Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87971
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林俊達zh_TW
dc.contributor.advisorGuin-Dar Linen
dc.contributor.author邱維勝zh_TW
dc.contributor.authorWei-Seng Hiewen
dc.date.accessioned2023-08-01T16:09:26Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-01-
dc.date.issued2023-
dc.date.submitted2023-07-03-
dc.identifier.citationT. Ðorđević, P. Samutpraphoot, P. L. Ocola, H. Bernien, B. Grinkemeyer, I. Dimitrova, V. Vuletić, and M. D. Lukin, “Entanglement transport and a nanophotonic interface for atoms in optical tweezers,” Science, vol. 373, pp. 1511–1514, sep 2021.
L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature, vol. 414, pp. 413–418, nov 2001.
D. E. Chang, J. I. Cirac, and H. J. Kimble, “Self-organization of atoms along a nanophotonic waveguide,” Phys. Rev. Lett., vol. 110, p. 113606, mar 2013.
A. S. Sørensen and K. Mølmer, “Probabilistic generation of entanglement in optical cavities,” Physical Review Letters, vol. 90, mar 2003.
W. S. Hiew and H. H. Jen, “State carving in a chirally-coupled atom-nanophotonic cavity,” 2023.
B. B. Blinov, D. Leibfried, C. Monroe, and D. J. Wineland, “Quantum computing with trapped ion hyperfine qubits,” Quantum Information Processing, vol. 3, pp. 45–59, oct 2004.
C. Monroe, “Quantum information processing with atoms and photons,” Nature, vol. 416, pp. 238–246, mar 2002.
C. Gerry and P. Knight, Introductory Quantum Optics. Cambridge University Press, 2004.
S. Welte, B. Hacker, S. Daiss, S. Ritter, and G. Rempe, “Photon-mediated quantum gate between two neutral atoms in an optical cavity,” Physical Review X, vol. 8, feb 2018.
S. J. van Enk and H. J. Kimble, “Single atom in free space as a quantum aperture,” Physical Review A, vol. 61, mar 2000.
A. Reiserer and G. Rempe, “Cavity-based quantum networks with single atoms and optical photons,” Rev. Mod. Phys., vol. 87, pp. 1379–1418, Dec 2015.
G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, and V. Sandoghdar, “Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence,” Nature Physics, vol. 4, pp. 60–66, dec 2007.
J. Volz, M. Scheucher, C. Junge, and A. Rauschenbeutel, “Nonlinear phase shift for single fibre-guided photons interacting with a single resonator-enhanced atom,” Nature Photonics, vol. 8, pp. 965–970, nov 2014.
T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature, vol. 443, pp. 671–674, oct 2006.
D. F. Kornovan, N. V. Corzo, J. Laurat, and A. S. Sheremet, “Extremely subradiant states in a periodic one-dimensional atomic array,” Physical Review A, vol. 100, dec 2019.
J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletić, and M. D. Lukin, “Coupling a single trapped atom to a nanoscale optical cavity,” Science, vol. 340, no. 6137, pp. 1202–1205, 2013.
Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-q photonic nanocavity in a two-dimensional photonic crystal,” Nature, vol. 425, pp. 944–947, oct 2003.
A. Goban, C.-L. Hung, S.-P. Yu, J. Hood, J. Muniz, J. Lee, M. Martin, A. McClung, K. Choi, D. Chang, O. Painter, and H. Kimble, “Atom–light interactions in photonic crystals,” Nature Communications, vol. 5, may 2014.
L.-L. Lin and Z.-Y. Li, “Sensitivity to termination morphology of light coupling in photonic-crystal waveguides,” Physical Review B, vol. 69, may 2004.
S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature, vol. 407, pp. 608–610, oct 2000.
J. Preskill, “Quantum computing in the NISQ era and beyond,” Quantum, vol. 2, p. 79, aug 2018.
S. Welte, B. Hacker, S. Daiss, S. Ritter, and G. Rempe, “Cavity carving of atomic bell states,” Physical Review Letters, vol. 118, may 2017.
P. Samutpraphoot, T. Đorđević, P. L. Ocola, H. Bernien, C. Senko, V. Vuletić, and M. D. Lukin, “Strong coupling of two individually controlled atoms via a nanophotonic cavity,” Phys. Rev. Lett., vol. 124, p. 063602, Feb 2020.
M. O. Scully and M. S. Zubairy, Quantum Optics. Cambridge University Press, sep 1997.
M. Fox, Quantum Optics. Oxford University Press, 2006.
H. Pichler, T. Ramos, A. J. Daley, and P. Zoller, “Quantum optics of chiral spin networks,” Phys. Rev. A, vol. 91, p. 042116, Apr 2015.
P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, and P. Zoller, “Chiral quantum optics,” Nature, vol. 541, pp. 473–480, jan 2017.
R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide,” Nature Communications, vol. 5, dec 2014.
D. F. Walls, Quantum optics. Springer, 2008.
T. Caneva, M. T. Manzoni, T. Shi, J. S. Douglas, J. I. Cirac, and D. E. Chang, “Quantum dynamics of propagating photons with strong interactions: a generalized input–output formalism,” New Journal of Physics, vol. 17, p. 113001, oct 2015.
M. Fleischhauer, “Electromagnetically induced transparency and coherent-state preparation in optically thick media,” Optics Express, vol. 4, p. 107, jan 1999.
H. Tanji-Suzuki, W. Chen, R. Landig, J. Simon, and V. Vuletić, “Vacuum-induced transparency,” Science, vol. 333, pp. 1266–1269, sep 2011.
P. Rice and R. Brecha, “Cavity induced transparency,” Optics Communications, vol. 126, pp. 230–235, may 1996.
S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science, vol. 330, pp. 1520–1523, dec 2010.
R. Puthumpally-Joseph, M. Sukharev, O. Atabek, and E. Charron, “Dipole-induced electromagnetic transparency,” Physical Review Letters, vol. 113, oct 2014.
E. C. Diniz, H. S. Borges, and C. J. Villas-Boas, “Multiple transparency windows and fano interferences induced by dipole-dipole couplings,” Physical Review A, vol. 97, apr 2018.
W. Chen, J. Hu, Y. Duan, B. Braverman, H. Zhang, and V. Vuletić, “Carving complex many-atom entangled states by single-photon detection,” Phys. Rev. Lett., vol. 115, p. 250502, Dec 2015.
C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters,“Teleporting an unknown quantum state via dual classical and einstein-podolskyrosen channels,” Physical Review Letters, vol. 70, pp. 1895–1899, mar 1993.
D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature, vol. 390, pp. 575–579, dec 1997.
D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and einsteinpodolsky-rosen channels,” Phys. Rev. Lett., vol. 80, pp. 1121–1125, Feb 1998.
M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information. Cambridge University Press, 2010.
C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on einstein-podolsky-rosen states,” Phys. Rev. Lett., vol. 69, pp. 2881–2884, Nov 1992.
W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A, vol. 62, p. 062314, Nov 2000.
N. Gisin and H. Bechmann-Pasquinucci, “Bell inequality, bell states and maximally entangled states for n qubits,” Physics Letters A, vol. 246, pp. 1–6, sep 1998.
A. Salavrakos, R. Augusiak, J. Tura, P. Wittek, A. Acín, and S. Pironio, “Bell inequalities tailored to maximally entangled states,” Phys. Rev. Lett., vol. 119, p. 040402, Jul 2017.
R. Raussendorf, D. E. Browne, and H. J. Briegel, “Measurement-based quantum computation on cluster states,” Physical Review A, vol. 68, aug 2003.
R. RAUßENDORF, “MEASUREMENT-BASED QUANTUM COMPUTATION WITH CLUSTER STATES,” InternationalJournal of Quantum Information, vol. 07, pp. 1053–1203, sep 2009.
W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Physical Review A, vol. 62, nov 2000.
X. Wu, X. Liang, Y. Tian, F. Yang, C. Chen, Y.-C. Liu, M. K. Tey, and L. You, “A concise review of rydberg atom based quantum computation and quantum simulation∗, ′′ ChineseP hysicsB, vol. 30, p. 020305, feb2021.
Y.-E. Wong, N.-Y. Tsai, W. S. Hiew, and H. H. Jen, “Spectral compression and entanglement reduction in the cascaded biphoton state with cavities,” Journal of Physics B: Atomic, Molecular and Optical Physics, vol. 54, p. 195501, oct 2021.
M. A. Seidler, X. J. Yeo, A. Cerè, and C. Kurtsiefer, “Spectral compression of narrowband single photons with a resonant cavity,” Phys. Rev. Lett., vol. 125, p. 183603, Oct 2020.
C. K. Law, I. A. Walmsley, and J. H. Eberly, “Continuous frequency entanglement: Effective finite hilbert space and entropy control,” Phys. Rev. Lett., vol. 84, pp. 5304–5307, Jun 2000.
Y. Liu, Z. Wang, P. Yang, Q. Wang, Q. Fan, S. Guan, G. Li, P. Zhang, and T. Zhang, “Realization of strong coupling between deterministic single-atom arrays and a highfinesse miniature optical cavity,” Phys. Rev. Lett., vol. 130, p. 173601, Apr 2023.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87971-
dc.description.abstract在本論文中,我們研究了一維原子陣列與手性耦合納米光波導中光與原子的相互作用。在我們的模型中,手性相互作用為該系統的光反應提供了額外的控制參數,例如原子數目、相鄰原子之間的相對相位和手性等。原子之間的手性相互作用可以被調整,使得該系統的光反應在不同條件下可以產生巨大變化。我們還研究了手性相互作用在從弱到強耦合區域的不同腔參數下的後果,以便更好地理解原子和共振腔在該模型中的作用。此外,我們提出了一種基於反射率量子態雕刻來製造量子糾纏態的方法,并且以此方法我們可以在特定參數下,與兩個或以上的原子列系統中,產生貝爾態或 W 態以及 GHZ 態。zh_TW
dc.description.abstractIn this thesis, we study the light-atom interaction of a one-dimensional atomic array with chiral coupling between atoms which are strongly coupled to a nanophotonic waveguide. In our model, we introduce the chiral couplings between atoms, in addition to other various parameters involving the number of atoms, relative phases between neighboring atoms and the chirality, which serves as the control knobs for some interesting application in this system. The chiral interaction between the atoms can be tuned such that the light response of this system can have drastic change under different conditions. We also study the consequences of the chiral interaction under different cavity parameters from weak to strong coupling regime for the understanding of the role of atom and the cavity in this model. Furthermore, we propose an entanglement generation scheme based on thereflectivity-based state carving protocol which can generate Bell states or W states in two or higher qubit numbers system respectively under specific parameters.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-01T16:09:26Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-01T16:09:26Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i
Acknowledgements ii
摘要 iii
Abstract iv
Contents v
List of Figures viii
Chapter 1 Introduction 1
1.1 Background and motivation 1
1.2 Outline of the thesis 2
Chapter 2 Atom-photon and chiral spin interactions 4
2.1 Atom-photon interaction 4
2.1.1 Light-matter interacting interface 6
2.1.2 Atom-nanophotonic cavity 7
2.1.3 Quantization of electromagnetic field in cavity 10
2.1.4 Atom-photon interaction in cavity 11
2.2 Chiral spin interaction in 1D atomic array 13
2.2.1 Chiral quantum optics 13
2.2.2 Chiral spin network 15
2.2.3 Chiral spin interaction in nanophotonic cavity 17
Chapter 3 Single photon reflection spectrum 20
3.1 Input-output formalism 20
3.2 Reflectivity spectrum 24
3.2.1 Two-atom reflection spectrum 26
3.2.2 Relative distance between atoms 30
3.2.3 Reciprocity in chiral spin interaction 32
3.2.4 Decay rate into the guided mode 33
3.2.5 Multi-atom reflection spectrum 34
3.3 Reflectivity dip 36
Chapter 4 Entanglement generation via state carving 39
4.1 State carving 39
4.1.1 Atomic Bell state carving 40
4.2 State carving in chirally-coupled atom-cavity system 43
4.2.1 Two atoms: Bell state 44
4.2.2 Three atoms: W-state Carving 46
4.2.3 Three atoms: GHZ-state Carving 49
4.2.4 Beyond three atoms: Generalized W-state 50
Chapter 5 Spectral compression in the biphoton state with cavities 53
5.1 Spectral compression by phase compensation 54
5.2 Schmidt decomposition and entanglement entropy 57
Chapter 6 Summary 60
References 63
-
dc.language.isoen-
dc.subject量子光學zh_TW
dc.subject量子糾纏zh_TW
dc.subject量子態工程zh_TW
dc.subject手性自旋相互作用zh_TW
dc.subject量子態雕刻zh_TW
dc.subjectQuantum state engineeringen
dc.subjectEntanglement generationen
dc.subjectChiral spin interactionen
dc.subjectQuantum opticsen
dc.subjectState carvingen
dc.title於原子陣列與納米光波導中以量子雕刻製造糾纏態zh_TW
dc.titleEntanglement Generation via State Carving in Atom-Nanophotonic Systemen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee任祥華;游至仕zh_TW
dc.contributor.oralexamcommitteeHsiang-Hua Jen;Jhih-Shih Youen
dc.subject.keyword量子光學,量子態工程,量子糾纏,手性自旋相互作用,量子態雕刻,zh_TW
dc.subject.keywordQuantum optics,Quantum state engineering,Entanglement generation,Chiral spin interaction,State carving,en
dc.relation.page69-
dc.identifier.doi10.6342/NTU202300746-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-07-05-
dc.contributor.author-college理學院-
dc.contributor.author-dept物理學系-
dc.date.embargo-lift2028-06-30-
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  此日期後於網路公開 2028-06-30
27.26 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved