請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87958完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林偲妘 | zh_TW |
| dc.contributor.advisor | Szu-Yun Lin | en |
| dc.contributor.author | 陳怡云 | zh_TW |
| dc.contributor.author | I-Yun Chen | en |
| dc.date.accessioned | 2023-08-01T16:04:46Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-01 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-05 | - |
| dc.identifier.citation | Lu, X., W. Liao, D. Fang, K. Lin, Y. Tian, C. Zhang, Z. Zheng, P. Zhao, Quantification of disaster resilience in civil engineering: A review. Journal of Safety Science and Resilience, 2020. 1(1): p. 19-30.
Joakim, E.P., L. Mortsch, G. Oulahen, Using vulnerability and resilience concepts to advance climate change adaptation. Environmental Hazards, 2015. 14(2): p. 137-155. Gilmore, D.R., D.M. Standaert, Building Community Resilience Post-Disaster: An Introduction. Journal of Affordable Housing & Community Development Law, 2013. 22(1): p. 61-65. Manyena, B., G. O'Brien, P. O'Keefe, J. Rose, Disaster resilience: a bounce back or bounce forward ability? Local Environment: The International Journal of Justice and Sustainability, 2011. 16(5): p. 417-424. Norris, F.H., S.P. Stevens, B. Pfefferbaum, K.F. Wyche, R.L. Pfefferbaum, Community resilience as a metaphor, theory, set of capacities, and strategy for disaster readiness. American journal of community psychology, 2008. 41: p. 127-150. Paton, D., D. Johnston, Disaster resilience: an integrated approach. 2017: Charles C Thomas Publisher. Adger, W.N., Social and ecological resilience: are they related? Progress in human geography, 2000. 24(3): p. 347-364. Panteli, M., D.N. Trakas, P. Mancarella, N.D. Hatziargyriou, Power Systems Resilience Assessment: Hardening and Smart Operational Enhancement Strategies. Proceedings of the IEEE, 2017. 105(7): p. 1202-1213. Panteli, M., C. Pickering, S. Wilkinson, R. Dawson, P. Mancarella, Power System Resilience to Extreme Weather: Fragility Modeling, Probabilistic Impact Assessment, and Adaptation Measures. IEEE Transactions on Power Systems, 2017. 32(5): p. 3747-3757. Birkmann, J., Risk and vulnerability indicators at different scales: Applicability, usefulness and policy implications. Environmental hazards, 2007. 7(1): p. 20-31. Gjorgiev, B., G. Sansavini, Identifying and assessing power system vulnerabilities to transmission asset outages via cascading failure analysis. Reliability Engineering & System Safety, 2022. 217: p. 108085. Adger, W., Vulnerability of global environmental change 16 (3): 268–281. Agriculture: Ricardian approach. World Bank Policy Research Paper, 2007(4342). Berkes, F., Understanding uncertainty and reducing vulnerability: lessons from resilience thinking. Natural Hazards, 2007. 41(2): p. 283-295. Hung, H.-C., L.-Y. Chen, Incorporating stakeholders’ knowledge into assessing vulnerability to climatic hazards: application to the river basin management in Taiwan. Climatic change, 2013. 120: p. 491-507. Brooks, N., W. Neil Adger, P. Mick Kelly, The determinants of vulnerability and adaptive capacity at the national level and the implications for adaptation. Global Environmental Change, 2005. 15(2): p. 151-163. 蕭代基, 洪鴻智, 楊智凱, 黃德秀, 王定心, 國家氣候變遷與災害脆弱度評估:資本分析法之應用. 地理學報, 2018(89): p. 61-84. 洪至萱, 地震災害人口回復力與高齡化空間分布及其影響因素--以921地震災區為例, in 不動產與城鄉環境學系. 2015, 國立臺北大學. p. 1-191. 許智豪, 鄧敏政, 廣域災害衝擊傳播論都市基礎設施耐災韌性危機. 危機管理學刊, 2020. 17(2): p. 11-20. 謝承憲, 馮正民, 臺灣公路系統之脆弱度與回復力評估. 運輸計劃季刊, 2016. 45(3): p. 235-250. Cutter, S.L., L. Barnes, M. Berry, C. Burton, E. Evans, E. Tate, J. Webb, A place-based model for understanding community resilience to natural disasters. Global environmental change, 2008. 18(4): p. 598-606. Birkmann, J., Measuring vulnerability to promote disaster-resilient societies. Measuring vulnerability to natural hazards: Towards disaster resilient societies, 2007: p. 9. 陳信良, 都市地區洪災回復力評估-以台南市仁德文賢地區為例, in 土地管理與開發學系(所). 2014, 長榮大學. p. 1-62. King, D., A. Aboudina, A. Shalaby, Evaluating transit network resilience through graph theory and demand-elastic measures: Case study of the Toronto transit system. Journal of Transportation Safety & Security, 2019. 12(7): p. 924-944. Liu, X., Y.-P. Fang, E. Zio, A Hierarchical Resilience Enhancement Framework for Interdependent Critical Infrastructures. Reliability Engineering & System Safety, 2021. 215: p. 107868. Nazemi, M., M. Moeini-Aghtaie, M. Fotuhi-Firuzabad, P. Dehghanian, Energy Storage Planning for Enhanced Resilience of Power Distribution Networks Against Earthquakes. IEEE Transactions on Sustainable Energy, 2020. 11(2): p. 795-806. Herrera, M., E. Abraham, I. Stoianov, A Graph-Theoretic Framework for Assessing the Resilience of Sectorised Water Distribution Networks. Water Resources Management, 2016. 30(5): p. 1685-1699. Hsieh, C.-H., C.-M. Feng, Road Network Vulnerability Assessment Based on Fragile Factor Interdependencies in Spatial-Functional Perspectives. Environment and Planning A: Economy and Space, 2014. 46(3): p. 700-714. Erdener, B.C., K.A. Pambour, R.B. Lavin, B. Dengiz, An integrated simulation model for analysing electricity and gas systems. International Journal of Electrical Power & Energy Systems, 2014. 61: p. 410-420. Senderov, S.M., E.M. Smirnova, S.V. Vorobev, Analysis of vulnerability of fuel supply systems in gas-consuming regions due to failure of critical gas industry facilities. Energy, 2020. 212: p. 118785. Farahani, S., A. Tahershamsi, B. Behnam, Earthquake and post-earthquake vulnerability assessment of urban gas pipelines network. Natural Hazards, 2020. 101: p. 327-347. Ghaychi Afrouz, S., A. Farzampour, Z. Hejazi, M. Mojarab, Evaluation of seismic vulnerability of hospitals in the Tehran metropolitan area. Buildings, 2021. 11(2): p. 54. 蘇昭郎, 李中生, 鄧敏政, 吳啟瑞, 吳佳容, 李洋寧, 李沁妍, 簡賢文, 關鍵基礎設施災害脆弱度評估與風險管理:災害衝擊評估方法 II, 人為災害防治組, Editor. 2013, 陳亮全: 國家災害防救科技中心. 33. Bellè, A., Z. Zeng, C. Duval, M. Sango, A. Barros, Modeling and vulnerability analysis of interdependent railway and power networks: Application to British test systems. Reliability Engineering & System Safety, 2022. 217. 34. Diestel, R., Graph Theory. Vol. 173. 2017. González, A.D., L. Dueñas-Osorio, M. Sánchez-Silva, A.L. Medaglia, The Interdependent Network Design Problem for Optimal Infrastructure System Restoration. Computer-Aided Civil and Infrastructure Engineering, 2016. 31(5): p. 334-350. Lorenz, I.-S., P. Pelz, Optimal Resilience Enhancement of Water Distribution Systems. Water, 2020. 12(9). Weber, R., T. Huzsvar, C. Hos, Vulnerability analysis of water distribution networks to accidental pipe burst. Water Research, 2020. 184: p. 11. Li, C., I.E. Grossmann, A Review of Stochastic Programming Methods for Optimization of Process Systems Under Uncertainty. Frontiers in Chemical Engineering, 2021. 2(34). 楊舒雯, 複合運輸路網回復力之模式建構, in 運輸與物流管理學系. 2016, 國立交通大學. p. 1-42. Ahmadi, H., J.R. Martí, Minimum-loss network reconfiguration: A minimum spanning tree problem. Sustainable Energy, Grids and Networks, 2015. 1: p. 1-9. Hwang, H.H.M., J.-R. Huo, Seismic fragility analysis of electric substation equipment and structures. Probabilistic Engineering Mechanics, 1998. 13(2): p. 107-116. Wallace, S.W., W.T. Ziemba, Applications of Stochastic Programming (Mps-Siam Series on Optimization) (Mps-Saimseries on Optimization). 2005: Society for Industrial and Applied Mathematics. Liang, H., Q. Xie, Resilience-Based Sequential Recovery Planning for Substations Subjected to Earthquakes. IEEE Transactions on Power Delivery, 2023. 38(1): p. 353-362. Cui, J., A. Che, S. Li, Y. Cheng, Evaluation method on seismic risk of substation in strong earthquake area. PLOS ONE, 2021. 16(12): p. e0258792. Ahmadi, H., A. Alsubaie, J.R. Martí. Distribution system restoration considering critical infrastructures interdependencies. in 2014 IEEE PES General Meeting | Conference & Exposition. 2014. Ouyang, M., Y. Fang, A Mathematical Framework to Optimize Critical Infrastructure Resilience against Intentional Attacks. Computer-Aided Civil and Infrastructure Engineering, 2017. 32(11): p. 909-929. Tikuneh, M.A., G.B. Worku, Identification of system vulnerabilities in the Ethiopian electric power system. Global Energy Interconnection, 2018. 1(3): p. 358-365. Kemabonta, T., Grid Resilience analysis and planning of electric power systems: The case of the 2021 Texas electricity crises caused by winter storm Uri (#TexasFreeze). The Electricity Journal, 2021. 34(10): p. 107044. Bhusal, N., M. Abdelmalak, M. Kamruzzaman, M. Benidris, Power System Resilience: Current Practices, Challenges, and Future Directions. IEEE Access, 2020. 8: p. 18064-18086. 廖宜宏, 關鍵基礎設施系統地震風險評估以電力系統為例, in 土木工程研究所. 2012, 國立中央大學. 張皓雯, 電力系統關鍵基礎設施分析方法與評估, in 土木工程學系. 2013, 國立中央大學. 曾思敏, 關鍵基礎設施相依性決策方法與分析, in 中央大學土木工程學系學位論文. 2013, 國立中央大學. p. 1-115. Aki, H., Demand-Side Resiliency and Electricity Continuity: Experiences and Lessons Learned in Japan. Proceedings of the IEEE, 2017. 105(7): p. 1443-1455. 盧思穎, 以微電網技術提高軍事用電強韌性研究. 臺灣經濟研究月刊, 2021. 44(3): p. 32-41. 趙文衡, 國際電網韌性發展趨勢對我國能源合作的啟示, 台灣經濟研究院, Editor. 2018. 蘇煥凱, 多目標多階層之電力系統規劃, in 工業工程與管理學系. 2013, 元智大學. p. 1-106. Haimes, Y.Y., Infrastructure Interdependencies and Homeland Security. Journal of Infrastructure Systems, 2005. 11(2): p. 65-66. Tgbs 技術手冊_地震災害潛勢分析. 2013, 國家地震工程研究中心: 國家地震工程研究中心. 台灣地震損失評估系統TELES. 國家地震工程研究中心. 台電供電系統簡介. Available from: https://www.taipower.com.tw/tc/page.aspx?mid=211&cid=342&cchk=c5e75b3b-8b71-4c21-9245-2ecc120d49f2. Hazus Earthquake Model Technical Manual. 2020, Federal Emergency Management Agency (FEMA): Federal Emergency Management Agency (FEMA). 台灣電力公司縣市用電資訊. Available from: https://www.taipower.com.tw/tc/page.aspx?mid=5554. Younesi, A., H. Shayeghi, A. Safari, P. Siano, Assessing the resilience of multi microgrid based widespread power systems against natural disasters using Monte Carlo Simulation. Energy, 2020. 207: p. 118220. Fioriti, D., D. Poli, A novel stochastic method to dispatch microgrids using Monte Carlo scenarios. Electric Power Systems Research, 2019. 175: p. 105896. Rubinstein, R.Y., D.P. Kroese, Simulation and the Monte Carlo method. 2016: John Wiley & Sons. Kroese, D., T. Taimre, Z. Botev, Handbook of Monte Carlo Methods. John Willey & Sons. Inc., Hoboken, New Jersey, 2011. Chen, C.-T., J.-C. Hu, C.-Y. Lu, J.-C. Lee, Y.-C. Chan, Thirty-year land elevation change from subsidence to uplift following the termination of groundwater pumping and its geological implications in the Metropolitan Taipei Basin, Northern Taiwan. Engineering Geology, 2007. 95(1): p. 30-47. Walia, V., T. Su, C. Fu, T. Yang, Spatial variations of radon and helium concentrations in soil-gas across the Shan-Chiao fault, Northern Taiwan. Radiation Measurements, 2005. 40(2-6): p. 513-516. Chen, C.T., J.C. Lee, Y.C. Chan, C.Y. Lu, L.S.Y. Teng, Elucidating the geometry of the active Shanchiao Fault in the Taipei metropolis, northern Taiwan, and the reactivation relationship with preexisting orogen structures. Tectonics, 2014. 33(12): p. 2400-2418. 朱易昌, 城市路網受震損建物殘骸阻斷風險分析. 2022. Taiwan Power Company. Available from: https://www.taipower.com.tw/tc/index.aspx. 聚珍‧台灣1999年7月全臺大停電回顧. Available from: https://www.gjtaiwan.com/new/?p=96801. 台電月刊 681期 921抗震啟示錄 強化南北電力融通 淬鍊系統韌性. Available from: https://tpcjournal.taipower.com.tw/article/3499. 台灣採購公報網. Available from: https://www.taiwanbuying.com.tw/ShowCCDetailOri.ASP?RecNo=2844471. 公共政策網路參與平台. Available from: https://join.gov.tw/acts/detail/1ccbc51d-2781-456b-9741-f2f2ba5e3dbb. 台灣電力公司, 「強化電網韌性建設計畫」說明資料. 2023. 台電月刊 703期 大安超高壓變電所蓄勢待發. Available from: https://tpcjournal.taipower.com.tw/article/4769. 台北市建築師公會. Available from: https://www.arch.org.tw/News/news_more?id=9bfa18830ce5490082fba5fa2b71072d | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87958 | - |
| dc.description.abstract | 自然災害可能會對關鍵基礎設施及維生管線造成嚴重衝擊,將造成嚴重的社會成本,例如無法滿足民生需求、重要設施停擺。各國政府皆積極尋找相關的韌性提升方法,然而過去研究多忽略了韌性和脆弱度的綜合考量。因此本研究希望結合兩者的特性,應用於電力系統的網路分析,模擬災害當下與災後電網的影響及恢復程度,提出電網韌性之評估方法,並通過綜合考慮4R(Robustness, Rapidity, Redundancy, Resourcefulness)指標,找到最可行的減災和應對策略,以提高社區的抗災能力。首先,進行圖論分析,確認每個節點的中心性和其失效後的影響,以確定關鍵廠站。接著,利用地震參數、易損性曲線及復原參數,透過蒙特卡羅方法模擬地震情景下電力系統的損壞和恢復情況。研究案例將範圍選定於台北市及新北市的行政區,並採用山腳斷層規模6.6之地震事件作為災害模擬情境。研究結果顯示,本文的方法得以成功辨識關鍵節點及高風險區域,並考量社會經濟資料,進行脆弱度分析給出重要性排序。同時,衡量不同韌性提升策略之模擬改善效果,為相關決策者制定未來防、減災計畫提供參考。 | zh_TW |
| dc.description.abstract | Natural disasters may severely impact critical infrastructure and lifelines and even cause the shutdown of essential facilities. Governments worldwide are actively seeking resilience enhancement methods. However, previous studies have often overlooked the comprehensive consideration of resilience and vulnerability. Therefore, this research aims to integrate the characteristics of resilience and vulnerability and apply them to network analysis of an electric power system. The proposed method assesses the effects and recovery levels of the power network during and after a disaster and identifies the feasible mitigation and response strategies considering the 4R (Robustness, Rapidity, Redundancy, Resourcefulness) indicators to enhance community disaster resilience. The study first conducts graph theory analysis to evaluate the centrality of each node and its impact after failure, thereby identifying critical nodes. Then, using the seismic parameters, fragility curves, and recovery parameters, the research conducts Monte Carlo simulations to assess the damage and recovery of the power network under seismic scenarios. The study focuses on the administrative districts of Taipei City and New Taipei City, with the seismic event considered a 6.6 magnitude earthquake along the Shanchiao Fault.
The results show that the proposed method can identify critical nodes and high-risk areas. The vulnerability and resilience of administrative districts are assessed through analysis, and the effects of different resilience enhancement strategies are evaluated. This research provides insights and references for decision-makers in planning disaster mitigation and resilience improvement strategies. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-01T16:04:46Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-01T16:04:46Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii 目錄 iv 圖目錄 vii 表目錄 x 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的與架構 1 第二章 文獻回顧 3 2.1 導言 3 2.2 韌性(resilience)及脆弱度(vulnerability) 3 2.2.1 韌性(resilience) 3 2.2.2 脆弱度(vulnerability) 5 2.2.3 韌性及脆弱度之關係 6 2.3 關鍵節點評估方法 9 2.3.1 圖論(Graph Theory) 10 2.3.2 中心性(Centrality) 10 2.4 系統修復策略探討 11 2.4.1 隨機規劃(Stochastic programming)及最佳化(optimization) 11 2.4.2 系統韌性提升策略 13 2.5 小結 15 第三章 研究方法 16 3.1 導言 16 3.2 資料整合 16 3.2.1 地震情境與廠站位置擬合 16 3.2.2 電力系統上下游供給關係 18 3.3 地震損害與回復速度評估 20 3.3.1 地震破壞狀態評估 20 3.3.2 震後系統回復評估 22 3.4 電網災後服務水準分析 23 3.4.1 建立模擬方程式 23 3.4.2 分析流程說明 24 3.5 小結 27 第四章 案例分析 28 4.1 案例說明 28 4.1.1 案例假設及限制 30 4.2 關鍵廠站分析 31 4.2.1 節點中心性及失效後整體電網供電能力 31 4.2.2 廠站破壞機率評估 32 4.3 行政區脆弱度與電網韌性分析之關係 34 4.3.1 行政區脆弱度因子 34 4.3.2 考慮社會經濟資料的加權分數 35 4.4 電網韌性分析 41 4.4.1 震後行政區恢復情況 41 4.4.2 由極端案例觀察韌性能力與恢復目標之關係 45 4.4.3 關鍵廠站重要性評估 46 4.4.4 考慮行政區脆弱度的電網分析 48 4.5 韌性提升策略分析 50 4.5.1 預防地震破壞 52 4.5.2 提高恢復速率 54 4.5.3 冗餘策略討論 56 4.6 小結 63 第五章 結論 65 5.1 結論 65 5.2 研究限制與未來建議 66 參考文獻 68 附錄 73 附錄 1 重要性分析 73 附錄 2 脆弱度因子列表及權重計算 77 附錄 3 廠站關鍵分數列表 79 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 韌性 | zh_TW |
| dc.subject | 電力系統 | zh_TW |
| dc.subject | 脆弱度 | zh_TW |
| dc.subject | 地震風險 | zh_TW |
| dc.subject | 減災 | zh_TW |
| dc.subject | vulnerability | en |
| dc.subject | power system | en |
| dc.subject | seismic risk | en |
| dc.subject | resilience | en |
| dc.subject | disaster mitigation | en |
| dc.title | 地震風險下電力系統之韌性分析 | zh_TW |
| dc.title | Seismic Risk and Resilience Analysis of Power System | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林其穎;蘇文瑞 | zh_TW |
| dc.contributor.oralexamcommittee | Chi-Ying Lin;Wen-Jui Su | en |
| dc.subject.keyword | 韌性,脆弱度,電力系統,地震風險,減災, | zh_TW |
| dc.subject.keyword | resilience,vulnerability,power system,seismic risk,disaster mitigation, | en |
| dc.relation.page | 82 | - |
| dc.identifier.doi | 10.6342/NTU202301348 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-07-05 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2028-07-04 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 4.75 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
