請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87963完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曾雪峰 | zh_TW |
| dc.contributor.advisor | Snow H. Tseng | en |
| dc.contributor.author | 冀天愛 | zh_TW |
| dc.contributor.author | Tien-Ai Ji | en |
| dc.date.accessioned | 2023-08-01T16:06:49Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-01 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-06-27 | - |
| dc.identifier.citation | 1. Liu, Q.H. The pseudospectral time-domain (PSTD) method: A new algorithm for solutions of Maxwell's equations. in IEEE Antennas and Propagation Society International Symposium 1997. Digest. 1997. IEEE.
2. Lei, Y., et al., A 2-D pseudospectral time-domain (PSTD) simulator for large-scale electromagnetic scattering and radar sounding applications. IEEE Transactions on Geoscience and Remote Sensing, 2020. 58(6): p. 4076-4098. 3. Hu, S., et al., Light-scattering model for aerosol particles with irregular shapes and inhomogeneous compositions using a parallelized pseudo-spectral time-domain technique. Chinese Physics B, 2018. 27(5): p. 054215. 4. Li, Q., Y. Chen, and D. Ge, Comparison study of the PSTD and FDTD methods for scattering analysis. Microwave and Optical Technology Letters, 2000. 25(3): p. 220-226. 5. Jerri, A.J., The Shannon sampling theorem—Its various extensions and applications: A tutorial review. Proceedings of the IEEE, 1977. 65(11): p. 1565-1596. 6. Berenger, J.-P., A perfectly matched layer for the absorption of electromagnetic waves. Journal of computational physics, 1994. 114(2): p. 185-200. 7. Gedney, S.D., An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices. IEEE transactions on Antennas and Propagation, 1996. 44(12): p. 1630-1639. 8. Balas, C., Review of biomedical optical imaging—a powerful, non-invasive, non-ionizing technology for improving in vivo diagnosis. Measurement science and technology, 2009. 20(10): p. 104020. 9. Liu, J.-J., M.J. Droller, and J.C. Liao, New optical imaging technologies for bladder cancer: considerations and perspectives. The Journal of urology, 2012. 188(2): p. 361-368. 10. Becker, A., et al., Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands. Nature biotechnology, 2001. 19(4): p. 327-331. 11. Wang, Y.M., et al., Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light. Nature communications, 2012. 3(1): p. 928. 12. Lai, P., et al., Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media. Nature photonics, 2015. 9(2): p. 126-132. 13. Yu, H., et al., Recent advances in wavefront shaping techniques for biomedical applications. Current Applied Physics, 2015. 15(5): p. 632-641. 14. Vellekoop, I.M. and A. Mosk, Focusing coherent light through opaque strongly scattering media. Optics letters, 2007. 32(16): p. 2309-2311. 15. Boniface, A., et al., Transmission-matrix-based point-spread-function engineering through a complex medium. Optica, 2017. 4(1): p. 54-59. 16. Popoff, S., et al., Controlling light through optical disordered media: transmission matrix approach. New Journal of Physics, 2011. 13(12): p. 123021. 17. Popoff, S.M., et al., Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Physical review letters, 2010. 104(10): p. 100601. 18. Günter, P., Holography, coherent light amplification and optical phase conjugation with photorefractive materials. Physics Reports, 1982. 93(4): p. 199-299. 19. Pepper, D.M., Nonlinear optical phase conjugation. Optical Engineering, 1982. 21(2): p. 156-183. 20. Shkunov, V.V. and B.Y. Zel'Dovich, Optical phase conjugation. Scientific American, 1985. 253(6): p. 54-59. 21. Pepper, D.M., Applications of optical phase conjugation. Scientific American, 1986. 254(1): p. 74-83. 22. Yaqoob, Z., et al., Optical phase conjugation for turbidity suppression in biological samples. Nature photonics, 2008. 2(2): p. 110-115. 23. Cheng, Z., J. Yang, and L.V. Wang, Dual-polarization analog optical phase conjugation for focusing light through scattering media. Applied Physics Letters, 2019. 114(23): p. 231104. 24. Liu, Y., et al., Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light. Nature communications, 2015. 6(1): p. 5904. 25. Herrera, J. and F. Ramos, Nonlinear distortion generated by DSF-based optical-phase conjugators in analog optical systems. Journal of lightwave technology, 2002. 20(9): p. 1688. 26. Cui, M. and C. Yang, Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation. Optics express, 2010. 18(4): p. 3444-3455. 27. Ruan, H., et al., Deep tissue optical focusing and optogenetic modulation with time-reversed ultrasonically encoded light. Science advances, 2017. 3(12): p. eaao5520. 28. Judkewitz, B., et al., Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE). Nature photonics, 2013. 7(4): p. 300-305. 29. Zhou, E.H., et al., Focusing on moving targets through scattering samples. Optica, 2014. 1(4): p. 227-232. 30. Ma, C., et al., Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media. Nature photonics, 2014. 8(12): p. 931-936. 31. Yu, Z., et al., Time-reversed magnetically controlled perturbation (TRMCP) optical focusing inside scattering media. Scientific reports, 2018. 8(1): p. 2927. 32. Eichler, H.J. and O. Mehl, Phase conjugate mirrors. Journal of Nonlinear Optical Physics & Materials, 2001. 10(01): p. 43-52. 33. Yariv, A. and D.M. Pepper, Amplified reflection, phase conjugation, and oscillation in degenerate four-wave mixing. Optics letters, 1977. 1(1): p. 16-18. 34. He, G.S., Optical phase conjugation: principles, techniques, and applications. Progress in Quantum Electronics, 2002. 26(3): p. 131-191. 35. Yariv, A., Phase conjugate optics and real-time holography. IEEE Journal of Quantum Electronics, 1978. 14(9): p. 650-660. 36. Kong, H.J., et al., Phase control of a stimulated Brillouin scattering phase conjugate mirror by a self-generated density modulation. Applied Physics Letters, 2005. 86(5): p. 051111. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87963 | - |
| dc.description.abstract | 光學相位共軛在非線性光學和生醫光學領域已成為過去三十年來一個重要的研究主題。在這項研究中,我們使用了時域擬譜法(pseudospectral time-domain, PSTD)技術來模擬光學相位共軛(optical phase conjugation, OPC)現象,並且通過在模擬中改變光學相位共軛的角度範圍與散射介質中粒子數量,觀察在散射介質中光聚焦的現象。 最後,通過比較正向與反向傳播的電場分布圖、光源位置上的振幅與電場強度截面圖可以幫助分析光聚角在介質中的表現。 | zh_TW |
| dc.description.abstract | Optical phase conjugation has been a significant major research subject in nonlinear optics and biomedical optics for the last three decades. In this research, we utilize the pseudospectral time-domain (PSTD) technique to simulate the optical phase conjugation (OPC) phenomenon. Our research focused on observing the effect of focusing through a scattering medium by varying the OPC angular span and using different particle numbers in the medium during simulation. We analyzed the results by comparing the backward propagation with the forward propagation using electric field distribution diagrams, as well as examining the amplitude and electrical intensity on the interface at the light source location. These comparisons allowed us to analyze the overall effect of optical phase conjugation. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-01T16:06:49Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-01T16:06:49Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
中文摘要 i Abstract ii List of Figures v List of Tables ix Chapter 1 Methods 1 1.1 Pseudospectral Time-Domain (PSTD) Algorithm 1 1.2 Nyquist Sampling Theorem[5] 7 1.3 Uniaxial Perfectly Matched Layer Absorbing Boundary Condition 11 Chapter 2 Optical Phase Conjugation Phenomenon 16 2.1 Optical Phase Conjugation (OPC) 16 2.1.1 The Background of the Optical Phase Conjugation Technique 16 2.1.1 Overview 17 2.1.2 Four-wave Mixing Interaction (FWM) 20 2.2 Optical Phase Conjugation in Scattering Medium 22 Chapter 3 Media, Parameters, Structure in Simulation 26 3.1 Media Used in Simulation 26 3.2 Structure of the Simulation 26 3.3 Parameter Used in Simulation 27 Chapter 4 Results and Discussion 29 4-1 Electric Field Distribution Diagrams in Different Condition 29 4.2 Data Analysis 35 Chapter 5 Summary and Future Work 47 5.1 Summary 47 5.2 Future Work 47 Reference 49 | - |
| dc.language.iso | en | - |
| dc.subject | 光學相位共軛 | zh_TW |
| dc.subject | 時域擬譜法 | zh_TW |
| dc.subject | optical phase conjugation (OPC) | en |
| dc.subject | pseudospectral time-domain (PTSD) | en |
| dc.title | 透過時域擬譜法分析光學相位共軛中不同張角對光聚焦在散射介質中之影響 | zh_TW |
| dc.title | Analyzing the Effect of Optical Phase Conjugation Angular Span in the Focusing through Scattering Medium by PSTD method | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蕭惠心;黃定洧 | zh_TW |
| dc.contributor.oralexamcommittee | Hui-Hsin Hsiao;Ding-Wei Huang | en |
| dc.subject.keyword | 時域擬譜法,光學相位共軛, | zh_TW |
| dc.subject.keyword | pseudospectral time-domain (PTSD),optical phase conjugation (OPC), | en |
| dc.relation.page | 51 | - |
| dc.identifier.doi | 10.6342/NTU202301188 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-06-28 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 光電工程學研究所 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 3.36 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
