請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87982完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃慶怡 | zh_TW |
| dc.contributor.advisor | Ching-I Huang | en |
| dc.contributor.author | 陳品臻 | zh_TW |
| dc.contributor.author | Pin-Zhen Chen | en |
| dc.date.accessioned | 2023-08-01T16:13:12Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-01 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-06-27 | - |
| dc.identifier.citation | 1. Li, J.; Zhang, H.; Xie, W.; Cheng L.; Liu X.; Zhang X.; Li L., Pan G. Elevated CO 2 increases soil redox potential by promoting root radial oxygen loss in paddy field. J Environ Sci 2024, 136, 11–20.
2. https://www.nbc15.com/2021/05/13/yearly-carbon-dioxide-peak 3. Gao, W.; Liang, S.; Wang, R.; Jiang, Q.; Zhang, Y.; Zheng, Q.; Xie B.; Toe, C. Y.; Zhu, X.; Wang J.; Huang, L.; Gao, Y.; Wang, Z.; Jo, C.; Wang, Q.; Wang, L.; Liu, Y.; Louis, B.; Scott, Jason. Industrial carbon dioxide capture and utilization: state of the art and future challenges. Chem. Soc. Rev. 2020, 49, 8584—8686. 4. Sgouris, S.; Michael, C.D.; Denes, C.; Matteo, C.; Ugo, B. Comparative net energy analysis of renewable electricity and carbon capture and storage. Nat. Energy 2019, 456, 456–465. 5. Dennis, Y.C.L.; Giorgio, C.; M. Mercedes, M.V. An overview of current status of carbon dioxide capture and storage technologies. Renew. Sust. Energ. Rev. 2014, 39, 426–443. 6. https://groundwater.org/threats 7. Maeda, K. Metal-complex/semiconductor hybrid photocatalysts and photoelectrodes for co2 reduction driven by visible light. Adv. Mater. 2019, 31, 1808205. 8. Tang, G.; Li, J.; Lu, Y.; Song, T.; Yin, S.; Mao, G.; Long, B.; Ali, A.; Deng, G.J. Donor-acceptor organic polymer with sulfur bridge for superior photocatalytic CO2 reduction to CH4 under visible light illumination. Chem. Eng. J. 2023, 451, 138744. 9. Olah, G.A.; Surya Prakash, G. K.; Goeppert, A. Anthropogenic chemical carbon cycle for a sustainable future. J. Am. Chem. Soc. 2011, 133, 12881–12898. 10. Lia, K.; Ana, X.; Parka, K.H.; Khraisheh, M.; Tanga, J. A critical review of CO2 photoconversion: catalysts and reactors, Catal. Today 2014, 224, 3–12. 11. Schwarz, H. A.; Dodson, R. W.; Reduction potentials of co2- and the alcohol radicals. J. Phys. Chem. 1989, 93, 1. 12. Indrakanti, V.P.; Kubicki, J.D.; Schobert, H.H. Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: Current state, chemical physics-based insights and outlook. Energy Environ. Sci. 2009, 2, 745–758. 13. Daghrir, R.; Drogui, P.; Robert, D. Modified tio2 for environmental photocatalytic applications: a review. Ind. Eng. Chem. Res. 2013, 52, 3581−3599. 14. Li, X.; Wen, J.; Low, J.; Fang, Y.; Yu, J. Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel. Sci China Mater 2014, 57, 70–100. 15. Liu, L.; Zhao, H.; Andino, J.M.; Li, Y. photocatalytic co2 reduction with H2O on TiO2 nanocrystals: comparison of anatase, rutile, and brookite polymorphs and exploration of surface chemistry. ACS Catal. 2012, 2, 1817−1828. 16. Yamashit, H.; Kamada, N.; He, H.; Tanaka, K.I.; Ehara, S.; Anpo, M. Reduction of CO2 with H2O on TiO2(100) and TiO2(110) single crystals under UV-irradiation. Bull. Chem. Soc. Jpn. 1994, 25, 855-858. 17. Yui, T.; Kan, A.; Saitoh, C.; Koike, K.; Ibusuki, T.; Ishitani, O. Photochemical reduction of CO2 using TiO2: effects of organic adsorbates on TiO2 and deposition of Pd onto TiO2. ACS Appl. Mater. Interfaces 2011, 3, 2594–2600. 18. Lia, Z.; Menga, X.; Zhanga, Z. Recent development on MoS2-based photocatalysis: A review. J. Photochem. Photobiol. C 2018, 35, 39–55. 19. Novoselov, K.S.; Jiang, D.; Schedin, F.; Booth, T.J.; Khotkevich, V.V.; Morozov, S.V.; Geim, A.K. Two-dimensional atomic crystals. PNAS 2005, 102, 30. 20. Chen, X.; Zhou, Y.; Liu, Q.; Li, Z.; Liu, J.; Zou, Z. Ultrathin, single-crystal WO3 nanosheets by two-dimensional oriented attachment toward enhanced photocatalystic reduction of CO2 into hydrocarbon fuels under visible light. ACS Appl. Mater. Interfaces 2012, 4, 3372−3377. 21. Zhang, X.; Xie, X.; Wang, H.; Zhang, J.; Pan, B.; Xie, Y. Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J. Am. Chem. Soc. 2013, 135, 18−21. 22. Zhu, Z.; Huo, P.; Lu, Z.; Yan, Y.; Liu, Z.; Shi, W.; Li, C.; Dong, H. Fabrication of magnetically recoverable photocatalysts using g-C3N4 for effective separation of charge carriers through like-Z-scheme mechanism with Fe3O4 mediator. Chem. Eng. J. 2018, 331, 615–625. 23. Goettmann, F.; Fischer, A.; Antonietti, M.; Thomas, A. Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal-free catalyst for friedel–crafts reaction of benzene. Angew. Chem. Int. Ed. 2006, 45, 4467 –4471. 24. Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J.M.; Domen, K.; Antonietti1, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature Mater. 2009, 8, 76-80. 25. Che, H.; Che, G.; Zhou, P.; Liu, C.; Dong, H.; Li, C.; Song, N.; Li, C. Nitrogen doped carbon ribbons modified g-C3N4 for markedly enhanced photocatalytic H2-production in visible to near-infrared region. Chem. Eng. J. 2020, 382, 122870. 26. Zhang, Y.; Pan, Q.; Chai, G.; Liang, M.; Dong, G.; Zhang, Q.; Qiu, J. Synthesis and luminescence mechanism of multicolor-emitting g-C3N4 nanopowders by low temperature thermal condensation of melamine. Sci. Rep. 2013, 3, 1949. 27. Zheng, Y.; Lin, L.; Wang, B.; Wang, X. Graphitic carbon nitride polymers toward sustainable photoredox catalysis. Angew. Chem. Int. Ed. 2015, 54, 12868 – 12884. 28. Liu, Q.; Chen, T.; Guo, Y.; Zhang, Z.; Fang, X. Ultrathin g-C3N4 nanosheets coupled with carbon nanodots as 2D/0Dcomposites for efficient photocatalytic H2 evolution. Appl. Catal. B 2016, 193, 248–258. 29. Niu, P.; Qiao, M.; Li, Y.; Huang, L.; Zhai, T. Distinctive defects engineering in graphitic carbon nitride for greatly extended visible light photocatalytic hydrogen evolution. Nano Energy 2018, 44, 73–81. 30. Ren, Y.; Zeng, D.; Ong, W.J. Interfacial engineering of graphitic carbon nitride (g-C3N4)-based metal sulfide heterojunction photocatalysts for energy conversion: a review. Chinese J. Catal. 2019, 40, 289–319. 31. Mo, Z.; Zhu, X.; Jiang, Z.; Song, Y.; Liu, D.; Li, H.; Yang, X.; She, Y.; Lei, Y.; Yuan, S.; Li, H.; Song, L.; Yan, Q.; Xu, H. Porous nitrogen-rich g-C3N4 nanotubes for efficient photocatalytic CO2 reduction. Appl. Catal. B 2019, 256, 117854. 32. Wang, Y.; Liu, H.; Pan, Q.; Ding, N.; Yang, C.; Zhang, Z.; Jia, C.; Li, Z.; Liu, J.; Zhao, Y. Construction of thiazolo[5,4‑d]thiazole-based two-dimensional network for efficient photocatalytic CO2 reduction. ACS Appl. Mater. Interfaces 2020, 12, 46483−46489. 33. Li , L.; Lo, W.Y.; Cai, Z.; Zhang, N.; Yu, L. Donor−acceptor porous conjugated polymers for photocatalytic hydrogen production: the importance of acceptor comonomer. J. Biol. Macromol. 2016, 49, 6903−6909. 34. Kim, Y.H.; Kim, N.; Seo, J.M., Jeon, J.P.; Noh, H.J.; Kweon. D.H.; Ryu, J.; Baek, J.B. Benzothiazole-based covalent organic frameworks with different symmetrical combinations for photocatalytic CO2 conversion. Chem. Mater. 2021, 33, 8705−8711. 35. Li, W.; Huang, X.; Zeng, T.; Liu, Y.A.; Hu, W.; Yang, H.; Zhang, Y.B.; Wen, K. Thiazolo[5,4-d]thiazole-Based Donor–Acceptor Covalent Organic Framework for Sunlight-Driven Hydrogen Evolution. Angew. Chem. Int. Ed. 2021, 60, 1869–1874. 36. Bao, Y.; Liu, J.; Zhang, Y.; Zheng, L.; Ma, J.; Zhang, F.; Xiong, Y.; Meng, X.; Dai, Z.; Xiao, F.S. Porous organic polymers with diverse quaternary phosphonium units for chemical fixation of CO2 with low concentration. Fuel 2023, 331, 125909. 37. Dai, C.; Zhong, L.; Gong, X.; Zeng, L.; Xue, C.; Li, S.; Liu, B. Triphenylamine based conjugated microporous polymers for selective photoreduction of CO2 to CO under visible light. Green Chem. 2019, 21, 6606–6610. 38. Barman, S.; Singh, A.; Rahimi, F.A.; Maji, T.K. Metal-Free Catalysis: A redox-active donor−acceptor conjugated microporous polymer for selective visible-light-driven CO2 reduction to CH4. J. Am. Chem. Soc. 2021, 143, 16284−16292. 39. Dai, C.; Zhong, L.; Wu, W.; Zeng, C.; Deng, Y.; Li, S. 1,3,5-Triphenylbenzene based porous conjugated polymers for highly efficient photoreduction of low-concentration CO2 in the gas-phase system. Sol. RRL 2022, 6, 2100872. 40. Huang, N.; Wang, P.; Jiang, D. Covalent organic frameworks: a materials platform for structural and functional designs. Nat. Rev. Mater. 2016, 1, 16068. 41. Coˆte´, A.P.; Benin, A.I.; Ockwig, N.W.; O’Keeffe, M.; Matzger, A.J.; Yaghi, O.M. Porous, crystalline, covalent organic frameworks. Science 2005, 310, 18. 42. Wang, L.J.; Wang, R.L.; Zhang, X.; Mu, J.L.; Zhou, Z.Y.; Su, Z.M. Improved photoreduction of CO2 with water by tuning the valence band of covalent organic frameworks. ChemSusChem 2020, 13, 2973 – 2980. 43. Vyas, V.S.; Lau, V.W.; Lotsch, B.V. Soft Photocatalysis: Organic polymers for solar fuel production. Chem. Mater. 2016, 28, 5191−5204. 44. Medina, D.D.,; Sick, T.; Bein, T. Photoactive and conducting covalent organic frameworks. Adv. Energy Mater. 2017, 7, 1700387. 45. Zhou, T.; Wang, L.; Huang, X.; Unruangsri, J.; Zhang, H.; Wang, R.; Song, Q.; Yang, Q.; Li, W.; Wang, C.; Takahashi, K.; Xu, H.; Guo, J. PEG-stabilized coaxial stacking of two-dimensional covalent organic frameworks for enhanced photocatalytic hydrogen evolution. Nat. Commun. 2021, 12, 3934. 46. Gong, Y.N.; Guan, X.; Jiang, H.L. Covalent organic frameworks for photocatalysis: Synthesis, structural features, fundamentals and performance. Coord Chem Rev 2023, 475, 214889. 47. Nguyen, H.L.; Alzamly, A. Covalent organic frameworks as emerging platforms for co2 photoreduction. ACS Catal. 2021, 11, 9809−9824. 48. Peng, L.; Chang, S.; Liu, Z.; Fu, Y.; Ma, R.; Lu, X.; Zhang, F.; Zhu, W.; Konga, L.; Fan, M. Visible-light-driven photocatalytic CO2 reduction over ketoenamine-based covalent organic frameworks: role of the host functional groups. Catal. Sci. Technol. 2021, 11, 1717–1724. 49. Lan, Z.A.; Zhang, G.; Chen, X.; Zhang, Y.; Zhang, K.A.I.,; Wang, X. Reducing the exciton binding energy of donor–acceptor-based conjugated polymers to promote charge-induced reactions. Angew. Chem. Int. Ed. 2019, 58, 10236 –10240. 50. Wang, X.; Chen, L.; Chong, S.Y.; Little, M.A.; Wu, Y.; Zhu, W.H.; Clowes, R.; Yan, Y.; Zwijnenburg, M.A.; Sprick, R.S.; Cooper, A.I. Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water. Nature Chemistry 2018, 10, 1180–1189. 51. Sprick, R.S.; Bonillo, B.;, Clowes, R.; Guiglion, P.; Brownbill, N.J.; Slater, B.J.; Blan,c F.; Zwijnenburg, M.A.; Adams, D.J.; Cooper, A.I. Visible-light-driven hydrogen evolution using planarized conjugated polymer photocatalysts. Angew. Chem. 2016, 128, 1824 –1828. 52. Zhao, Y.; Ma, W.; Xu, Y.; Zhang, C.; Wang, Q.; Yang, T.; Gao, X.; Wang, F.; Yan, C.; Jiang, J.X. Effect of linking pattern of dibenzothiophene‑s,s‑dioxide- containing conjugated microporous polymers on the photocatalytic performance. J. Biol. Macromol. 2018, 51, 9502−9508. 53. Sachs, M.; Sprick, R.S.; Pearce, D.; Hillman, S.A.J.; Monti, A.; Guilbert, A.A.Y.; Brownbill, N.J.; Dimitrov, S.; Shi, X.; Blanc, F.; Zwijnenburg, M.A.; Nelson, J.; Durrant, J.R.; Cooper, A.I. Understanding structure-activity relationships in linear polymer photocatalysts for hydrogen evolution. Nat. Commun. 2018, 9, 4968. 54. Wang J.L.; Ouyang, G.; Wang, D.; Li, J.; Yao, J.; Li, W.S. Li, H. Enhanced photocatalytic performance of donor−acceptor-type polymers based on a thiophene-contained polycyclic aromatic unit. J. Biol. Macromol. 2021, 54, 2661−2666. 55. Aitchison, C.M.; Sachs, M.; Little, M.A.; Wilbraham, L.; Brownbill, N.J; Kane, C.M.; Blanc, F.; Zwijnenburg, M.A.; Durrant, J.R.; Sprick, R.S.; Cooper, A.I. Structure–activity relationships in well-defined conjugated oligomer photocatalysts for hydrogen production from water. Chem. Sci. 2020, 11, 8744–8756. 56. Li, Q.; Li, J.; Wang, W.R.; Liu, L.N.; Xu, Z.W.; Xie, G.; Li, J.; Yao, J.; Li, W.S. Tuning acceptor length in photocatalytic donor-acceptor conjugated polymers for efficient solar solar-to -hydrogen energy conversion. Chin. J. Chem. 2022, 40, 24572457—24672467. 57. Fu, Z.; Vogel, A.; Zwijnenburg, M.A.; Cooper, A.I.; Sprick, R.S. Photocatalytic syngas production using conjugated organic polymers. J. Mater. Chem. A 2021, 9, 4291–4296. 58. Yu, F.; Wang, Z.; Zhang, S.; Ye, H.; Kong, K.; Gong, X.; Hua, J.; Tian, H. Molecular engineering of donor–acceptor conjugated polymer/g-C3N4 heterostructures for significantly enhanced hydrogen evolution under visible-light irradiation. Adv. Funct. Mater. 2018, 28, 1804512. 59. Yu, P.; Lv, X.; Wang, Q.; Huang, H.; Weng, W.; Peng, C.; Zhang, L.; Zheng, G. Promoting electrocatalytic CO2 reduction to CH4 by copper porphyrin with donor–acceptor structures. Small 2023, 19, 2205730. 60. Sathiyan, G.; Ranjan, R.; Ranjan, S.; Garg, A.; Gupta, R.K.; Singh, A. Dicyanovinylene and thiazolo[5,4‑d]thiazole core containing d−a−d type hole-transporting materials for spiro-ometad-free perovskite solar cell applications with superior atmospheric stability. ACS Appl. Energy Mater. 2019, 2, 7609−7618. 61. Dess`ı, A.; Calamante, M.; Sinicropi, A.; Parisi, M.L.; Vesce, L.; Mariani, P.; Taheri, B.; Ciocca, M.; Carlo, A.D.; Zani, L.; Mordini, A.; Reginato G. Thiazolo[5,4-d]thiazole-based organic sensitizers with improved spectral properties for application in greenhouse-integrated dye-sensitized solar cells. Sustain. Energy Fuels 2020, 4, 2309–2321. 62. Liu, Y.; Ma, H.; Jen, A.K. Synthesis and characterization of a bipolar light-emitting copolymer consisting of tetraphenyldiaminobiphenyl and bis-quinoline units. Chem. Mater. 1999, 11, 27-29. 63. Jen, A.K.; Liu, Y.; Hu, Q.S.; ... et. Al. Efficient light-emitting diodes based on a binaphthalenecontaining polymer. Appl. Phys. Lett. 1999, 75, 24. 64. Cormick, T.M.; Bridges, C.R.; Carrera, E.I.; DiCarmine, P.M.; Gibson, G.L.; Hollinger, J.; Kozycz, L.M.; Seferos, D.S. Conjugated polymers: Evaluating DFT methods for more accurate orbital energy modelling. J. Biol. Macromol. 2013, 46, 3879-3886. 65. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. 66. Yanai, T.; Tew, D.P.; Handy, N.C. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). J. Phys. Chem. Lett. 2004, 393, 51–57. 67. So, H.; Martin, H.G. Time-dependent density functional theory within the Tamm–Dancoff approximation. J. Phys. Chem. Lett. 1999, 314, 291–299. 68. Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst. 2011, 44, 1272–1276. 69. Garcia, B.; Emiliano, C. et al. Exploration of free energy surface and thermal effects on relative population and infrared spectrum of the Be6B11− fluxional cluster. Materials 2020, 14, 112. 70. Wang, S.H.; Khurshid, F.; Chen, P.Z.; Lai, Y.R.; Cai, C.W.; Chung, P.W.; Hayashi, M.; Jeng, R.J.; Rwei, S.P.; Wang, L. Solution-processable naphthalene diimide-based conjugated polymers as organocatalysts for photocatalytic CO2 reaction with extremely stable catalytic activity for over 330 hours. Chem. Mater. 2022, 34, 4955-4963. 71. Xu, H.Q.; Hu, J.; Wang, D.; Li, Z.; Zhang, Q.; Luo, Y.; Yu, S.H.; Jiang, H.L. Visible-light photoreduction of CO2 in a metal−organic framework: boosting electron−hole separation via electron trap states. J. Am. Chem. Soc. 2015, 137, 13440−13443. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87982 | - |
| dc.description.abstract | 本研究的目的係在於設計及合成可溶性之有機線性高分子做為光催化劑,用以進行二氧化碳還原反應,期能改善溫室效應。
Dibenzothiophene-5,5-dioxide(DBTO)單元具有良好的電子接受能力、共平面結構和親水性,因而被廣泛用於hydrogen evolution reaction (HER) 中,然而,以DBTO為單體聚合形成的均聚合物,擁有較弱的可見光吸收和較大的光帶隙,導致光收集能力較差。本論文的第一部分,我使用擁有平面性佳、較高電子親和力、以及優良電子遷移率的naphthalenediimide (NDI) 單元,與DBTO共聚合而架構成供體-受體的高分子P(NDI-DBTO),藉以增加分子內之電子轉移,進而提高在可見光區的吸收能力。此外,其結構中也具有高吸附二氧化碳之有機官能基,有助於二氧化碳於催化劑表面進行還原反應。我們透過聚合物PDBTO與P(NDI-DBTO)比較及探討在有機可溶線性高分子對光催化CO2還原之影響。 第二部分,透過第一部份之研究結果,進一步延伸及設計了兩個線性高分子,其一係在NDI與DBTO中間架橋一個TN單元,形成P(NDI-TN-DBTO),以此來延長共軛主鏈,擴大吸光範圍與分離CO2和H2O的吸附位點; 另一則在DBTO單元上接枝具有推電子能力的醚官能基團,形成P(NDI-DBTOOMe),增加分子內之電子轉移效能及材料的吸光能力。 本研究所合成之中間體與最終產物,均利用核磁共振技術鑑定它們的結構。紫外-可見光譜儀顯示改良後的P(NDI-DBTO)、P(NDI-TN-DBTO)與P(NDI-DBTOOMe)皆在可見光區呈現寬廣的吸收峰,可有效增加激子產出率,並且能隙相較於PDBTO皆變窄。循環伏安實驗測得P(NDI-DBTO)、P(NDI-TN-DBTO)與P(NDI-DBTOOMe)之LUMO皆高於二氧化碳還原能階,證明它們都能轉移電子給CO2進行還原反應。還原反應在CO2壓力為880 torr之密閉環境,以AM1.5G的太陽光模擬光源及100 mW/cm2光強下進行,氣相層析圖譜顯示皆僅生成CO為單一產物,其中以P(NDI-DBTO)、P(NDI-TN-DBTO)及P(NDI-DBTOOMe)塗布於13X 之分子篩上,在純水下所得到之產率分別為67.2 μmol*g−1*h−1、35.6 μmol*g−1*h−1及81.4 μmol*g−1*h−1,而後加入TEA為犧牲劑所得到之產率分別為694.6、254.5及1359.2 μmol*g−1*h−1。為了進一步了解P(NDI-DBTO)、P(NDI-TN-DBTO)與P(NDI-DBTOOMe)的差異,我們使用時間解析螢光光譜技術、電化學阻抗儀、光電流響應來深入探討結構對二氧化碳還原之活性影響。 | zh_TW |
| dc.description.abstract | This study aims to develop soluble organic linear polymers as promising photocatalysts for carbon dioxide reduction reactions, thereby relieving the global greenhouse effect.
Dibenzothiophene-5,5-dioxide (DBTO) has been widely used as a building block to develop polymer catalysts for hydrogen evolution reactions (HER) due to its good electron-withdrawing ability, planar structure, and hydrophilicity. However, most of the published DBTO-based polymers have a weak light absorbance in visible region and a relatively large bandgap, resulting in poor light utilization efficiency. To solve this problem, in the first part of this thesis, I copolymerized DBTO with naphthalenediimide (NDI) monomer, which has good planarity, high electron affinity, adequate electron mobility, and pro-CO2 groups, to yield a copolymer of P(NDI-DBTO). The alternative donor-acceptor conjugated backbone effectively improved the efficiency of intramolecular electron transfer and then enhanced the light-harvesting capability. The optical and electrical properties, and the catalytic activity for photocatalytic CO2 reduction of PDBTO and P(NDI-DBTO) were extensively examined, compared and discussed. In the second part, I adopted two approaches to further increase the light-harvesting ability of P(NDI-DBTO). The first method includes the insertion of a TN unit between NDI and DBTO monomers as a spacer to extend the conjugated length and spatially separate the adsorption sites of CO2 and H2O, yielding a copolymer called P(NDI-TN-DBTO). The second method involves the incorporation of OMe groups, which have good electron-donating ability, to the two para positions of DBTO, forming a copolymer called P(NDI-DBTOOMe) and increasing the efficiency of intramolecular electron transfer. The effect of the molecular structure on the opto-electronical properties and the ability of reducing CO2 under light illumination were thoroughly investigated. The chemical structure of all intermediates and final products synthesized herein were identified using 1H and 13C NMR techniques. The UV-Vis measurements showed that all P(NDI-DBTO), P(NDI-TN-DBTO) and P(NDI-DBTOOMe) exhibited broad absorption spectra in the visible region, effectively increasing exciton production rate and narrowing the energy gap compared to PDBTO. Cyclic voltammetry experiments revealed that the LUMOs of P(NDI-DBTO), P(NDI-TN-DBTO) and P(NDI-DBTOOMe) are higher than the reduction potentials of CO2, demonstrating that they are all capable of transferring electrons to CO2 to carry out the reduction reaction. The photocatalytic CO2 reduction reactions were performed in an air-tight chamber, which was charged with the polymer catalyst and CO2 gas at 880 torr, under continuous illumination with an AM1.5G solar light simulator at a light intensity of 100 mW/cm2. The gas chromatography spectra showed that CO was produced as a single product in all cases. The CO production rate in the catalytic systems of t P(NDI-DBTO), P(NDI-TN-DBTO) and P(NDI-DBTOOMe) in the presence of H2O using 13X molecular sieve as porous matrix were 67.2, 35.6, and 81.4 μmol*g-1*h-1, respectively. Replacing pure H2O with a mixture of H2O/TEA significantly increased the rate to 694.6, 254.5 and 1359.2 μmol*g-1*h-1, respectively. Furthermore, the time-resolved fluorescence spectroscopy, electrochemical impedance, and photocurrent response were systematically evaluated to gain insights into the catalytic systems of P(NDI-DBTO), P(NDI-TN-DBTO), and P(NDI-DBTOOMe) in the photochemical reduction of CO2. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-01T16:13:11Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-01T16:13:12Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iv 1-1能源危機 1 1-2 二氧化碳的減量 2 1-3 二氧化碳還原之基本原理 2 1-3光催化劑之種類 3 1-3-1. 有機石墨氮化物 g-C3N4 4 1-3-2.多孔共軛聚合物 (porous conjugated polymer, PCP) 6 1-3-3 共價有機框架( covalent organic frameworks, COF) 9 1-3-4 有機線性聚合物 11 1-3-5 研究動機 13 第二章、實驗 15 2-1實驗所需化學試劑列表 15 2-2 材料合成 16 2-3 實驗儀器與設備 36 2-4 光催化系統之實驗方法 39 2-4-1樣品之製備 39 2-4-2 二氧化碳還原之實驗步驟 40 2-4-3 產物之定性及定量 41 2-4-3 產率之計算 43 三、結果與討論 44 3-1 建構D-A結構之無金屬線性共軛聚合物做為光催化劑應用於 CO2 還原反應之影響 44 3-1-1 研究動機 44 3-1-2 材料的合成及基本性質探討 45 3-1-2-1單體與高分子之合成過程 45 3-1-2-2單體與高分子之結構鑑定 47 3-1-2-3高分子之基本性質 51 3-1-3材料的光學性質之探討 51 3-1-3 材料之能階性質 52 3-1-4 分子模擬 55 3-1-5 光催化二氧化碳還原效率 59 3-1-6 同位素實驗之分析 62 3-1-7 金屬殘留之分析 63 3-1-8 二氧化碳吸附之分析 63 3-1-8-1 分子模擬 63 3-1-8-2 二氧化碳吸附之實驗 65 3-1-9 電化學性質之探討 66 3-1-9-1 電化學阻抗 66 3-1-9-2 光電流響應 67 3-1-10 結構之穩定性 67 3-1-11 結論 68 3-2-1 研究動機 70 3-2-2 材料的基本性質及結構鑑定之探討 71 3-2-2-1單體與高分子之合成過程 71 3-2-2-2單體與高分子之結構鑑定 73 3-2-2-3高分子之分子量分析 77 3-2-3 光催化劑之能階 79 3-2-4 效率 80 3-2-5 同位素 82 3-2-6 金屬殘留之分析 83 3-2-7 時光解析螢光光譜(time-resolved photoluminescence, TRPL) 83 3-2-8電化學性質之分析 84 3-2-9-1 電化學阻抗 84 3-2-9-2 光電流響應 86 3-2-10結論 86 第四章、總結 88 第五章、參考文獻 90 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 表面積 | zh_TW |
| dc.subject | 供體-受體結構 | zh_TW |
| dc.subject | 有機光催化劑 | zh_TW |
| dc.subject | 可溶性線性共軛聚合物 | zh_TW |
| dc.subject | 二氧化碳還原 | zh_TW |
| dc.subject | donor-acceptor structures | en |
| dc.subject | organic photocatalysts | en |
| dc.subject | surface area | en |
| dc.subject | CO2 reduction | en |
| dc.subject | soluble linear conjugated polymers | en |
| dc.title | 應用於CO2還原反應之含碸共軛聚合物光催化劑之研發 | zh_TW |
| dc.title | Development of Sulfone-Containing Conjugated Polymers as Photocatalysts for CO2 Reduction Reactions | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 王立義 | zh_TW |
| dc.contributor.coadvisor | Leeyih Wang | en |
| dc.contributor.oralexamcommittee | 林麗瓊;陳錦文;蕭全佑 | zh_TW |
| dc.contributor.oralexamcommittee | Li-Chyong Chen;Chin-Wen Chen;Chuen-Yo Hsiow | en |
| dc.subject.keyword | 二氧化碳還原,可溶性線性共軛聚合物,有機光催化劑,供體-受體結構,表面積, | zh_TW |
| dc.subject.keyword | CO2 reduction,soluble linear conjugated polymers,organic photocatalysts,donor-acceptor structures,surface area, | en |
| dc.relation.page | 117 | - |
| dc.identifier.doi | 10.6342/NTU202301146 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-06-28 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | - |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 9.93 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
