請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87969
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林俊達 | zh_TW |
dc.contributor.advisor | Guin-Dar Lin | en |
dc.contributor.author | 王重賢 | zh_TW |
dc.contributor.author | Chung-Hsien Wang | en |
dc.date.accessioned | 2023-08-01T16:08:47Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-08-01 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-07-03 | - |
dc.identifier.citation | Chung-Hsien Wang, Yi-Cheng Wang, Chi-Chih Chen, Chun-Che Wang, and H. H. Jen. Enhanced dark-state sideband cooling in trapped atoms via photon-mediated dipole-dipole interactions. Phys. Rev. A, 107:023117, Feb 2023.
Vladan Vuletić, Cheng Chin, Andrew J. Kerman, and Steven Chu. Degenerate raman sideband cooling of trapped cesium atoms at very high atomic densities. Phys. Rev. Lett., 81:5768–5771, Dec 1998. Immanuel Bloch. Ultracold quantum gases in optical lattices. Nature Physics, 1(1):23–30, Oct 2005. Daniel Barredo, Sylvain de Léséleuc, Vincent Lienhard, Thierry Lahaye, and Antoine Browaeys. An atom-by-atom assembler of defect-free arbitrary twodimensional atomic arrays. Science, 354(6315):1021–1023, 2016. Ryuta Yamamoto, Hideki Ozawa, David C. Nak, Ippei Nakamura, and Takeshi Fukuhara. Single-site-resolved imaging of ultracold atoms in a triangular optical lattice. New Journal of Physics, 22(12):123028, dec 2020. M. D. Lukin and P. R. Hemmer. Quantum entanglement via optical control of atomatom interactions. Phys. Rev. Lett., 84:2818–2821, Mar 2000. Avikar Periwal, Eric S. Cooper, Philipp Kunkel, Julian F. Wienand, Emily J. Davis, and Monika Schleier-Smith. Programmable interactions and emergent geometry in an array of atom clouds. Nature, 600(7890):630–635, Dec 2021. D. Leibfried, R. Blatt, C. Monroe, and D. Wineland. Quantum dynamics of single trapped ions. Rev. Mod. Phys., 75:281–324, Mar 2003. Immanuel Bloch, Jean Dalibard, and Sylvain Nascimbène. Quantum simulations with ultracold quantum gases. Nature Physics, 8(4):267–276, Apr 2012. Iulia Buluta and Franco Nori. Quantum simulators. Science, 326(5949):108–111, 2009. B. P. Lanyon, C. Hempel, D. Nigg, M. Müller, R. Gerritsma, F. Zähringer, P. Schindler, J. T. Barreiro, M. Rambach, G. Kirchmair, M. Hennrich, P. Zoller, R. Blatt, and C. F. Roos. Universal digital quantum simulation with trapped ions. Science, 334(6052):57–61, 2011. C. Monroe, W. C. Campbell, L.-M. Duan, Z.-X. Gong, A. V. Gorshkov, P. W. Hess, R. Islam, K. Kim, N. M. Linke, G. Pagano, P. Richerme, C. Senko, and N. Y. Yao. Programmable quantum simulations of spin systems with trapped ions. Rev. Mod. Phys., 93:025001, Apr 2021. Hannes Bernien, Sylvain Schwartz, Alexander Keesling, Harry Levine, Ahmed Omran, Hannes Pichler, Soonwon Choi, Alexander S. Zibrov, Manuel Endres, Markus Greiner, Vladan Vuletić, and Mikhail D. Lukin. Probing many-body dynamics on a 51-atom quantum simulator. Nature, 551(7682):579–584, Nov 2017. Sepehr Ebadi, Tout T. Wang, Harry Levine, Alexander Keesling, Giulia Semeghini, Ahmed Omran, Dolev Bluvstein, Rhine Samajdar, Hannes Pichler, Wen Wei Ho,Soonwon Choi, Subir Sachdev, Markus Greiner, Vladan Vuletić, and Mikhail D.Lukin. Quantum phases of matter on a 256-atom programmable quantum simulator. Nature, 595(7866):227–232, Jul 2021. J. I. Cirac and P. Zoller. Quantum computations with cold trapped ions. Phys. Rev. Lett., 74:4091–4094, May 1995. D. Kielpinski, C. Monroe, and D. J. Wineland. Architecture for a large-scale ion-trap quantum computer. Nature, 417(6890):709–711, Jun 2002. J. M. Pino, J. M. Dreiling, C. Figgatt, J. P. Gaebler, S. A. Moses, M. S. Allman, C. H. Baldwin, M. Foss-Feig, D. Hayes, K. Mayer, C. Ryan-Anderson, and B. Neyenhuis. Demonstration of the trapped-ion quantum ccd computer architecture. Nature, 592(7853):209–213, Apr 2021. Dolev Bluvstein, Harry Levine, Giulia Semeghini, Tout T. Wang, Sepehr Ebadi, Marcin Kalinowski, Alexander Keesling, Nishad Maskara, Hannes Pichler, Markus Greiner, Vladan Vuletić, and Mikhail D. Lukin. A quantum processor based on coherent transport of entangled atom arrays. Nature, 604(7906):451–456, Apr 2022. T. M. Graham, Y. Song, J. Scott, C. Poole, L. Phuttitarn, K. Jooya, P. Eichler, X. Jiang, A. Marra, B. Grinkemeyer, M. Kwon, M. Ebert, J. Cherek, M. T. Lichtman, M. Gillette, J. Gilbert, D. Bowman, T. Ballance, C. Campbell, E. D. Dahl, O. Crawford, N. S. Blunt, B. Rogers, T. Noel, and M. Saffman. Multi-qubit entanglement and algorithms on a neutral-atom quantum computer. Nature, 604(7906):457–462, Apr 2022. J. I. Cirac and P. Zoller. A scalable quantum computer with ions in an array of microtraps. Nature, 404(6778):579–581, Apr 2000. F. Diedrich, J. C. Bergquist, Wayne M. Itano, and D. J. Wineland. Laser cooling to the zero-point energy of motion. Phys. Rev. Lett., 62:403–406, Jan 1989. C. Monroe, D. M. Meekhof, B. E. King, S. R. Jefferts, W. M. Itano, D. J. Wineland, and P. Gould. Resolved-sideband raman cooling of a bound atom to the 3d zero-point energy. Phys. Rev. Lett., 75:4011–4014, Nov 1995. J. I. Cirac, R. Blatt, P. Zoller, and W. D. Phillips. Laser cooling of trapped ions in a standing wave. Phys. Rev. A, 46:2668–2681, Sep 1992. Ch. Roos, Th. Zeiger, H. Rohde, H. C. Nägerl, J. Eschner, D. Leibfried, F. Schmidt Kaler, and R. Blatt. Quantum state engineering on an optical transition and decoherence in a paul trap. Phys. Rev. Lett., 83:4713–4716, Dec 1999. A. M. Kaufman, B. J. Lester, and C. A. Regal. Cooling a single atom in an optical tweezer to its quantum ground state. Phys. Rev. X, 2:041014, Nov 2012. Giovanna Morigi, Jürgen Eschner, and Christoph H. Keitel. Ground state laser cooling using electromagnetically induced transparency. Phys. Rev. Lett., 85:4458–4461, Nov 2000. C. F. Roos, D. Leibfried, A. Mundt, F. Schmidt-Kaler, J. Eschner, and R. Blatt. Experimental demonstration of ground state laser cooling with electromagnetically induced transparency. Phys. Rev. Lett., 85:5547–5550, Dec 2000. J. Cerrillo, A. Retzker, and M. B. Plenio. Fast and robust laser cooling of trapped systems. Phys. Rev. Lett., 104:043003, Jan 2010. Tobias Kampschulte, Wolfgang Alt, Sebastian Manz, Miguel Martinez-Dorantes, René Reimann, Seokchan Yoon, Dieter Meschede, Marc Bienert, and Giovanna Mo-rigi. Electromagnetically-induced-transparency control of single-atom motion in an optical cavity. Phys. Rev. A, 89:033404, Mar 2014. Elena Jordan, Kevin A. Gilmore, Athreya Shankar, Arghavan Safavi-Naini, Justin G. Bohnet, Murray J. Holland, and John J. Bollinger. Near ground-state cooling of two-dimensional trapped-ion crystals with more than 100 ions. Phys. Rev. Lett., 122:053603, Feb 2019. Mu Qiao, Ye Wang, Zhengyang Cai, Botao Du, Pengfei Wang, Chunyang Luan, Wentao Chen, Heung-Ryoul Noh, and Kihwan Kim. Double-electromagneticallyinduced- transparency ground-state cooling of stationary two-dimensional ion crystals. Phys. Rev. Lett., 126:023604, Jan 2021. Athreya Shankar, Elena Jordan, Kevin A. Gilmore, Arghavan Safavi-Naini, John J. Bollinger, and Murray J. Holland. Modeling near ground-state cooling of twodimensional ion crystals in a penning trap using electromagnetically induced transparency. Phys. Rev. A, 99:023409, Feb 2019. R. H. Lehmberg. Radiation from an n-atom system. i. general formalism. Phys. Rev. A, 2:883–888, Sep 1970. E. V. Goldstein, P. Pax, and P. Meystre. Dipole-dipole interaction in threedimensional optical lattices. Phys. Rev. A, 53:2604–2615, Apr 1996. Z. Meir, O. Schwartz, E. Shahmoon, D. Oron, and R. Ozeri. Cooperative lamb shift in a mesoscopic atomic array. Phys. Rev. Lett., 113:193002, Nov 2014. Jun Rui, David Wei, Antonio Rubio-Abadal, Simon Hollerith, Johannes Zeiher, Dan M. Stamper-Kurn, Christian Gross, and Immanuel Bloch. A subradiant opti-cal mirror formed by a single structured atomic layer. Nature, 583(7816):369–374, Jul 2020. Chi-Chih Chen, Yi-Cheng Wang, Chun-Che Wang, and H H Jen. Chiral-couplingassisted refrigeration in trapped ions. Journal of Physics B: Atomic, Molecular and Optical Physics, 56(10):105502, apr 2023. Minghui Xu, Simon B. Jäger, S. Schütz, J. Cooper, Giovanna Morigi, and M. J. Holland. Supercooling of atoms in an optical resonator. Phys. Rev. Lett., 116:153002, Apr 2016. Chun-Che Wang, Yi-Cheng Wang, Chung-Hsien Wang, Chi-Chih Chen, and H H Jen. Superior dark-state cooling via nonreciprocal couplings in trapped atoms. New Journal of Physics, 24(11):113020, nov 2022. S. D. Jenkins, J. Ruostekoski, J. Javanainen, S. Jennewein, R. Bourgain, J. Pellegrino, Y. R. P. Sortais, and A. Browaeys. Collective resonance fluorescence in small and dense atom clouds: Comparison between theory and experiment. Phys. Rev. A, 94:023842, Aug 2016. R. T. Sutherland and F. Robicheaux. Collective dipole-dipole interactions in an atomic array. Phys. Rev. A, 94:013847, Jul 2016. Anatoly A. Svidzinsky, Jun-Tao Chang, and Marlan O. Scully. Cooperative spontaneous emission of n atoms: Many-body eigenstates, the effect of virtual lamb shift processes, and analogy with radiation of n classical oscillators. Phys. Rev. A, 81:053821, May 2010. Marlan O. Scully. Collective lamb shift in single photon dicke superradiance. Phys. Rev. Lett., 102:143601, Apr 2009. Antoine Glicenstein, Giovanni Ferioli, Nikola Šibalić, Ludovic Brossard, Igor Ferrier-Barbut, and Antoine Browaeys. Collective shift in resonant light scattering by a one-dimensional atomic chain. Phys. Rev. Lett., 124:253602, Jun 2020. Mira Maiwöger, Matthias Sonnleitner, Tiantian Zhang, Igor Mazets, Marion Mallweger, Dennis Rätzel, Filippo Borselli, Sebastian Erne, Jörg Schmiedmayer, and Philipp Haslinger. Observation of light-induced dipole-dipole forces in ultracold atomic gases. Phys. Rev. X, 12:031018, Jul 2022. R. H. Dicke. Coherence in spontaneous radiation processes. Phys. Rev., 93:99–110, Jan 1954. Eric Sierra, Stuart J. Masson, and Ana Asenjo-Garcia. Dicke superradiance in ordered lattices: Dimensionality matters. Phys. Rev. Res., 4:023207, Jun 2022. Michelle O. Araújo, Ivor Krešić, Robin Kaiser, and William Guerin. Superradiance in a large and dilute cloud of cold atoms in the linear-optics regime. Phys. Rev. Lett., 117:073002, Aug 2016. Jinuk Kim, Seung-hoon Oh, Daeho Yang, Junki Kim, Moonjoo Lee, and Kyungwon An. A photonic quantum engine driven by superradiance. Nature Photonics, Jul 2022. Yi-Cheng Wang, Jhih-Shih You, and H. H. Jen. A non-hermitian optical atomic mirror. Nature Communications, 13(1):4598, Aug 2022. Loïc Anderegg, Lawrence W. Cheuk, Yicheng Bao, Sean Burchesky, Wolfgang Ketterle, Kang-Kuen Ni, and John M. Doyle. An optical tweezer array of ultracold molecules. Science, 365(6458):1156–1158, 2019. Yu-Ching Shen and Guin-Dar Lin. Scalable quantum computing stabilised by optical tweezers on an ion crystal. New Journal of Physics, 22(5):053032, may 2020. Immanuel Bloch, Jean Dalibard, and Wilhelm Zwerger. Many-body physics with ultracold gases. Rev. Mod. Phys., 80:885–964, Jul 2008. Klemens Hammerer, Anders S. Sørensen, and Eugene S. Polzik. Quantum interface between light and atomic ensembles. Rev. Mod. Phys., 82:1041–1093, Apr 2010. S. Rebić, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbalán. Polarization phase gate with a tripod atomic system. Phys. Rev. A, 70:032317, Sep 2004. E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. M. Gérard, and J. Bloch. Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys. Rev. Lett., 95:067401, Aug 2005. Shuo Zhang, Jian-Qi Zhang, Wei Wu, Wan-Su Bao, and Chu Guo. Fast cooling of trapped ion in strong sideband coupling regime. New Journal of Physics, 23(2):023018, feb 2021. L. Feng, W. L. Tan, A. De, A. Menon, A. Chu, G. Pagano, and C. Monroe. Efficient ground-state cooling of large trapped-ion chains with an electromagneticallyinduced- transparency tripod scheme. Phys. Rev. Lett., 125:053001, Jul 2020. D. J. Wineland and Wayne M. Itano. Laser cooling of atoms. Phys. Rev. A, 20:1521–1540, Oct 1979. Stig Stenholm. The semiclassical theory of laser cooling. Rev. Mod. Phys., 58:699–739, Jul 1986. A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji. Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping. Phys. Rev. Lett., 61:826–829, Aug 1988. Yong Lu, Jian-Qi Zhang, Jin-Ming Cui, Dong-Yang Cao, Shuo Zhang, Yun-Feng Huang, Chuan-Feng Li, and Guang-Can Guo. Dark-state cooling of a trapped ion using microwave coupling. Phys. Rev. A, 92:023420, Aug 2015. D. S. Naik, H. Eneriz-Imaz, M. Carey, T. Freegarde, F. Minardi, B. Battelier, P. Bouyer, and A. Bertoldi. Loading and cooling in an optical trap via hyperfine dark states. Phys. Rev. Res., 2:013212, Feb 2020. Chang Huang, Shijie Chai, and Shau-Yu Lan. Dark-state sideband cooling in an atomic ensemble. Phys. Rev. A, 103:013305, Jan 2021. Regina Lechner, Christine Maier, Cornelius Hempel, Petar Jurcevic, Ben P. Lanyon, Thomas Monz, Michael Brownnutt, Rainer Blatt, and Christian F. Roos. Electromagnetically-induced-transparency ground-state cooling of long ion strings. Phys. Rev. A, 93:053401, May 2016. Nils Scharnhorst, Javier Cerrillo, Johannes Kramer, Ian D. Leroux, Jannes B. Wübbena, Alex Retzker, and Piet O. Schmidt. Experimental and theoretical investigation of a multimode cooling scheme using multiple electromagnetically-induced-transparency resonances. Phys. Rev. A, 98:023424, Aug 2018. Elmar Haller, James Hudson, Andrew Kelly, Dylan A. Cotta, Bruno Peaudecerf, Graham D. Bruce, and Stefan Kuhr. Single-atom imaging of fermions in a quantumgas microscope. Nature Physics, 11(9):738–742, Sep 2015. G. J. A. Edge, R. Anderson, D. Jervis, D. C. McKay, R. Day, S. Trotzky, and J. H. Thywissen. Imaging and addressing of individual fermionic atoms in an optical lattice. Phys. Rev. A, 92:063406, Dec 2015. R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel. Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide. Nature Communications, 5(1):5713, Dec 2014. Peter Lodahl, Sahand Mahmoodian, Søren Stobbe, Arno Rauschenbeutel, Philipp Schneeweiss, Jürgen Volz, Hannes Pichler, and Peter Zoller. Chiral quantum optics. Nature, 541(7638):473–480, Jan 2017. Manuel Endres, Hannes Bernien, Alexander Keesling, Harry Levine, Eric R. Anschuetz, Alexandre Krajenbrink, Crystal Senko, Vladan Vuletic, Markus Greiner, and Mikhail D. Lukin. Atom-by-atom assembly of defect-free one-dimensional cold atom arrays. Science, 354(6315):1024–1027, 2016. J. D. Thompson, T. G. Tiecke, A. S. Zibrov, V. Vuletić, and M. D. Lukin. Coherence and raman sideband cooling of a single atom in an optical tweezer. Phys. Rev. Lett., 110:133001, Mar 2013. Adam M. Kaufman and Kang-Kuen Ni. Quantum science with optical tweezer arrays of ultracold atoms and molecules. Nature Physics, 17(12):1324–1333, Dec 2021. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87969 | - |
dc.description.abstract | 長程的偶極-偶極相互作用在各種量子光學系統中起著至關重要的作用,尤其在量子模擬和計算方面具有重要意義。本論文重點探究共振偶極-偶極相互作用在暗態邊帶冷卻中的影響。我們首先分析了自由空間原子之間的共振偶極-偶極相互作用。然後,我們將分辨邊帶冷卻技術擴展到暗態冷卻方案,並通過利用光子介導的偶極-偶極相互作用在束縛原子中實現增強冷卻效果。通過將原子放置在特定的粒子間距上,我們實現了目標原子超越單個原子所能達到的優越冷卻性能。我們進一步探索了具有激光失諧和不同偶極極化角度的多原子設置,並識別出多個奇特間距,預測隨著原子數量的增加,冷卻性能將有適度的提高。我們的研究揭示了利用光子介導的遠程偶極-偶極相互作用冷卻原子的原理,為克服可擴展量子計算和量子模擬中的冷卻限制提供機會。 | zh_TW |
dc.description.abstract | Long-range dipole-dipole interactions, mediated by photons, play a crucial role in various quantum optics systems and are particularly relevant for quantum simulation and computation. This thesis focuses on exploring the impact of resonant dipole-dipole interactions in the context of dark-state sideband cooling. We begin by analyzing the resonant dipole-dipole interaction between free-space atoms. We then extend the resolved sideband cooling technique to the dark-state cooling scheme and demonstrate enhanced cooling in trapped atoms by leveraging photon-mediated dipole-dipole interactions. Through placing atoms at specific interparticle distances, we achieve superior cooling performance in the target atom beyond what is achievable by a single atom. We further explore multiatom setups with laser detuning and different light polarization angles and identify multiple magic spacings where moderate improvements in cooling performance are predicted with increasing numbers of atoms. Our research sheds light on the cooling of atoms utilizing light-induced long-range dipole-dipole interactions and provides opportunities for overcoming cooling limitations in scalable quantum computation and quantum simulations. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-01T16:08:47Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-08-01T16:08:47Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 致謝 i
摘要 iii Abstract v Contents vii List of Figures ix Chapter 1 Introduction 1 Chapter 2 Light-atom interaction 5 2.1 System of two level atoms and electric fields . . . . . . . . . . . . . 6 2.2 Markov approximation for Open Quantum System . . . . . . . . . . 7 2.3 Photon-mediated dipole-dipole interaction . . . . . . . . . . . . . . . 10 Chapter 3 Resolved sideband cooling 13 3.1 Atomic motion and sideband . . . . . . . . . . . . . . . . . . . . . . 14 3.2 Lamb-Dicke regime . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3 Dark-state sideband cooling . . . . . . . . . . . . . . . . . . . . . . 18 3.4 Simulating method . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Chapter 4 Enhancing sideband cooling via dipole-dipole interaction 25 4.1 Few atoms cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.2 Dipole polarization and magic spacings . . . . . . . . . . . . . . . . 30 4.3 Effect of laser detuning and collective frequency shift . . . . . . . . 32 4.4 Multiatom configurations . . . . . . . . . . . . . . . . . . . . . . . . 34 Chapter 5 Conclusion 37 References 39 Appendix A — Derivation of Photon - mediated Dipole-Dipole Interaction 49 | - |
dc.language.iso | en | - |
dc.title | 共振偶極-偶極交互作用於束縛原子的暗態邊帶冷卻中之影響 | zh_TW |
dc.title | Role of Resonant Dipole-Dipole Interactions in Dark-State Sideband Cooling of Trapped Atoms | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 任祥華 | zh_TW |
dc.contributor.coadvisor | Hsiang-Hua Jen | en |
dc.contributor.oralexamcommittee | 游至仕 | zh_TW |
dc.contributor.oralexamcommittee | Jhih-Shih You | en |
dc.subject.keyword | 偶極-偶極相互作用,束縛原子,暗態邊帶冷卻, | zh_TW |
dc.subject.keyword | dipole-dipole interactions,trapped atoms,dark-state sideband cooling, | en |
dc.relation.page | 51 | - |
dc.identifier.doi | 10.6342/NTU202300902 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-07-05 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 物理學系 | - |
顯示於系所單位: | 物理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf | 1.84 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。