請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87948完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 諶玉真 | zh_TW |
| dc.contributor.advisor | Yu-Jane Sheng | en |
| dc.contributor.author | 黃千又 | zh_TW |
| dc.contributor.author | Chien-Yu Huang | en |
| dc.date.accessioned | 2023-07-31T16:29:07Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-07-31 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-06-20 | - |
| dc.identifier.citation | 1. Woodstock, L., Seed imbibition: a critical period for successful germination. Journal of Seed Technology, 1988: p. 1-15.
2. Cai, J. and B. Yu, A discussion of the effect of tortuosity on the capillary imbibition in porous media. Transport in porous media, 2011. 89(2): p. 251-263. 3. Wu, P., A. Nikolov, and D. Wasan, Capillary dynamics driven by molecular self-layering. Advances in colloid and interface science, 2017. 243: p. 114-120. 4. Zhmud, B., F. Tiberg, and K. Hallstensson, Dynamics of capillary rise. Journal of colloid and interface science, 2000. 228(2): p. 263-269. 5. Hampton, M.A. and A.V. Nguyen, Nanobubbles and the nanobubble bridging capillary force. Advances in colloid and interface science, 2010. 154(1-2): p. 30-55. 6. Ajeel, R.K., K. Sopian, and R. Zulkifli, Thermal-hydraulic performance and design parameters in a curved-corrugated channel with L-shaped baffles and nanofluid. Journal of Energy Storage, 2021. 34: p. 101996. 7. Park, H.G. and Y. Jung, Carbon nanofluidics of rapid water transport for energy applications. Chemical Society Reviews, 2014. 43(2): p. 565-576. 8. Joshi, R., et al., Precise and ultrafast molecular sieving through graphene oxide membranes. science, 2014. 343(6172): p. 752-754. 9. Cai, J., et al., Capillary imbibition and flow of wetting liquid in irregular capillaries: A 100-year review. Advances in Colloid and Interface Science, 2022: p. 102654. 10. Washburn, E.W., The dynamics of capillary flow. Physical review, 1921. 17(3): p. 273. 11. Andredaki, M., A. Georgoulas, and M. Marengo, Numerical investigation of quasi-sessile droplet absorption into wound dressing capillaries. Physics of Fluids, 2020. 32(9): p. 092112. 12. Fries, N. and M. Dreyer, An analytic solution of capillary rise restrained by gravity. Journal of colloid and interface science, 2008. 320(1): p. 259-263. 13. Behroozi, F., A Fresh Look at the Young-Laplace Equation and Its Many Applications in Hydrostatics. The Physics Teacher, 2022. 60(5): p. 358-361. 14. Fries, N., Capillary transport processes in porous materials-experiment and model. 2010: Cuvillier Verlag. 15. Li, K. and H. Zhao, Fractal prediction model of spontaneous imbibition rate. Transport in porous media, 2012. 91: p. 363-376. 16. Li, K., et al., Criteria for applying the Lucas-Washburn law. Scientific reports, 2015. 5(1): p. 14085. 17. Siebold, A., et al., Effect of dynamic contact angle on capillary rise phenomena. Colloids and surfaces A: Physicochemical and engineering aspects, 2000. 161(1): p. 81-87. 18. Bocquet, L., Nanofluidics coming of age. Nature materials, 2020. 19(3): p. 254-256. 19. Mailly, D., Nanofabrication techniques. The European Physical Journal Special Topics, 2009. 172(1): p. 333-342. 20. Stepanova, M. and S. Dew, Nanofabrication: techniques and principles. 2011: Springer Science & Business Media. 21. Biswas, A., et al., Advances in top–down and bottom–up surface nanofabrication: Techniques, applications & future prospects. Advances in colloid and interface science, 2012. 170(1-2): p. 2-27. 22. Williams, C.D., et al., A molecular simulation study into the stability of hydrated graphene nanochannels used in nanofluidics devices. Nanoscale, 2022. 14(9): p. 3467-3479. 23. Geim, A.K. and I.V. Grigorieva, Van der Waals heterostructures. Nature, 2013. 499(7459): p. 419-425. 24. Radha, B., et al., Molecular transport through capillaries made with atomic-scale precision. Nature, 2016. 538(7624): p. 222-225. 25. Xie, Q., et al., Ion transport in graphene nanofluidic channels. Nanoscale, 2016. 8(47): p. 19527-19535. 26. Holt, J.K., et al., Fast mass transport through sub-2-nanometer carbon nanotubes. Science, 2006. 312(5776): p. 1034-1037. 27. Majumder, M., et al., Enhanced flow in carbon nanotubes. Nature, 2005. 438(7064): p. 44-44. 28. Wang, T.-Y., et al., Anomalous spontaneous capillary flow of water through graphene nanoslits: Channel width-dependent density. Journal of Molecular Liquids, 2022. 352: p. 118701. 29. Jaeger, F., O.K. Matar, and E.A. Müller, Transport properties of water confined in a graphene nanochannel. arXiv preprint arXiv:1901.06865, 2019. 30. Zhang, W., et al., Revealing the importance of surface morphology of nanomaterials to biological responses: Adsorption of the villin headpiece onto graphene and phosphorene. Carbon, 2015. 94: p. 895-902. 31. Ling, X., et al., The renaissance of black phosphorus. Proceedings of the National Academy of Sciences, 2015. 112(15): p. 4523-4530. 32. Fei, R. and L. Yang, Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano letters, 2014. 14(5): p. 2884-2889. 33. Sun, Z., et al., Ultrasmall black phosphorus quantum dots: synthesis and use as photothermal agents. Angewandte Chemie International Edition, 2015. 54(39): p. 11526-11530. 34. Liu, H., et al., Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chemical Society Reviews, 2015. 44(9): p. 2732-2743. 35. Li, L., et al., Black phosphorus field-effect transistors. Nature nanotechnology, 2014. 9(5): p. 372-377. 36. Brown, A. and S. Rundqvist, Refinement of the crystal structure of black phosphorus. Acta Crystallographica, 1965. 19(4): p. 684-685. 37. Cartz, L., et al., Effect of pressure on bonding in black phosphorus. The Journal of Chemical Physics, 1979. 71(4): p. 1718-1721. 38. Cai, Y., G. Zhang, and Y.-W. Zhang, Electronic properties of phosphorene/graphene and phosphorene/hexagonal boron nitride heterostructures. The Journal of Physical Chemistry C, 2015. 119(24): p. 13929-13936. 39. Qiao, J., et al., High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nature communications, 2014. 5(1): p. 4475. 40. Rabiei Baboukani, A., et al., Liquid‐Based Exfoliation of Black Phosphorus into Phosphorene and Its Application for Energy Storage Devices. Small Structures, 2021. 2(5): p. 2000148. 41. Zhang, Y., et al., An air‐stable densely packed phosphorene–graphene composite toward advanced lithium storage properties. Advanced Energy Materials, 2016. 6(12): p. 1600453. 42. Zhang, H., Ultrathin two-dimensional nanomaterials. ACS nano, 2015. 9(10): p. 9451-9469. 43. Ambrosi, A., Z. Sofer, and M. Pumera, Electrochemical exfoliation of layered black phosphorus into phosphorene. Angewandte Chemie International Edition, 2017. 56(35): p. 10443-10445. 44. Xiao, H., et al., Electrochemical cathode exfoliation of bulky black phosphorus into few-layer phosphorene nanosheets. Electrochemistry Communications, 2018. 89: p. 10-13. 45. Xing, C., et al., Preparations, properties and applications of low-dimensional black phosphorus. Chemical Engineering Journal, 2019. 370: p. 120-135. 46. Wang, G., et al., Degradation of phosphorene in air: understanding at atomic level. 2D Materials, 2016. 3(2): p. 025011. 47. Huang, Y., et al., 655 J. Decker, W. Ji, RS Ruoff, P. Sutter, Interaction of Black Phosphorus with Oxygen and 656 Water. Chem. Mater, 2016. 28: p. 8330-8339. 48. Zhang, W., et al., Molecular structure and dynamics of water on pristine and strained phosphorene: wetting and diffusion at nanoscale. Scientific reports, 2016. 6(1): p. 38327. 49. Choi, J.R., et al., Black phosphorus and its biomedical applications. Theranostics, 2018. 8(4): p. 1005. 50. Lange, S., P. Schmidt, and T. Nilges, Au3SnP7@ black phosphorus: an easy access to black phosphorus. Inorganic chemistry, 2007. 46(10): p. 4028-4035. 51. Humphrey, W., A. Dalke, and K. Schulten, VMD: visual molecular dynamics. Journal of molecular graphics, 1996. 14(1): p. 33-38. 52. Phillips, J.C., et al., Scalable molecular dynamics with NAMD. Journal of computational chemistry, 2005. 26(16): p. 1781-1802. 53. Phillips, J.C., et al., Scalable molecular dynamics on CPU and GPU architectures with NAMD. The Journal of chemical physics, 2020. 153(4): p. 044130. 54. Abascal, J.L. and C. Vega, A general purpose model for the condensed phases of water: TIP4P/2005. The Journal of chemical physics, 2005. 123(23): p. 234505. 55. González, M.A. and J.L. Abascal, The shear viscosity of rigid water models. The Journal of chemical physics, 2010. 132(9): p. 096101. 56. Sresht, V., A.A. Padua, and D. Blankschtein, Liquid-phase exfoliation of phosphorene: design rules from molecular dynamics simulations. ACS nano, 2015. 9(8): p. 8255-8268. 57. Hultgren, R., N. Gingrich, and B. Warren, The atomic distribution in red and black phosphorus and the crystal structure of black phosphorus. The Journal of Chemical Physics, 1935. 3(6): p. 351-355. 58. Liu, X., et al., Resolving the in‐plane anisotropic properties of black phosphorus. Small Methods, 2017. 1(6): p. 1700143. 59. Deshmukh, S.A., G. Kamath, and S.K. Sankaranarayanan, Comparison of the interfacial dynamics of water sandwiched between static and free-standing fully flexible graphene sheets. Soft Matter, 2014. 10(23): p. 4067-4083. 60. Foloppe, N. and J. MacKerell, Alexander D, All‐atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data. Journal of computational chemistry, 2000. 21(2): p. 86-104. 61. Chen, S., et al., Anisotropic wetting characteristics of water droplets on phosphorene: roles of layer and defect engineering. The Journal of Physical Chemistry C, 2018. 122(8): p. 4622-4627. 62. Bird, J.C., S. Mandre, and H.A. Stone, Short-time dynamics of partial wetting. Physical review letters, 2008. 100(23): p. 234501. 63. Winkels, K.G., et al., Initial spreading of low-viscosity drops on partially wetting surfaces. Physical Review E, 2012. 85(5): p. 055301. 64. Chen, L. and E. Bonaccurso, Effects of surface wettability and liquid viscosity on the dynamic wetting of individual drops. Physical Review E, 2014. 90(2): p. 022401. 65. Tanner, L., The spreading of silicone oil drops on horizontal surfaces. Journal of Physics D: Applied Physics, 1979. 12(9): p. 1473. 66. Hu, S.-W., et al., Peculiar Wetting of N, N-dimethylformamide: Expansion, contraction, and self-running. The Journal of Physical Chemistry C, 2019. 123(40): p. 24477-24486. 67. White, L.R., On deviations from Young's equation. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1977. 73: p. 390-398. 68. Makkonen, L., Young’s equation revisited. Journal of Physics: Condensed Matter, 2016. 28(13): p. 135001. 69. Mo, J., et al., Fluid release pressure for nanochannels: the Young–Laplace equation using the effective contact angle. Nanoscale, 2019. 11(17): p. 8408-8415. 70. Chu, K.-C., H.-K. Tsao, and Y.-J. Sheng, Pressure-gated capillary nanovalves based on liquid nanofilms. Journal of colloid and interface science, 2020. 560: p. 485-491. 71. Lin, C.-M., et al., Size-dependent properties of small unilamellar vesicles formed by model lipids. Langmuir, 2012. 28(1): p. 689-700. 72. Kandlikar, S.G., et al., Characterization of surface roughness effects on pressure drop in single-phase flow in minichannels. Physics of Fluids, 2005. 17(10): p. 100606. 73. Zhou, G. and S.-C. Yao, Effect of surface roughness on laminar liquid flow in micro-channels. Applied Thermal Engineering, 2011. 31(2-3): p. 228-234. 74. Taylor, J.B., A.L. Carrano, and S.G. Kandlikar, Characterization of the effect of surface roughness and texture on fluid flow—past, present, and future. International journal of thermal sciences, 2006. 45(10): p. 962-968. 75. Chu, K.-C., H.-K. Tsao, and Y.-J. Sheng, Penetration dynamics through nanometer-scale hydrophilic capillaries: Beyond Washburn’s equation and extended menisci. Journal of colloid and interface science, 2019. 538: p. 340-348. 76. Cheng, Y.-T., et al., Imbibition dynamics and steady flows in graphene nanochannels with sparse geometric and chemical defects. Physics of Fluids, 2022. 34(11): p. 112003. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87948 | - |
| dc.description.abstract | 我們將運用分子動力學方法,探索水在由二維磷烯製成的納米通道中的毛細動力學行為。首先,我們研究在奈米尺度下水滴在磷烯薄片上的部分濕潤行為,發現水滴在開始潤濕後,其潤濕面積(A)和內能(△E)遵循冪定律,潤濕面積與時間的二分之一次方成正比,內能則與時間的負二分之一次方成正比。此外,在受限奈米管道內的水栓模擬中測量拉普拉斯壓力(Laplace pressure)和平衡接觸角(equilibrium contact angle),確認楊-拉普拉斯方程(Young-Laplace equation)在納米尺度上的適用性。在毛細管模擬實驗中,對於寬度為多層(N)磷烯薄片的通道中,觀察水自發得浸潤行為,並發現滲透長度和內能變化都與時間的二分之一次方成正比。然而,在狹窄的奈米通道(N = 2 ~ 5)中,滲透速率取決於管壁的表面結構(拱橋狀和鋸齒狀)。隨著板寬增加,這種影響效應逐漸減弱。我們觀察到除了N = 1之外,隨著板寬寬度增加,滲透速率隨之下降,這與Washburn’s equation預測方向相互矛盾。與由光滑的石墨烯製作而成的奈米通道相比,磷烯基通道的滲透速率較低。但是,隨著通道寬度增加,這種差異逐漸減小,這結果表示表面粗糙度對於較大的通道寬度影響變得不那麼顯著。 | zh_TW |
| dc.description.abstract | The imbibition dynamics of water in a nanochannel made of the two-dimensional phosphorene is explored using Molecular Dynamics. The partial wetting behavior of water nanodroplets on phosphorene sheets is examined first. The initial spreading of the wetted area (A) and internal energy (△E) are found to follow the power law, A ~ t1/2 and △E ~ -t1/2. Additionally, the Laplace pressure and equilibrium contact angle, determined from water plugs confined within nanoslits, verify the applicability of the Young-Laplace equation at the nanoscale. For water wicking in channels with a width of N layers of phosphorene sheets, the rate of change of both the penetration length and internal energy is proportional to t1/2. However, the imbibition rate in narrow nanoslits (N = 2 ~ 5) depends on the orientation (armchair and zigzag) of walls. This effect gradually diminishes as N increases. It was observed that, except for N = 1, the imbibition rate decreases with increasing channel width, which contradicts the prediction of Washburn’s equation. Compared to smooth graphene-based channels, the imbibition rate is lower in phosphorene-based channels. Nonetheless, this difference decreases as the channel width increases, suggesting that the impact of surface roughness becomes less pronounced with larger channel widths. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-07-31T16:29:06Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-07-31T16:29:07Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 摘要 iii Abstract iv List of Figures vi Nomenclature viii 1. Introduction 1 2. Method 3 3. Results 8 3.1 The wetting behavior of water on phosphorene surface 8 3.1.1 Spreading and equilibrium of a droplet on a surface 8 3.1.2 Water plug in a nanoslit and validity of Young-Laplace equation 12 3.2 Imbibition dynamics: effect of armchair and zigzag orientations of the wall 16 3.3 Effect of channel width and comparison with graphene nanochannels 22 4. Conclusion 30 Reference 31 | - |
| dc.language.iso | en | - |
| dc.subject | 磷烯奈米通道 | zh_TW |
| dc.subject | 擴散動力學 | zh_TW |
| dc.subject | 毛細動力學 | zh_TW |
| dc.subject | phosphorene nanochannels | en |
| dc.subject | spreading dynamic | en |
| dc.subject | imbibition dynamics | en |
| dc.subject | capillary flow | en |
| dc.subject | roughness | en |
| dc.title | 水在磷烯奈米通道的毛細作用:表面結構的影響 | zh_TW |
| dc.title | Water Wicking in 2-dimensional Phosphorene Nanochannel: Effect of Surface Texture | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 曹恆光;黃俊仁;陳儀帆 | zh_TW |
| dc.contributor.oralexamcommittee | Heng-Kwong Tsao;Chun-Jen Huang;Yi-Fan Chen | en |
| dc.subject.keyword | 磷烯奈米通道,毛細動力學,擴散動力學, | zh_TW |
| dc.subject.keyword | capillary flow,phosphorene nanochannels,imbibition dynamics,spreading dynamic,roughness, | en |
| dc.relation.page | 38 | - |
| dc.identifier.doi | 10.6342/NTU202301104 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-06-21 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 3.67 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
