Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8797
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor何國川(Kuo-Chuan Ho)
dc.contributor.authorJen-Hsien Huangen
dc.contributor.author黃任賢zh_TW
dc.date.accessioned2021-05-20T20:01:29Z-
dc.date.available2011-12-29
dc.date.available2021-05-20T20:01:29Z-
dc.date.copyright2009-12-29
dc.date.issued2009
dc.date.submitted2009-11-13
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8797-
dc.description.abstract隨著能源危機的時代漸漸來臨,太陽能電池的發展也逐漸受重視。除了目前廣泛被使用的矽晶圓太陽能電池及無機薄膜太陽能電池技術外,有機太陽能電池因為具有低成本、耐衝擊、高產出及方便攜帶等優點,已成為新世代發展攜帶型電子產品的重點發展技術。本論文共分五部分主要探討由低成本的濕式製程以材料與製程的角度針對太陽能電池元件的效率進行討論。
本文的第一部分針對高分子太陽能電池的電洞傳輸層進行改質,藉由改變單體的化學結構並搭配電化學法聚合多孔性電洞傳輸材料,利用多孔的結構增加主動層與電洞傳輸層之間的接觸面積以達到平衡電性的效果,目前光電轉換效率可達3.57% (AM 1.5G) 。另一方面,也利用溶劑的處理來增加電洞傳輸層的導電性,發現經由多醇類溶劑的處理以後,PEDOT高分子鏈段的構型可由糾纏的結構轉變為較延伸的狀態,如此可幫助電荷的傳導。將此高導電度PEDOT應用於高分子太陽能電池,發現可提升元件之光電流,目前於最適化以後之電池效率於100 mW/cm2 (AM 1.5G)光強度下可達4.30%。
第二部分本研究利用中研院化學所林建村教授實驗室開發之有機小分子材料(TQTFA)搭配RR-P3HT,探討光譜互補式之高分子太陽能電池之行為。發現TQTFA除了光譜與RR-P3HT互補之外具,也擁有雙性電荷傳導的能力,因此可以有效地提升元件之光電流。經由製程最適化以後,發現TQTFA的最佳添加量為0.5%並且效率可達4.50%。
第三部分本研究在不破壞元件的前提之下,利用共具焦顯微儀搭配時間解析之螢光光譜系統來觀察薄膜內部之相之分離以及激子生命週期的分佈,進而重建出薄膜內之三維形貌。探討三維形貌對於元件表現之影響,研究結果顯示利用薄膜慢乾製程可以成功地獲得連續相分之傳導通路,然後在快乾的製程之下,薄膜內部材料混合均勻。搭配元件效率的分析發現在有傳導通路的形貌底下,由於電荷傳導的效果較佳因此有較高的光電流,而均勻混合的形貌卻容易產生電荷的再結合,因而降低的元件的效能。目前在慢乾製程之下所得之元件效率可達3.67%。此分析未來將可提供不同於TEM、SEM、AFM等分析微結構技術,而是針對薄膜之光物理特性進行分析。
本文的第四部分將以製程與材料的觀點討論polyfluorene系列的共聚合共軛高分子於多接面高分子太陽能電池之應用。嘗試利用polyfluorene-based copolymer的窄能隙特性來提高元件的電壓。研究發現,利用PC[70]BM相較於PC[60]BM較不對稱的結構所產生的共振性,可以有效地提升元件對可見光的吸收範圍,進而提升元件的光電轉換效率,在經過製程的最適化以後,目前最高效率可達2.0% 。另一方面,研究結果顯示以polyfluorene為主體之共軛高分子於高溫退火之後的行為非常不同於以polythiophene為主體之材料,由於其熱液晶相的產生使其表面形貌產生規則的排列,雖然規則的排列可以有效地提升材料的電洞遷移率,但在此狀況下也同時產生嚴重的相分離,使得電子與電洞產生劇烈的再結合。實驗結果顯示F8T2的最佳退火條件為70 oC。是針對薄膜之光物理特性進行分析。
本文的第五部分為開發一新式的轉印製程製作有機太陽能電池元件,此製程不僅無污染、低溫、非破壞性並且可以整合於濕式製程之中。目前本研究已成功利用此新式轉印技術製作多接面有機太陽能電池以及反式之雙層有機太陽能電池,效率可分別達到3.20%和2.83%。未來此製程亦可製作疊層元件以及其他有機光電元件。
zh_TW
dc.description.abstractOver the past two decades, satisfying the world’s growing demand for energy is one of the most significant challenges facing society. Therefore, the development of solar energy is viewed as an ideal technology for power generation because it is clean and renewable. Although the photovoltaic (PV) technology platforms of silicon-based PV and thin-film PV are now undergoing a rapid expansion in production, the next generation PV—organic solar cells —could soon be playing a major role with the advantages of ultralow production costs, rugged and lightweight. The main purpose of this thesis is to fabricate PV cells via an all-solution-process and investigate the influences of materials and fabrication parameters on the device performance.
In the first part of this thesis (Chapter 3 and 4), we prepared nanofiber shaped hole collection layer with highly porous structure by changing the structure of EDOT monomer. The highly porous hole collection layer prepared from electrochemical deposition can offer a great deal of interface between the hole collection layer and active layer leading to a more balanced charge mobility. The power efficiency of the device fabricated with porous hole collection layer can achieve 3.57% so far. Furthermore, we also enhance the conductivity of the hole collection layer (PEDOT) by treating the PEDOT with some polyalchols. From the results, it revealed that the conformation of PEDOT can be changed from coiled structure to linear structure after the treatment leading to a higher conductivity. The highly conductive PEDOT was also applied to fabricate PV cells and the power efficiency is about 4.30%.
In the second part (Chapter 5), a novel solution-processed small molecule (DFTh-TP) for use in electron donor has been incorporated into the organic solar cells based on P3HT and PC[70]BM. The combination of DFTh-TP with P3HT and PC[70]BM allows not only a broad absorption but also tuning the inter energy level leading to a higher JSC and VOC. The best performing devices exhibited a power conversion efficiency of 4.50 %. The efficiency is increased of almost 15 % compared with the one without incorporating DFTh-TP.
In the third part (Chapter 6), we performed a comprehensive analysis of the 2D nanoscale morphology related to the exciton lifetime by combining confocal optical microscopy with a fluorescence module. The results revealed that the film prepared through rapidly grown process leads to an extremely homogeneous blend. The homogeneous phase cannot offer a continuous pathway for charge transport leading to a serious recombination. In the case of slowly grown film, although not all of these pathways may have been ideal, due to the presence of some terminated channels, this system still offered several connected pathways, leading to an interdigitated nanostructure that was responsible for efficient charge transport and the superior value of JSC. This approach provides much fundamental information that is unavailable when using conventional microscopy techniques in the future.
In the fourth part (Chapter7~9), we have fabricated organic photovoltaic devices with blends of F8T2 and fullerene as an electron donor and electron acceptor, respectively. A significant improvement of the photovoltaic efficiency was found in device by using PC[70]BM as active material with complementary spectra. Moreover, we also study the effects of nanomorphological chnages on polymer PV devices with blends of F8T2 and PC[60]BM. The morphological changes of blended films were observed upon thermal annealing temperature near and above glass transition temperature (130 oC). Such microstructural transformations resulted in modified charge transport pathways and therefore grately influenced the device performance. The highest PCE of 2.14 % with an VOC of 0.99 V and a JSC of 4.24 mA/cm2 was achieved by device annealing at 70 oC for 20 min.
In the final part (Chapter 10), we modified the printing method by increasing the affinity of PDMS for organic solvent via non-destructive solvent treatment. This stamping method eliminates the necessity of any plasma treatment and any possible damages on the PDMS surface and would give full control over the chemical composition and film thickness of each layer. The multilayer polymer structure also demonstrated for photovoltaic applications.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T20:01:29Z (GMT). No. of bitstreams: 1
ntu-98-D94524007-1.pdf: 5208891 bytes, checksum: ffefcf9a1d6a7589435e67d75ba8d5db (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsAcknowledgements I
摘要 II
Abstract IV
Table of contents VI
List of tables XI
List of figures XIII
Chapter 1 Introduction 1
1.1 The need for plastic solar cells 1
1.2 Basic working principles 3
1.3 Previous studies of conjugated polymer PV cells 6
1.3.1 PV cells made from single layer of conjugated polymers 6
1.3.2 PV cells made from two layers of organic semiconductors 7
1.3.3 Bulk heterojunction PV cells 8
1.3.4 Polymer-quantum dot PV cells 10
1.3.5 Polymer-titania PV cells 12
1.4 Routs towards high efficiency polymer BHJ solar cells 16
1.4.1 The spin casting solvent 16
1.4.2 The composition between polymer and fullerene 17
1.4.3 The solution concentration 18
1.4.4 The thermal and solvent annealing 19
1.5 Future directions and challenges 24
1.6 Objective and outline of this thesis 33
Chapter 2 Experimental 37
2.1 Controlled growth of nanofiber network hole transfer layers with pore structure for polymer-fullerene solar cells
37
2.1.1 Materials and reagents 37
2.1.2 Electrochemical deposition of the hole collection layer 37
2.1.3 Fabrication of PV device 38
2.1.4 Characterization of polymer films 38
2.2 Electrochemical characterization of the solvent enhanced conductivity of poly(3,4-ethylenedioxythiophene) and its application in polymer solar cells
39
2.2.1 Materials and reagents 39
2.2.2 The preparation of highly conductive PEDOT 39
2.2.3 Electrochemical and spectra characterization 39
2.2.4 Fabrication of PV device 40
2.3 Monitoring the 3D nanostructures of BHJ polymer solar cells using confocal lifetime imaging
41
2.3.1 Materials and reagents 41
2.3.2 Charzcterization methods and instruments 41
2.4 Enhanced efficiency in polymer solar cells through a ternary cascade structure
42
2.4.1 Materials and reagents 42
2.4.2 Fabrication and characterization of PV device 42
2.5 Enhanced response in polymer bulk heterojunction solar cells by using active materials with complementary spectra & effects of nanomorphological changes on the performance of solar cells with blends of F8T2 and soluble fullerene

44
2.5.1 Materials and reagents 44
2.6 Fabrication of multilayer organic Solar cells through stamping technique
45
2.6.1 Materials and reagents 45
2.6.2 Transfer process 45
2.6.3 Fabrication process of PV devices 45
Chapter 3 Controlled growth of nanofiber network hole transfer layers with pore structure for polymer-fullerene solar cells
47
3.1 The limitation of charge collection at the electrode 47
3.2 High efficiency solar cells with porous hole collection layers 49
3.3 Summary 62
Chapter 4 Electrochemical characterization of the solvent-enhanced conductivity of PEDOT and its application in polymer solar cells
63
4.1 Effect of solvent on carrier transport in PEDOT 63
4.2 The mechanism of conductivity enhancement througth solvent treatment and its application on PV devices
65
4.2.1 The investigation on the conductivity enhancement in PEDOT 65
4.2.2 The performance of PV device with highly conductive PEDOT
77
4.3 Summary 84
Chapter 5 Monitoring the 3D nanostructures of bulk heterojunction polymer solar cells using confocal lifetime imaging
85
5.1 The effect of morphology on the PV performance 85
5.2 Optimization of the morphology via solvent annealing 87
5.3 Summary 98
Chapter 6 Enhanced efficiency in polymer solar cells through a ternary cascade structure
99
6.1 Small molecule sensitizer for spectra coverage in polymer BHJ solar cells
99
6.2 Multijunction PV cells by mixing three active materials 102
6.3 Summary 111
Chapter 7 Enhanced spectral response in polymer BHJ solar cells by using active materials with complementary spectra
112
7.1 PV devices based on polyfluorene copolymer 112
7.2 The effect of PC[70]BM blending ratios 114
7.3 Summary 123
Chapter 8 Effects of nanomorphological changes on the performance of solar cells with blends of F8T2 and soluble fullerene
124
8.1 The enhancement of open circuit voltage by using high band gap polymer
124
8.2 High band gap poly[9,9’-dioctyl-fluorene-co-bithiophene] for use in efficient PV devices
126
8.2.1 The effect of PC[60]BM blending ratios 126
8.2.2 The solvent effects 132
8.2.3 The annealing effects 136
8.3 Summary 148
Chapter 9 Efficient bulk heterojunction solar cells based on a low-bandgap polyfluorene copolymers and fullerene derivatives
149
9.1 Toward a low-bandgap polyfluorene derivatives for solar cells 149
9.2 Decvice performance and characterization 151
9.3 Summary 162
Chapter 10 Fabrication of multilayer organic solar cells through stamping technique
163
10.1 Laminated fabrication of polymeric PV devices 163
10.2 Multilayer PV devices fabricated via PDMS transfer technique 165
10.3 Summary 172
Chapter 11 Conclusions and suggestions 173
11.1 Conclusions 173
11.1.1 The effect of morphology and conductivity of hole collection layer on solar cell performance
173
11.1.2 Novel method for imaging the 3D nanostructures of BHJ polymer solar cells using confocal lifetime imaging (Chapter 5)
174
11.1.3 Enhanced efficiency in P3HT:PCBM solar cells through a ternary cascade structure (Chapter 6)
174
11.1.4 The effects of nanomorphology on the performance of solar cells based on polyfluorene polymers (Chapter 7~9)
174
11.1.5 Fabrication of multilayer solar cells by stamping technique (Chapter 10)
175
11.2 Suggestions 176
11.2.1 The interdigitated F8T2 polymer layers for bi-layer organic solar cells
176
11.2.2 Fabrication of cells via the PDMS stamping technique 176
Chapter 12 Reference 178
Appendix A Controlled growth of nanofiber network structure with pore interfaces for electrochromic
208
A.1 Introduction 208
A.2 Experimental 210
A.3 Results and discussion 211
A.4 Summary 225
A.5 References 226
Appendix B Solvent annealing induced self organization of P3HT for high-performance electrochromic
230
B.1 Introduction 230
B.2 Experimental 233
B.3 Results and discussion 235
B.4 Summary 248
B.5 References 249
Appendix C Curriculum vitae 254
dc.language.isoen
dc.subject轉印zh_TW
dc.subject退火zh_TW
dc.subject有機多接面太陽能電池zh_TW
dc.subject共軛高分子zh_TW
dc.subject共具焦顯微儀zh_TW
dc.subject電荷傳導zh_TW
dc.subject激子生命週期zh_TW
dc.subject電洞傳輸層zh_TW
dc.subjectCharge transporten
dc.subjectStamping processen
dc.subjectHole transfer layeren
dc.subjectAnnealingen
dc.subjectBulk heterojunction solar cellen
dc.subjectConjugated polymeren
dc.subjectConfocal microscopyen
dc.subjectExciton lifetimeen
dc.title電子施體/受體共軛有機材料於異質接面太陽能電池元件之應用zh_TW
dc.titleDonor-acceptor Conjugated Organic Materials for
Bulk Heterojunction Solar Cells
en
dc.typeThesis
dc.date.schoolyear98-1
dc.description.degree博士
dc.contributor.coadvisor朱治偉(Chih-Wei Chu)
dc.contributor.oralexamcommittee邱文英(Wen-Yen Chiu),吳嘉文(Chia-Wen Wu),林金福(King-Fu Lin),陳林祈(Lin-Chi Chen)
dc.subject.keyword退火,有機多接面太陽能電池,共軛高分子,共具焦顯微儀,電荷傳導,激子生命週期,電洞傳輸層,轉印,zh_TW
dc.subject.keywordAnnealing,Bulk heterojunction solar cell,Conjugated polymer,Confocal microscopy,Charge transport,Exciton lifetime,Hole transfer layer,Stamping process,en
dc.relation.page259
dc.rights.note同意授權(全球公開)
dc.date.accepted2009-11-13
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf5.09 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved