Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87954
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor蘇偉儁zh_TW
dc.contributor.advisorWei-Jiun Suen
dc.contributor.author陳厚勳zh_TW
dc.contributor.authorHou-Hsun Chenen
dc.date.accessioned2023-07-31T16:31:15Z-
dc.date.available2023-11-09-
dc.date.copyright2023-07-31-
dc.date.issued2023-
dc.date.submitted2023-06-29-
dc.identifier.citationA. Erturk and D. J. Inman, "A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters," Journal of Vibration and Acoustics, vol. 130, no. 4, p. 041002, 2008, doi: 10.1115/1.2890402.
A. Erturk and D. J. Inman, "An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations," Smart Materials and Structures, vol. 18, no. 2, p. 025009, 2009, doi: 10.1088/0964-1726/18/2/025009.
M. Stewart, P. M. Weaver, and M. Cain, "Charge redistribution in piezoelectric energy harvesters," Applied Physics Letters, vol. 100, no. 7, p. 073901, 2012, doi: 10.1063/1.3685701.
F. Goldschmidtboeing and P. Woias, "Characterization of different beam shapes for piezoelectric energy harvesting," Journal of Micromechanics and Microengineering, vol. 18, no. 10, p. 104013, 2008, doi: 10.1088/0960-1317/18/10/104013.
W. G. Li, H. Siyuan, and Y. Shudong, "Improving Power Density of a Cantilever Piezoelectric Power Harvester Through a Curved L-Shaped Proof Mass," IEEE Transactions on Industrial Electronics, vol. 57, no. 3, pp. 868-876, 2010, doi: 10.1109/tie.2009.2030761.
Y. Hu, H. Xue, and H. Hu, "A piezoelectric power harvester with adjustable frequency through axial preloads," Smart Materials and Structures, vol. 16, no. 5, pp. 1961-1966, 2007, doi: 10.1088/0964-1726/16/5/054.
M. O. Mansour, M. H. Arafa, and S. M. Megahed, "Resonator with magnetically adjustable natural frequency for vibration energy harvesting," Sensors and Actuators A: Physical, vol. 163, no. 1, pp. 297-303, 2010/09/01/ 2010, doi: https://doi.org/10.1016/j.sna.2010.07.001.
N. A. Aboulfotoh, M. H. Arafa, and S. M. Megahed, "A self-tuning resonator for vibration energy harvesting," Sensors and Actuators A: Physical, vol. 201, pp. 328-334, 2013/10/15/ 2013, doi: https://doi.org/10.1016/j.sna.2013.07.030.
Q. C. Tang, Y. L. Yang, and X. Li, "Bi-stable frequency up-conversion piezoelectric energy harvester driven by non-contact magnetic repulsion," Smart Materials and Structures, vol. 20, no. 12, 2011, doi: 10.1088/0964-1726/20/12/125011.
S.-M. Jung and K.-S. Yun, "Energy-harvesting device with mechanical frequency-up conversion mechanism for increased power efficiency and wideband operation," Applied Physics Letters, vol. 96, no. 11, p. 111906, 2010, doi: 10.1063/1.3360219.
L. Gu and C. Livermore, "Impact-driven, frequency up-converting coupled vibration energy harvesting device for low frequency operation," Smart Materials and Structures, vol. 20, no. 4, 2011, doi: 10.1088/0964-1726/20/4/045004.
S. Li et al., "Bi-resonant structure with piezoelectric PVDF films for energy harvesting from random vibration sources at low frequency," Sensors and Actuators A: Physical, vol. 247, pp. 547-554, 2016, doi: 10.1016/j.sna.2016.06.033.
H. Xue, Y. Hu, and Q. M. Wang, "Broadband piezoelectric energy harvesting devices using multiple bimorphs with different operating frequencies," IEEE Trans Ultrason Ferroelectr Freq Control, vol. 55, no. 9, pp. 2104-8, Sep 2008, doi: 10.1109/TUFFC.903.
X. Nie, T. Tan, Z. Yan, Z. Yan, and M. R. Hajj, "Broadband and high-efficient L-shaped piezoelectric energy harvester based on internal resonance," International Journal of Mechanical Sciences, vol. 159, pp. 287-305, 2019, doi: 10.1016/j.ijmecsci.2019.06.009.
D. Liu, M. Al-Haik, M. Zakaria, and M. R. Hajj, "Piezoelectric energy harvesting using L-shaped structures," Journal of Intelligent Material Systems and Structures, vol. 29, no. 6, pp. 1206-1215, 2017, doi: 10.1177/1045389x17730926.
H. Wu, L. Tang, Y. Yang, and C. K. Soh, "A novel two-degrees-of-freedom piezoelectric energy harvester," Journal of Intelligent Material Systems and Structures, vol. 24, no. 3, pp. 357-368, 2012, doi: 10.1177/1045389x12457254.
K. Chen, F. Gao, Z. Liu, and W.-H. Liao, "A nonlinear M-shaped tri-directional piezoelectric energy harvester," Smart Materials and Structures, vol. 30, no. 4, p. 045017, 2021, doi: 10.1088/1361-665X/abe87e.
H. C. Lin, P. H. Wu, I. C. Lien, and Y. C. Shu, "Analysis of an array of piezoelectric energy harvesters connected in series," Smart Materials and Structures, vol. 22, no. 9, 2013, doi: 10.1088/0964-1726/22/9/094026.
I. C. Lien and Y. C. Shu, "Array of piezoelectric energy harvesting by the equivalent impedance approach," Smart Materials and Structures, vol. 21, no. 8, 2012, doi: 10.1088/0964-1726/21/8/082001.
P. H. Wu, Y. J. Chen, B. Y. Li, and Y. C. Shu, "Wideband energy harvesting based on mixed connection of piezoelectric oscillators," Smart Materials and Structures, vol. 26, no. 9, 2017, doi: 10.1088/1361-665X/aa7981.
G. Sebald, H. Kuwano, D. Guyomar, and B. Ducharne, "Experimental Duffing oscillator for broadband piezoelectric energy harvesting," Smart Materials and Structures, vol. 20, no. 10, p. 102001, 2011, doi: 10.1088/0964-1726/20/10/102001.
B. P. Mann and B. A. Owens, "Investigations of a nonlinear energy harvester with a bistable potential well," Journal of Sound and Vibration, vol. 329, no. 9, pp. 1215-1226, 2010, doi: 10.1016/j.jsv.2009.11.034.
L. Dhakar, H. Liu, F. E. H. Tay, and C. Lee, "A new energy harvester design for high power output at low frequencies," Sensors and Actuators A: Physical, vol. 199, pp. 344-352, 2013, doi: 10.1016/j.sna.2013.06.009.
A. Emad, M. A. E. Mahmoud, M. Ghoneima, and M. Dessouky, "Testing and evaluation of stretching strain in clamped–clamped beams for energy harvesting," Smart Materials and Structures, vol. 25, no. 11, p. 115006, 2016, doi: 10.1088/0964-1726/25/11/115006.
Z. Liang, C. Xu, B. Ren, and H. Luo, "Theoretical analysis of energy harvesting performance for clamped–clamped piezoelectric beam," Microsystem Technologies, vol. 21, no. 4, pp. 815-823, 2014, doi: 10.1007/s00542-014-2237-1.
A. Hajati and S.-G. Kim, "Ultra-wide bandwidth piezoelectric energy harvesting," Applied Physics Letters, vol. 99, no. 8, p. 083105, 2011, doi: 10.1063/1.3629551.
Y. Chen and Z. Yan, "Nonlinear analysis of axially loaded piezoelectric energy harvesters with flexoelectricity," International Journal of Mechanical Sciences, vol. 173, p. 105473, 2020, doi: 10.1016/j.ijmecsci.2020.105473.
K. Chen, Q. Gao, S. Fang, D. Zou, Z. Yang, and W.-H. Liao, "An auxetic nonlinear piezoelectric energy harvester for enhancing efficiency and bandwidth," Applied Energy, vol. 298, p. 117274, 2021/09/15/ 2021, doi: https://doi.org/10.1016/j.apenergy.2021.117274.
Z. Yang and J. Zu, "High-efficiency compressive-mode energy harvester enhanced by a multi-stage force amplification mechanism," Energy Conversion and Management, vol. 88, pp. 829-833, 2014, doi: 10.1016/j.enconman.2014.09.026.
H. T. Li, W. Y. Qin, J. Zu, and Z. Yang, "Modeling and experimental validation of a buckled compressive-mode piezoelectric energy harvester," Nonlinear Dynamics, vol. 92, no. 4, pp. 1761-1780, 2018, doi: 10.1007/s11071-018-4160-y.
H.-L. Chang and W.-J. Su, "Design and development of a high-performance tensile-mode piezoelectric energy harvester based on a three-hinged force-amplification mechanism," Smart Materials and Structures, vol. 31, no. 7, 2022, doi: 10.1088/1361-665X/ac7489.
游士寬, "基於懸臂梁之拉伸式非線性壓電能量採集器之設計與分析," 碩士, 機械工程學研究所, 國立臺灣大學, 台北市, 2022. [Online]. Available: https://hdl.handle.net/11296/w6d54t
M. T. Towliat Kashani, S. Jayasinghe, and S. M. Hashemi, "On the Flexural-Torsional Vibration and Stability of Beams Subjected to Axial Load and End Moment," Shock and Vibration, vol. 2014, pp. 1-11, 2014, doi: 10.1155/2014/153532.
W. Al-Ashtari, M. Hunstig, T. Hemsel, and W. Sextro, "Frequency tuning of piezoelectric energy harvesters by magnetic force," Smart Materials and Structures, vol. 21, no. 3, 2012, doi: 10.1088/0964-1726/21/3/035019.
H. Y. Hwang, "Effect of strain rate on piezoelectric characteristics of unidirectional glass fiber epoxy composites," Journal of Composite Materials, vol. 45, no. 6, pp. 613-620, 2010, doi: 10.1177/0021998310376112.
Y. H. Shin et al., "Mechanical Fatigue Resistance of Piezoelectric PVDF Polymers," Micromachines (Basel), vol. 9, no. 10, Oct 4 2018, doi: 10.3390/mi9100503.
D. Shen, J.-H. Park, J. Ajitsaria, S.-Y. Choe, H. C. Wikle, and D.-J. Kim, "The design, fabrication and evaluation of a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting," Journal of Micromechanics and Microengineering, vol. 18, no. 5, p. 055017, 2008, doi: 10.1088/0960-1317/18/5/055017.
F. M. Foong, C. K. Thein, and D. Yurchenko, "On mechanical damping of cantilever beam-based electromagnetic resonators," Mechanical Systems and Signal Processing, vol. 119, pp. 120-137, 2019, doi: 10.1016/j.ymssp.2018.09.023.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87954-
dc.description.abstract傳統的懸臂梁式壓電能量採集器以彎矩的方式來傳遞機械能給予壓電材料,這樣的方式使得梁體應變分布不均,造成發電效率低落之情況,且採集頻寬也相對狹窄。因此為改善上述情況,本研究提出剛體梁與懸臂梁結合之拉伸式壓電能量採集器,可將其視為一組由剛體梁、懸臂梁組成之兩段式懸臂梁以及PVDF壓電材料構成之彈性梁結合之採集器。彈性梁之一端與兩段式懸臂梁接合,另一端與基座以夾持方式固定,而彈性梁因其抗彎剛性遠小於整體系統,因此其兩端皆視為旋轉接頭。本研究推導之數學模型將以古典尤拉梁理論配合壓電本構方程式為基礎進行推導,並加入非線性外力項以及調整系統各參數來探討其性能影響及趨勢。藉由這樣的結構,可使整段壓電片受到兩段式懸臂梁帶來的軸向拉伸力,使壓電材料應變分布更為均勻,使其電壓輸出效率獲得增長,並且同時,因彈性梁施以兩段式懸臂梁之非線性拉伸力,使得系統位移以及電壓響應有著非線性硬化效果,而擁有更大的頻寬以及電壓輸出。兩段式懸臂梁之設計為使兩段式懸臂梁側有更大的剛性,使其不因彈性梁外力而影響懸臂梁之末端位移與懸臂梁之假設,並且同時保有懸臂梁固定端之彎曲特性。最後實驗與模擬結果顯示,本文之拉伸式壓電能量採集器之最大電壓輸出是懸臂梁式壓電能量採集器的4.54倍,並且頻寬達到3.54倍,且經過最佳阻抗實驗後,顯示本採集器在10MΩ下,最大輸出功率1258 μW。zh_TW
dc.description.abstractThe traditional cantilevered piezoelectric energy harvester transmits mechanical energy to the piezoelectric material through bending moment, which results in uneven strain distribution in the beam and leads to low power generation efficiency and collection bandwidth. To solve this problem, this study proposes a stretching-type piezoelectric energy harvester that combines a rigid beam and a cantilevered beam. It can be regarded as a harvester composed of an elastic beam made of PVDF piezoelectric material and a two-segment cantilevered beam combined with a rigid beam. One end of the elastic beam is connected to the two-segment cantilevered beam, while the other end is fixed to the base by clamping, and both ends of the elastic beam are treated as resolute joints because its bending stiffness is much smaller than that of the whole system. With this structure, the entire piezoelectric material can be stretched by the axial tensile force brought by the two-stage cantilevered beam, making the strain distribution of the piezoelectric material more uniform, and improving its voltage output efficiency. Additionally, due to the non-linear tensile force generated by the elastic beam, the system displacement and voltage response have non-linear hardening effects, resulting in a wider bandwidth and larger voltage output. The design of the two-segment cantilevered beam is to increase its rigidity on both sides to prevent the maximum displacement of the cantilevered beam from decreasing due to external forces acting on the elastic beam while maintaining the bending characteristics of the fixed end of the cantilevered beam. The mathematical model derived in this study will be based on the classical Euler beam theory combined with the piezoelectric constitutive equation, and non-linear external force terms will be added, along with the adjustment of various system parameters to investigate their performance impact and trends. Finally, the experimental and simulation results showed that the maximum voltage output of the stretchable piezoelectric energy harvester proposed in this paper is 4.54 times that of the cantilever beam piezoelectric energy harvester. Additionally, the bandwidth reached 3.54 times. After conducting the optimal impedance experiment, it was shown that the maximum output power of this harvester is 1258 μW at 10MΩ.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-07-31T16:31:15Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-07-31T16:31:15Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
目錄 vi
圖目錄 viii
表目錄 xii
符號表 xiv
Chapter 1 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 研究動機與方法 8
1.4 論文架構 10
Chapter 2 壓電能量採集理論 11
2.1 壓電效應 11
2.2 壓電本構方程式 13
Chapter 3 能量採集器模型 16
3.1 採集器之力學模型 16
3.2 採集器之電學模型 24
Chapter 4 實驗設計 27
4.1 原型設計 27
4.2 實驗設備 29
4.3 實驗流程 32
Chapter 5 結果驗證與討論 33
5.1 模型驗證與參數對系統之影響 33
5.1.1 預拉力之影響 34
5.1.2 長度比例的影響 43
5.1.3 加速度的影響 52
5.1.4 質量的影響 56
5.2 拉伸式非線性採集器與懸臂梁採集器之比較 60
5.3 系統功率與最佳阻抗 67
Chapter 6 結論與未來展望 72
6.1 結論 72
6.2 未來展望 73
參考文獻 74
附錄A 矩陣M係數 78
附錄B 懸臂梁應變能 81
-
dc.language.isozh_TW-
dc.subject軸向拉伸zh_TW
dc.subject壓電能量採集器zh_TW
dc.subject兩段式懸臂梁zh_TW
dc.subject非線性硬化效應zh_TW
dc.subject軸向預力zh_TW
dc.subjecttwo-segment cantilever beamen
dc.subjectPiezoelectric energy harvesteren
dc.subjectaxial stretchingen
dc.subjectaxial preloaden
dc.subjecthardening effecten
dc.title剛體梁與懸臂梁結合之拉伸式非線性壓電能量採集器分析zh_TW
dc.titleAnalysis of a Two-segment Cantilever-based Stretching-type Nonlinear Piezoelectric Energy Harvesteren
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee王建凱 ;舒貽忠zh_TW
dc.contributor.oralexamcommitteeChien-Kai Wang;Yi-Chung Shuen
dc.subject.keyword壓電能量採集器,兩段式懸臂梁,非線性硬化效應,軸向預力,軸向拉伸,zh_TW
dc.subject.keywordPiezoelectric energy harvester,two-segment cantilever beam,hardening effect,axial preload,axial stretching,en
dc.relation.page81-
dc.identifier.doi10.6342/NTU202301193-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-06-30-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
Appears in Collections:機械工程學系

Files in This Item:
File SizeFormat 
ntu-111-2.pdf6.41 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved