 2009, 2, Original Research.
(20) Wu, J. G.; Chen, J. H.; Liu, K. T.; Luo, S. C. Engineering Antifouling Conducting Polymers for Modern Biomedical Applications. ACS Appl. Mater. Interfaces 2019, 11 (24), 21294-21307.
(21) Wang, Y. S.; Yau, S.; Chau, L. K.; Mohamed, A.; Huang, C. J. Functional Biointerfaces Based on Mixed Zwitterionic Self-Assembled Monolayers for Biosensing Applications. Langmuir 2019, 35 (5), 1652-1661.
(22) Chen, S.; Li, L.; Zhao, C.; Zheng, J. Surface Hydration: Principles and Applications toward Low-Fouling/Nonfouling Biomaterials. Polymer 2010, 51 (23), 5283-5293.
(23) Chen, Y.; Luo, S. C. Synergistic Effects of Ions and Surface Potentials on Antifouling Poly(3,4-ethylenedioxythiophene): Comparison of Oligo(Ethylene Glycol) and Phosphorylcholine. Langmuir 2019, 35 (5), 1199-1210.
(24) Shimizu, A.; Hifumi, E.; Kojio, K.; Takahara, A.; Higaki, Y. Modulation of Double Zwitterionic Block Copolymer Aggregates by Zwitterion-Specific Interactions. Langmuir 2021, 37 (50), 14760-14766.
(25) Fan, Y. J.; Pham, M. T.; Huang, C. J. Development of Antimicrobial and Antifouling Universal Coating via Rapid Deposition of Polydopamine and Zwitterionization. Langmuir 2019, 35 (5), 1642-1651.
(26) Ma, N.; Cao, J.; Li, H.; Zhang, Y.; Wang, H.; Meng, J. Surface Grafting of Zwitterionic and PEGylated Cross-Linked Polymers toward PVDF Membranes with Ultralow Protein Adsorption. Polymer 2019, 167, 1-12.
(27) Huang, J. J.; Lin, C. H.; Tanaka, Y.; Yamamoto, A.; Luo, S. C.; Tanaka, M. Manipulation of Surface Hydration States by Tuning the Oligo(Ethylene Glycol) Moieties on PEDOT to Achieve Platelet‐Resistant Bioelectrode Applications. Adv. Mater. Interfaces 2022.
(28) Mukai, M.; Cheng, C. H.; Ma, W.; Chin, M.; Lin, C. H.; Luo, S. C.; Takahara, A. Synthesis of a Conductive Polymer Thin Film Having a Choline Phosphate Side Group and its Bioadhesive Properties. Chem Commun (Camb) 2020, 56 (18), 2691-2694.
(29) Lin, C. H.; Luo, S. C. Combination of AFM and Electrochemical QCM-D for Probing Zwitterionic Polymer Brushes in Water: Visualization of Ionic Strength and Surface Potential Effects. Langmuir 2021, 37 (42), 12476-12486.
(30) Fujii, S.; Kozuka, S.; Yokota, K.; Ishihara, K.; Yusa, S. I. Preparation of Biocompatible Poly(2-(methacryloyloxy)ethyl phosphorylcholine) Hollow Particles Using Silica Particles as a Template. Langmuir 2022, 38 (18), 5812-5819.
(31) Sakamaki, T.; Inutsuka, Y.; Igata, K.; Higaki, K.; Yamada, N. L.; Higaki, Y.; Takahara, A. Ion-Specific Hydration States of Zwitterionic Poly(sulfobetaine methacrylate) Brushes in Aqueous Solutions. Langmuir 2019, 35 (5), 1583-1589.
(32) Higaki, Y.; Inutsuka, Y.; Sakamaki, T.; Terayama, Y.; Takenaka, A.; Higaki, K.; Yamada, N. L.; Moriwaki, T.; Ikemoto, Y.; Takahara, A. Effect of Charged Group Spacer Length on Hydration State in Zwitterionic Poly(sulfobetaine) Brushes. Langmuir 2017, 33 (34), 8404-8412.
(33) Lin, C. H.; Luo, S. C. Zwitterionic Conducting Polymers: From Molecular Design, Surface Modification, and Interfacial Phenomenon to Biomedical Applications. Langmuir 2022, 38 (24), 7383-7399.
(34) Erfani, A.; Seaberg, J.; Aichele, C. P.; Ramsey, J. D. Interactions between Biomolecules and Zwitterionic Moieties: A Review. Biomacromolecules 2020, 21 (7), 2557-2573.
(35) Zhao, F.; Guo, Y.; Zhou, X.; Shi, W.; Yu, G. Materials for Solar-Powered Water Evaporation. Nat. Rev. Mater. 2020, 5 (5), 388-401.
(36) Chen, C.; Kuang, Y.; Hu, L. Challenges and Opportunities for Solar Evaporation. Joule 2019, 3 (3), 683-718.
(37) Li, Z.; Wang, C.; Su, J.; Ling, S.; Wang, W.; An, M. Fast-Growing Field of Interfacial Solar Steam Generation: Evolutional Materials, Engineered Architectures, and Synergistic Applications. Solar RRL 2019, 3 (3), 1800206.
(38) Liu, X.; Mishra, D. D.; Wang, X.; Peng, H.; Hu, C. Towards Highly Efficient Solar-Driven Interfacial Evaporation for Desalination. J. Mater. Chem. A 2020, 8 (35), 17907-17937, 10.1039/C9TA12612K.
(39) Zhou, H.-C.; Long, J. R.; Yaghi, O. M. Introduction to Metal–Organic Frameworks. Chem. Rev. 2012, 112 (2), 673-674.
(40) Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341 (6149), 1230444.
(41) Abdullah, N.; Yusof, N.; Ismail, A. F.; Lau, W. J. Insights into Metal-Organic Frameworks-Integrated Membranes for Desalination Process: A Review. Desalination 2021, 500, 114867.
(42) Cao, Z.; Liu, V.; Barati Farimani, A. Water Desalination with Two-Dimensional Metal–Organic Framework Membranes. Nano Lett. 2019, 19 (12), 8638-8643.
(43) Hu, T.-N.; Hsu, C.-H.; Chiou, D.-S.; Kang, D.-Y.; Luo, S.-C. CAU-10-H as Efficient Water Sorbent for Solar Steam Generation. J. Taiwan Inst. Chem. Eng. 2022, 141, 104593.
(44) Liu, P.; Chen, Q.; Li, L.; Lin, S.; Shen, J. Anti-biofouling Ability and Cytocompatibility of the Zwitterionic Brushes-Modified Cellulose Membrane. J. Mater. Chem. B 2014, 2 (41), 7222-7231.
(45) Xu, X.; Guillomaitre, N.; Christie, K. S. S.; Bay, R. K. n.; Bizmark, N.; Datta, S. S.; Ren, Z. J.; Priestley, R. D. Quick-Release Antifouling Hydrogels for Solar-Driven Water Purification. ACS Cent. Sci. 2023, 9 (2), 177-185.
(46) Zhang, Y. Q.; Lin, H. A.; Pan, Q. C.; Qian, S. H.; Zhang, S. H.; Qiu, G.; Luo, S. C.; Yu, H. H.; Zhu, B. Tunable Protein/Cell Binding and Interaction with Neurite Outgrowth of Low-Impedance Zwitterionic PEDOTs. ACS Appl. Mater. Interfaces 2020, 12 (10), 12362-12372.
(47) Lin, T.-Y.; Lo, W.-Y.; Kao, T.-Y.; Lin, C.-H.; Wu, Y.-K.; Luo, S.-C. Manipulating the Distribution of Surface Charge of PEDOT toward Zwitterion-Like Antifouling Properties. Polymer 2022, 262, 125507.
(48) Ghasemi, H.; Ni, G.; Marconnet, A. M.; Loomis, J.; Yerci, S.; Miljkovic, N.; Chen, G. Solar Steam Generation by Heat Localization. Nat. Commun. 2014, 5 (1), 4449.
(49) Dao, V.-D.; Choi, H.-S. Carbon-Based Sunlight Absorbers in Solar-Driven Steam Generation Devices. Global Challenges 2018, 2 (2), 1700094.
(50) Han, D.; Meng, Z.; Wu, D.; Zhang, C.; Zhu, H. Thermal Properties of Carbon Black Aqueous Nanofluids for Solar Absorption. Nanoscale Res. Lett. 2011, 6 (1), 457.
(51) Zou, Y.; Yang, P.; Yang, L.; Li, N.; Duan, G.; Liu, X.; Li, Y. Boosting Solar Steam Generation by Photothermal Enhanced Polydopamine/Wood Composites. Polymer 2021, 217, 123464.
(52) Hauser, D.; Steinmetz, L.; Balog, S.; Taladriz-Blanco, P.; Septiadi, D.; Wilts, B. D.; Petri-Fink, A.; Rothen-Rutishauser, B. Polydopamine Nanoparticle Doped Nanofluid for Solar Thermal Energy Collector Efficiency Increase. Adv. Sustainable Syst. 2020, 4 (1), 1900101.
(53) Wu, J. G.; Lee, C. Y.; Wu, S. S.; Luo, S. C. Ionic Liquid-Assisted Electropolymerization for Lithographical Perfluorocarbon Deposition and Hydrophobic Patterning. ACS Appl. Mater. Interfaces 2016, 8 (34), 22688-22695.
(54) Liu, Y.; He, T.; Gao, C. Surface Modification of Poly(ethylene terephthalate) via Hydrolysis and Layer-by-layer Assembly of Chitosan and Chondroitin Sulfate to Construct Cytocompatible Layer for Human Endothelial Cells. Colloids Surf., B 2005, 46 (2), 117-126.
(55) Luo, S.-C.; Mohamed Ali, E.; Tansil, N. C.; Yu, H.-h.; Gao, S.; Kantchev, E. A. B.; Ying, J. Y. Poly(3,4-ethylenedioxythiophene) (PEDOT) Nanobiointerfaces: Thin, Ultrasmooth, and Functionalized PEDOT Films with in Vitro and in Vivo Biocompatibility. Langmuir 2008, 24 (15), 8071-8077.
(56) Xu, C.; Jiang, J.; Oguzlu, H.; Zheng, Y.; Jiang, F. Antifouling, Antibacterial and Non-Cytotoxic Transparent Cellulose Membrane with Grafted Zwitterion and Quaternary Ammonium Copolymers. Carbohydr. Polym. 2020, 250, 116960.
(57) Dixon, M. C. Quartz Crystal Microbalance with Dissipation Monitoring: Enabling Real-Time Characterization of Biological Materials and their Interactions. J Biomol Tech. 2008, 19 (3), 151-158.
(58) Easley, A. D.; Ma, T.; Eneh, C. I.; Yun, J.; Thakur, R. M.; Lutkenhaus, J. L. A Practical Guide to Quartz Crystal Microbalance with Dissipation Monitoring of Thin Polymer Films. J. Polym. Sci. 2022, 60 (7), 1090-1107.
(59) Shyh-Chyang Luo, E. M. A., Natalia C. Tansil, Hsiao-hua Yu, Shujun Gao, Eric A. B. Kantchev, and Jackie Y. Ying. Poly(3,4-ethylenedioxythiophene) (PEDOT) Nanobiointerfaces: Thin, Ultrasmooth, and Functionalized PEDOT Films with in Vitro and in Vivo Biocompatibility. Langmuir 2008, 24, 6.
(60) Chau, T. T.; Bruckard, W. J.; Koh, P. T.; Nguyen, A. V. A Review of Factors that Affect Contact Angle and Implications for Flotation Practice. Adv. Colloid Interface Sci. 2009, 150 (2), 106-115.
(61) Kanazawa, K. K.; Gordon, J. G. Frequency of a Quartz Microbalance in Contact with Liquid. Anal. Chem. 1985, 57 (8), 1770-1771. DOI: 10.1021/ac00285a062.
(62) Sauerbrey, G. Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Zeitschrift für Physik 1959, 155 (2), 206-222.
(63) Parks, J. S.; Cistola, D. P.; Small, D. M.; Hamilton, J. A. Interactions of the Carboxyl Group of Oleic Acid with Bovine Serum Albumin: A 13C NMR Study. J. Biol. Chem. 1983, 258 (15), 9262-9269.
(64) Moriguchi, I. Protein Bindings. II. Binding of Aromatic Carboxylic Acids to Bovine Serum Albumin. Chem. Pharm. Bull. 1968, 16 (4), 597-600.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87993-
dc.description.abstract隨著醫療技術的進步,生物醫學應用相關的研究也大幅增加。在不同的材料中,聚(3,4-乙二氧基噻吩)(PEDOT)被認為是一種有潛力的導電材料,可用於生物電子傳感器。為了研究PEDOT表面電荷對蛋白質結合行為的影響,我們開發了一種新的帶正電荷的官能化EDOT單體,即EDOT-N+。我們使用電化學方法將帶有負電荷的羧酸官能化EDOT單體(EDOT-COOH)與EDOT-N+進行共聚,並調整了不同的單體比例。結果表明,在 [EDOT-N+] : [EDOT-COOH] = 8:2的比例下,實際鍍上去的高分子共聚物的比例會是1:1,此poly(EDOT-N+-co-EDOT-COOH)共聚物表現出良好的抗污染性能。因此,我們提出了一種由等密度正負官能基團組成的共聚物產生類似兩性離子高分子的抗污染性能。

除了在生物醫學領域的應用外,兩性離子高分子的特殊抗污染性能使其在許多不同的領域中同樣成為受歡迎的材料。隨著水資源短缺的問題日益嚴重,新型淨水技術的研發變得刻不容緩。太陽能水純化被認為是一種有前景的方法,因為地球表面有71%的面積被水覆蓋,其中蘊藏量最大的就是海水,再加上隨處可得源源不絕的太陽能可供利用,這將會是一種環境友善且永續的淨水方式。我們設計了一個雙層結構的太陽能水純化平台,利用吸水性良好的醋酸纖維膜作為基材,配合金屬有機框架作為絕緣層,同時利用其多孔結構進行水傳輸。碳黑和聚多巴胺則是作為吸光材,將吸收的光轉化為熱能。而為了延長太陽能水純化平台的使用壽命,我們特別在平台底部設計了一層兩性離子高分子刷旨在實現抗污染功能,使水中的污染物不會沾附在平台上,以防止平台的多孔結構被堵塞而導致水純化效率下降甚至是失去功能。
zh_TW
dc.description.abstractWith the advancement of medical technology, research in biomedical applications also essentially increases. Among different materials, poly(3,4-ethylenedioxythiophene) (PEDOT) has been regarded as a promising conductive material for bioelectronics. To investigate the surface charge effect on protein binding behavior on PEDOT, we developed a new positively charged functionalized EDOT monomer, EDOT-N+. We used an electrochemical method to copolymerize EDOT-N+ with negatively charged carboxylic acid-functionalized EDOT monomer, EDOT-COOH, with different feed ratios. The results show that at [EDOT- N+] : [EDOT-COOH] = 8:2, where an actual 1:1 ratio of the copolymer was determined, the poly(EDOT-N+-co-EDOT-COOH) presented good antifouling performance. Therefore, we propose a zwitterion-like antifouling property from the poly(EDOT-N+-co-EDOT-COOH) with an equal density of both positive and negative functional groups.

Despite applications in the biomedical field, the special antifouling property of zwitterionic polymer makes it a popular material in many different professions. As the water scarcity issue becomes more serious, there must come out with some solutions to produce clean water. Solar desalination has been regarded as a promising method since there is inexhaustible seawater on earth and ubiquitous solar energy readily available. This would be an environmental-friendly and sustainable method to produce clean water. We designed a double-layer structure for the desalination platform with a highly water-sorbent cellulose acetate membrane as the substrate and metal-organic framework working as the insulating layer while also serving as water absorbing layer crediting to the porous structure to allow water transport. Carbon black and polydopamine are solar-absorbing materials that convert absorbed light into heat. To extend the service life of the platform, we especially designed a layer of zwitterionic polymer brush at the bottom of the desalination platform aiming to provide an antifouling function so that the pollutants in the water would be repelled from the platform, preventing the porous structure of the platform being obstructed and make the platform fail.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-01T16:16:58Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-01T16:16:58Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
中文摘要 ii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES xi
LIST OF TABLES xvii
Chapter 1 Introduction 1
1.1 Conducting Polymer in Biomedical Applications 1
1.1.1 Antifouling Conducting Polymer 1
1.1.2 Zwitterionic Polymer 2
1.2 Utilize Metal-Organic Framework and Polymer Brush Design in Solar Desalination System 5
1.2.1 Solar Desalination Platform 6
1.2.2 Metal-Organic Framework in Desalination Platform 7
1.2.3 Antifouling Zwitterionic Polymer Brush 9
1.3 Research Goal 12
1.3.1 Surface Charge Tuning of Poly(EDOT-N+-co-EDOT-COOH) 12
1.3.2 Zwitterionic Polymer Brush-Modified Metal-Organic Framework-Based Solar Desalination Platform 14
Chapter 2 Materials and Methods 17
2.1 Materials and Instruments 17
2.1.1 Materials 17
2.1.2 Instruments 19
2.2 Fabrication of Poly(EDOT-N+-co-EDOT-COOH) Film 20
2.2.1 Synthesis of EDOT-N+ Monomer 20
2.2.2 Electropolymerization of Poly(EDOT-OH) Adhesion Layer 21
2.2.3 Electropolymerization of Poly(EDOT-N+-co-EDOT-COOH) Film 22
2.3 Surface Characterization of Poly(EDOT-N+-co-EDOT-COOH) Film 23
2.3.1 Determination of Carboxylic Acid Groups Surface Density by UV-Vis Spectroscopy 23
2.4 Fabrication of MOF-Based Solar Desalination Platform 24
2.4.1 Synthesis of CAU-10-H Powder 24
2.4.2 Synthesis of CAU-10-H Membranes 24
2.4.3 Deposition of Solar Absorber Layer 26
2.5 Water Evaporation Test 27
2.5.1 Device Setup for the Water Evaporation Test 27
2.6 Grafting of Zwitterionic Polymer Brush 28
2.6.1 Immobilization of Initiator on Cellulose Acetate Surface 28
2.6.2 Grafting Zwitterionic Polymer Brush on Cellulose Acetate Membrane via SI-ATRP Method 29
2.7 Characterization 30
2.7.1 Contact Angle Measurement 30
2.7.2 Atomic Force Microscopy (AFM) 30
2.7.3 Fourier-Transform Infrared Spectroscopy (FTIR) 30
2.7.4 UV-Vis Spectroscopy (UV-Vis) 31
2.7.5 X-ray Photoelectron Spectroscopy (XPS) 31
2.7.6 Quartz Crystal Microbalance with Dissipation Monitoring (QCM-D) 31
2.7.7 X-ray Diffraction (XRD) 32
2.7.8 Scanning Electron Microscopy (SEM) 32
Chapter 3 Results and Discussion 33
3.1 Tuning the Surface Charge through Electrochemical Copolymerization of Functionalized PEDOTs toward Antifouling Surfaces 33
3.1.1 Determine between Organic Solvent and DI water 33
3.1.2 The Fabrication of Poly(EDOT-N+-co-EDOT-COOH) Film 35
3.1.3 Surface Characterization of Poly(EDOT-N+-co-EDOT-COOH). 36
3.1.4 Elemental Information Acquired by XPS Technique 40
3.1.5 Determination of Carboxylic Acid Group on EDOT-COOH 42
3.1.6 Contact Angle Measurement 44
3.1.7 Protein Binding Behavior on Poly(EDOT-N+-co-EDOT-COOH) 48
3.2 Improved Antifouling property of Metal-Organic Framework-Based Solar Desalination System by Zwitterionic Polymer Grafting 54
3.2.1 Surface Characterization of the Synthesized Films 54
3.2.2 Surface Characterization of Deposited Solar Absorber Layer 60
3.2.3 Water Evaporation Test of Different MOF Films 62
3.2.4 Cyclability Test of Water Evaporation Test 65
3.2.5 Grafting of Zwitterionic SBMA Polymer Brush on Cellulose Acetate Membrane 68
3.2.6 Determination of SBMA Polymer Brush by EDS Technique 69
3.2.7 Determination of SBMA Polymer Brush by XPS Technique 71
3.2.8 Water Evaporation Test of Cellulose Acetate Membrane Grafted with SBMA Polymer Brush 74
Chapter 4 Conclusion 77
4.1 Surface Charge Tuning of Poly(EDOT-N+-co-EDOT-COOH) 77
4.2 Zwitterionic Polymer Brush-Modified Metal-Organic Framework-Based Solar Desalination Platform 78
Chapter 5 Future Work 80
5.1 Surface Charge Tuning of Poly(EDOT-N+-co-EDOT-COOH) 80
5.2 Zwitterionic Polymer Brush-Modified Metal-Organic Framework-Based Solar Desalination Platform 80
REFERENCE 82
-
dc.language.isoen-
dc.subject抗污染表面zh_TW
dc.subject4-乙二氧基噻吩)(EDOT)zh_TW
dc.subject兩性離子zh_TW
dc.subject表面電荷zh_TW
dc.subject太陽能水純化zh_TW
dc.subject金屬有機框架zh_TW
dc.subject兩性離子高分子刷zh_TW
dc.subject官能化聚(3zh_TW
dc.subject水蒸發zh_TW
dc.subject電聚合zh_TW
dc.subject石英晶體微量天平zh_TW
dc.subjectwater evaporationen
dc.subjectSurface chargeen
dc.subjectzwitterionen
dc.subjectantifouling surfaceen
dc.subjectquartz crystal microbalanceen
dc.subjectelectropolymerizationen
dc.subjectfunctionalized-EDOTen
dc.subjectsolar desalinationen
dc.subjectmetal-organic frameworken
dc.subjectzwitterionic polymer brushen
dc.title探索帶電之官能化聚(3,4-乙烯基二氧噻吩)共聚物及兩性離子高分子刷在抗生物沾黏上之應用zh_TW
dc.titleExplore the Antifouling Applications in Charged Functionalized Poly(3,4-ethylenedioxythiophene) Copolymer and Zwitterionic Polymer Brushen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee康敦彥;劉振良zh_TW
dc.contributor.oralexamcommitteeDun-Yen Kang;Cheng-Liang Liuen
dc.subject.keyword表面電荷,兩性離子,抗污染表面,石英晶體微量天平,電聚合,官能化聚(3,4-乙二氧基噻吩)(EDOT),太陽能水純化,金屬有機框架,兩性離子高分子刷,水蒸發,zh_TW
dc.subject.keywordSurface charge,zwitterion,antifouling surface,quartz crystal microbalance,electropolymerization,functionalized-EDOT,solar desalination,metal-organic framework,zwitterionic polymer brush,water evaporation,en
dc.relation.page89-
dc.identifier.doi10.6342/NTU202301269-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-07-06-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf5.86 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved