請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87947完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 諶玉真 | zh_TW |
| dc.contributor.advisor | Yu-Jane Sheng | en |
| dc.contributor.author | 蘇庭瑜 | zh_TW |
| dc.contributor.author | Ting-Yu Su | en |
| dc.date.accessioned | 2023-07-31T16:28:45Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-07-31 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-06-21 | - |
| dc.identifier.citation | 1. Dohrer, K. K., Hazlitt, L. G., & Whiteman, N. F. (1988). Short chain branching distribution of ULDPE. Journal of Plastic Film & Sheeting, 4(3), 214-226.
2. Fazeli, N., & Mehranpour, M. (2012). Effect of dimethyl formamide in the synthesis of linear low density polyethylene on its rheological properties. Polymer testing, 31(5), 671-676. 3. Breuil, P. A. R., Magna, L., & Olivier-Bourbigou, H. (2015). Role of homogeneous catalysis in oligomerization of olefins: Focus on selected examples based on group 4 to group 10 transition metal complexes. Catalysis Letters, 145, 173-192. 4. Pouzada, A. S., & Sergio Pouzada, A. (2021). Selection of thermoplastics. Design and Manufacturing of Plastics Products, 87-140. 5. Kontou, E., & Niaounakis, M. (2006). Thermo-mechanical properties of LLDPE/SiO2 nanocomposites. Polymer, 47(4), 1267-1280. 6. Bekhit, M., El-Sabbagh, S. H., Mohamed, R. M., El-Sayyad, G. S., & Sokary, R. (2021). Mechanical, Thermal and Antimicrobial Properties of LLDPE/EVA/MMT/Ag Nanocomposites Films Synthesized by Gamma Irradiation. Journal of Inorganic and Organometallic Polymers and Materials, 1-15. 7. Hashemi, S., & Williams, J. G. (1986). A fracture toughness study on low density and linear low density polyethylenes. Polymer, 27(3), 384-392. 8. Kulikov, O. (2005). Novel processing aids for extrusion of polyethylene. Journal of Vinyl and Additive Technology, 11(3), 127-131. 9. Constantin, D. (1984). Linear‐low‐density polyethylene melt rheology: Extensibility and extrusion defects. Polymer Engineering & Science, 24(4), 268-274. 10. Hojjati, M. R., Bassanajili, S., & Forootan, A. (2018). The Effect of Structural Parameters on the Cross-Linking of Various Grades of LLDPE. Iranian Journal of Chemistry and Chemical Engineering, 37(1), 175-183. 11. Kuan, H. C., Kuan, J. F., Ma, C. C. M., & Huang, J. M. (2005). Thermal and mechanical properties of silane‐grafted water crosslinked polyethylene. Journal of applied polymer science, 96(6), 2383-2391. 12. Bermejo, J. S., & Ugarte, C. M. (2009). Influence of cross‐linking density on the glass transition and structure of chemically cross‐linked PVA: a molecular dynamics study. Macromolecular theory and simulations, 18(6), 317-327. 13. Liu, S. Q., Gong, W. G., & Zheng, B. C. (2014). The effect of peroxide cross-linking on the properties of low-density polyethylene. Journal of Macromolecular Science, Part B, 53(1), 67-77. 14. Patermann, S., & Altstädt, V. (2015). Influence of different crosslinking systems on the mechanical and morphological properties of thermoplastic vulcanizates. In AIP Conference Proceedings (Vol. 1664, No. 1, p. 120002). AIP Publishing LLC. 15. Wang, L., Shen, Y., Lai, X., Li, Z., & Liu, M. (2011). Synthesis and properties of crosslinked waterborne polyurethane. Journal of polymer research, 18, 469-476. 16. Ke, Q. Q., Huang, X. Y., Wei, P., Wang, G. L., & Jiang, P. K. (2007). Thermal, mechanical, and dielectric behaviors of crosslinked linear low density polyethylene/polyolefin elastomers blends. Journal of applied polymer science, 104(3), 1920-1927. 17. Isac, S., & George, K. E. (2005). Silane grafting of polyethylenes. International Journal of Polymeric Materials, 54(5), 397-413. 18. Ren, Y., Sun, X., Chen, L., Li, Y., Sun, M., Duan, X., & Liang, W. (2021). Structures and impact strength variation of chemically crosslinked high-density polyethylene: effect of crosslinking density. RSC advances, 11(12), 6791-6797. 19. Jiang, S., Yuan, C., Guo, Z., & Bai, X. (2019). Effect of crosslink on tribological performance of polyurethane bearing material. Tribology International, 136, 276-284. 20. Song, Y., Wang, L., Gyanda, R., Sakhuja, R., Cavallaro, M., Jackson, D. C., Meher, N. K., Ciaramitaro, D. A., Bedford, C. D., & Katritzky, A. R. (2010). Effect of the crosslink functionality on the mechanical properties of crosslinked 1, 2, 3‐triazole polymers as potential binders for rocket propellants. Journal of applied polymer science, 117(1), 473-478. 21. Trzebiatowska, P. J., Echart, A. S., Correas, T. C., Eceiza, A., & Datta, J. (2018). The changes of crosslink density of polyurethanes synthesised with using recycled component. Chemical structure and mechanical properties investigations. Progress in Organic Coatings, 115, 41-48. 22. Yussuf, A. A., Kosior, E., & Alban, L. (2007). Silane Grafting and Crosslinking of Metallocene-catalysed LLDPE and LDPE. Malaysian polymer journal, 2(2), 58-71. 23. Khonakdar, H. A., Morshedian, J., Wagenknecht, U., & Jafari, S. H. (2003). An investigation of chemical crosslinking effect on properties of high-density polyethylene. Polymer, 44(15), 4301-4309. 24. Kim, J., Zhang, G., Shi, M., & Suo, Z. (2021). Fracture, fatigue, and friction of polymers in which entanglements greatly outnumber cross-links. Science, 374(6564), 212-216. 25. Li, C., & Strachan, A. (2015). Molecular scale simulations on thermoset polymers: A review. Journal of polymer science part B: polymer physics, 53(2), 103-122. 26. Espanol, P., & Warren, P. B. (2017). Perspective: Dissipative particle dynamics. The Journal of chemical physics, 146(15), 150901. 27. Groot, R. D., & Warren, P. B. (1997). Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. The Journal of chemical physics, 107(11), 4423-4435. 28. Wei, T., & Ren, C. (2020). Theoretical simulation approaches to polymer research. In Polymer science and innovative applications (pp. 207-228). Elsevier. 29. Liu, M. B., Liu, G. R., Zhou, L. W., & Chang, J. (2015). Dissipative particle dynamics (DPD): an overview and recent developments. Archives of Computational Methods in Engineering, 22, 529-556. 30. Groot, R. D., & Rabone, K. L. (2001). Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants. Biophysical journal, 81(2), 725-736. 31. Li, Z., Bian, X., Caswell, B., & Karniadakis, G. E. (2014). Construction of dissipative particle dynamics models for complex fluids via the Mori–Zwanzig formulation. Soft Matter, 10(43), 8659-8672. 32. Hsieh, M. C., Tsao, Y. H., Sheng, Y. J., & Tsao, H. K. (2023). Microstructural Dynamics of Polymer Melts during Stretching: Radial Size Distribution. Polymers, 15(9), 2067. 33. Alvarez, F., Flores, E. A., Castro, L. V., Hernández, J. G., López, A., & Vazquez, F. (2011). Dissipative particle dynamics (DPD) study of crude oil− water emulsions in the presence of a functionalized co-polymer. Energy & fuels, 25(2), 562-567. 34. Xiao, S., Chen, H. Y., Sheng, Y. J., & Tsao, H. K. (2015). Induced polar order in sedimentation equilibrium of rod-like nanoswimmers. Soft Matter, 11(12), 2416-2422. 35. Avalos, J. B., & Mackie, A. D. (1997). Dissipative particle dynamics with energy conservation. Europhysics Letters, 40(2), 141. 36. Yang, Y. L., Tsao, H. K., & Sheng, Y. J. (2020). Morphology and Wetting Stability of Nanofilms of ABC Miktoarm Star Terpolymers. Macromolecules, 53(2), 594-601. 37. Chu, K. C., Tsao, H. K., & Sheng, Y. J. (2020). Pressure-gated capillary nanovalves based on liquid nanofilms. Journal of colloid and interface science, 560, 485-491. 38. Ni, T., Huang, G. S., Gao, P., Xu, Y. T., & Yang, M. Z. (2011). Dissipative particle dynamics simulation on the association properties of fluorocarbon-modified polyacrylamide copolymers. Polymer journal, 43(7), 635-641. 39. Pan, D., Hu, J., & Shao, X. (2016). Lees–Edwards boundary condition for simulation of polymer suspension with dissipative particle dynamics method. Molecular Simulation, 42(4), 328-336. 40. Singh, A., Chakraborti, A., & Singh, A. (2018). Role of a polymeric component in the phase separation of ternary fluid mixtures: a dissipative particle dynamics study. Soft Matter, 14(21), 4317-4326. 41. Thompson, A. P., Aktulga, H. M., Berger, R., Bolintineanu, D. S., Brown, W. M., Crozier, P. S., in't Veld, P. J., Kohlmeyer, A., Moore, S. G., & Nguyen, T. D. (2022). LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Computer Physics Communications, 271, 108171. 42. Rudin, A., & Choi, P. (2012). The elements of polymer science and engineering. Academic press. 43. McKeen, L. W. (2018). The effect of sterilization on plastics and elastomers. William Andrew. 44. Oyama, T. (2015). Cross-Linked Polymer Synthesis. In S. Kobayashi & K. Müllen (Eds.), Encyclopedia of Polymeric Nanomaterials (pp. 496-505). Springer Berlin Heidelberg. 45. Nikunen, P., Vattulainen, I., & Karttunen, M. (2007). Reptational dynamics in dissipative particle dynamics simulations of polymer melts. Physical Review E, 75(3), 036713. 46. Jabbari-Farouji, S., Rottler, J., Lame, O., Makke, A., Perez, M., & Barrat, J. L. (2015). Plastic deformation mechanisms of semicrystalline and amorphous polymers. ACS Macro Letters, 4(2), 147-150. 47. Liu, X., Luo, J., Yin, N., Tan, Z. C., & Shi, Q. (2018). Applications of low temperature calorimetry in material research. Chinese Chemical Letters, 29(5), 664-670. 48. Phillips, J., Isgro, T., Sotomayor, M., & Villa, E. (2003). NAMD TUTORIAL. 49. Skačej, G., & Zannoni, C. (2011). Main-chain swollen liquid crystal elastomers: a molecular simulation study. Soft Matter, 7(21), 9983-9991. 50. Chang, H. Y., Sheng, Y. J., & Tsao, H. K. (2022). Packing microstructures and thermal properties of compressed emulsions: Effect of droplet size. Journal of Molecular Liquids, 364, 120025. 51. Romani, F., Corrieri, R., Braga, V., & Ciardelli, F. (2002). Monitoring the chemical crosslinking of propylene polymers through rheology. Polymer, 43(4), 1115-1131. 52. Narkis, M., Raiter, I., Shkolnik, S., Siegmannz, A., & Eyerer, P. (1987). Structure and tensile behavior of irradiation-and peroxide-crosslinked polyethylenes. Journal of Macromolecular Science—Physics, 26(1), 37-58. 53. Karatrantos, A., Composto, R. J., Winey, K. I., & Clarke, N. (2011). Structure and conformations of polymer/SWCNT nanocomposites. Macromolecules, 44(24), 9830-9838. 54. Wang, Y., Liu, H., Li, P., & Wang, L. (2022). The Effect of Cross-Linking Type on EPDM Elastomer Dynamics and Mechanical Properties: A Molecular Dynamics Simulation Study. Polymers, 14(7), 1308. 55. Sliozberg, Y. R., Chantawansri, T. L., Lenhart, J. L., & Andzelm, J. W. (2014). Structural and mechanical properties of advanced polymer gels with rigid side-chains using coarse-grained molecular dynamics. Polymer, 55(20), 5266-5275. 56. Jiang, T., Wang, L., & Lin, J. (2013). Mechanical properties of designed multicompartment gels formed by ABC graft copolymers. Langmuir, 29(39), 12298-12306. 57. Mai-Duy, N., Phan-Thien, N., & Khoo, B. C. (2015). Investigation of particles size effects in dissipative particle dynamics (DPD) modelling of colloidal suspensions. Computer Physics Communications, 189, 37-46. 58. Palomba, D., Vazquez, G. E., & Díaz, M. F. (2014). Prediction of elongation at break for linear polymers. Chemometrics and Intelligent Laboratory Systems, 139, 121-131. 59. Chen, E. J., Novakofski, J., Jenkins, W. K., & O'Brien, W. D. (1996). Young's modulus measurements of soft tissues with application to elasticity imaging. IEEE Transactions on ultrasonics, ferroelectrics, and frequency control, 43(1), 191-194. 60. Yubo, T. A. O., Peng, L. I., & Ling, P. A. N. (2020). Improving tensile properties of polylactic acid parts by adjusting printing parameters of open source 3D printers. Materials Science, 26(1), 83-87. 61. Marar, K., Eren, Ö., & Celik, T. (2001). Relationship between impact energy and compression toughness energy of high-strength fiber-reinforced concrete. Materials letters, 47(4-5), 297-304. 62. Shan, C. L. P., Soares, J. B. P., & Penlidis, A. (2002). Mechanical properties of ethylene/1-hexene copolymers with tailored short chain branching distributions. Polymer, 43(3), 767-773. 63. Poongavalappil, S., Svoboda, P., Theravalappil, R., Svobodova, D., Ougizawa, T., & Sedlacek, T. (2013). Influence of branching density on the cross-linkability of ethylene-octene copolymers. Polymer journal, 45(6), 651-658. 64. Rocha, M. C. G., Leyva, M. E., & Oliveira, M. G. D. (2014). Thermoplastic elastomers blends based on linear low density polyethylene, ethylene-1-octene copolymers and ground rubber tire. Polímeros, 24, 23-29. 65. Sheng, Y. J., Lin, H. J., Chen, J. Z., & Tsao, H. K. (2004). Static properties of a stacking chain. Macromolecules, 37(25), 9631-9638. 66. Sheng, Y. J., Mou, Y. C., & Tsao, H. K. (2006). Conformational entropy of a pseudoknot polymer. The Journal of chemical physics, 124(12), 124904. 67. Roos, Y. H. (2009). Mapping the different states of food components using state diagrams. In Modern Biopolymer Science (pp. 261-276). Elsevier. 68. Wu, J. (1999). The glassy state, ideal glass transition, and second‐order phase transition. Journal of applied polymer science, 71(1), 143-150. 69. Wunderlich, B. (2007). Glass transition as a key to identifying solid phases. Journal of applied polymer science, 105(1), 49-59. 70. Somwanshi, S. B., Dolas, R. T., Wagh, V. D., & Kotade, K. B. (2016). Pharmaceutically used plasticizers: a review. Eur. J. Biomed. Pharm. Sci, 3, 277-285. 71. Sun, L., Huang, W. M., Wang, C. C., Zhao, Y., Ding, Z., & Purnawali, H. (2011). Optimization of the shape memory effect in shape memory polymers. Journal of Polymer Science Part A: Polymer Chemistry, 49(16), 3574-3581. 72. Hess, M., Allegra, G., He, J., Horie, K., Kim, J.-S., Meille, S. V., Metanomski, V., Moad, G., Stepto, R. F., & Vert, M. (2013). Glossary of terms relating to thermal and thermomechanical properties of polymers (IUPAC Recommendations 2013). Pure and Applied Chemistry, 85(5), 1017-1046. 73. Huo, P., & Cebe, P. (1992). Temperature-dependent relaxation of the crystal-amorphous interphase in poly (ether ether ketone). Macromolecules, 25(2), 902-909. 74. Bagher, A. M., & Reza, B. M. (2015). Polymer Optic Technology. Optics, 4(1), 1. 75. Maitra, J., & Shukla, V. K. (2014). Cross-linking in hydrogels-a review. Am. J. Polym. Sci, 4(2), 25-31. 76. Chua, J., & Tu, Q. (2018). A molecular dynamics study of crosslinked phthalonitrile polymers: the effect of crosslink density on thermomechanical and dielectric properties. Polymers, 10(1), 64. 77. Martinez, A. W., Caves, J. M., Ravi, S., Li, W., & Chaikof, E. L. (2014). Effects of crosslinking on the mechanical properties, drug release and cytocompatibility of protein polymers. Acta biomaterialia, 10(1), 26-33. 78. Kampouris, E. M., & Andreopoulos, A. G. (1989). Gel content determination in cross-linked polyethylene. Biomaterials, 10(3), 206-208. 79. Kopač, T., Ručigaj, A., & Krajnc, M. (2020). The mutual effect of the crosslinker and biopolymer concentration on the desired hydrogel properties. International journal of biological macromolecules, 159, 557-569. 80. Peng, H., Lu, M., Lv, F., Niu, M., & Wang, W. (2019). Understanding the effect of silane crosslinking reaction on the properties of pp/poe blends. Polymer Bulletin, 76, 6413-6428. 81. Xu, L., Qiao, Y., & Qiu, D. (2023). Coordinatively Stiffen and Toughen Hydrogels with Adaptable Crystal‐domain Cross‐linking. Advanced Materials, 2209913. 82. Mark, J. E. (2017). Thermoset elastomers. In Applied Plastics Engineering Handbook (pp. 109-125). Elsevier. 83. Wang, Y., Gan, H.-L., Liang, C.-X., Zhang, Z.-Y., Xie, M., Xing, J.-Y., Xue, Y.-H., & Liu, H. (2021). Network structure and properties of crosslinked bio-based epoxy resin composite: An in-silico multiscale strategy with dynamic curing reaction process. Giant, 7, 100063. 84. Depalle, B., Qin, Z., Shefelbine, S. J., & Buehler, M. J. (2015). Influence of cross-link structure, density and mechanical properties in the mesoscale deformation mechanisms of collagen fibrils. Journal of the mechanical behavior of biomedical materials, 52, 1-13. 85. Mishra, S., Maiti, S., Pandey, P., & Rai, B. (2021). Effect of entanglement and crosslinking on the hyperelastic behavior of SBR rubber: A multiscale DPD simulation study. 86. Kong, D. C., Yang, M. H., Zhang, X. S., Du, Z. C., Fu, Q., Gao, X. Q., & Gong, J. W. (2021). Control of polymer properties by entanglement: a review. Macromolecular Materials and Engineering, 306(12), 2100536. 87. Norioka, C., Inamoto, Y., Hajime, C., Kawamura, A., & Miyata, T. (2021). A universal method to easily design tough and stretchable hydrogels. NPG Asia Materials, 13(1), 34. 88. Yuan, Z., Cao, Z., Ma, C., Wu, R., Wu, H., Xu, Q., Zheng, J., & Wu, J. (2022). Ultra-robust, repairable and smart physical hydrogels enabled by nano-domain reconfiguration of network topology. Chemical Engineering Journal, 450, 138085. 89. Joseph, A. M., Presannan, N., & Madhusoodanan, K. N. (2017). Mechanical devulcanization of carbon black filled natural rubber vulcanizates: effect of crosslink density. Rubber Sci, 30, 169-180. 90. Shen, J., Lin, X., Liu, J., & Li, X. (2018). Effects of cross-link density and distribution on static and dynamic properties of chemically cross-linked polymers. Macromolecules, 52(1), 121-134. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87947 | - |
| dc.description.abstract | 交聯通常可以提升高分子的機械性能,然而已有研究指出一些機械性能的表現會隨著交聯劑濃度的增加呈現非單調的變化,但這些行為背後的機制卻尚未被完全理解。因此,本研究使用耗散粒子動力學的模擬方法,探討交聯程度對交聯分支高分子系統之機械特性影響。除了探究應力-應變曲線外,亦透過測量凝膠含量、結晶度和微觀結構等微觀特性來深入了解彈性體的結構-性能關係。研究結果如預期所示,交聯程度的增加會導致結晶度降低,但是凝膠含量會提高。此外,隨著交聯劑濃度的增加,楊氏模數會上升,而斷裂伸長量會下降。不同的是,抗拉強度和韌性會隨交聯程度的增加,而呈現先增加後穩定下降的趨勢。交聯高分子的微觀結構特性可以透過平均鍵長(l¯b)以及高分子迴轉半徑(R¯g)來分析,隨著交聯劑濃度的增加,斷裂處的平均鍵長會一開始增加,但在最適濃度後會趨於飽和,而斷裂處的平均高分子迴轉半徑則會逐漸下降。這些研究結果顯示,抗拉強度和韌性的最大值是交聯和纏結之間競爭的結果。 | zh_TW |
| dc.description.abstract | Crosslinking generally enhances the mechanical properties of crosslinked polymers. However, some mechanical properties have been reported to vary non-monotonically with the concentration of crosslinkers, and the underlying mechanism for this behavior is not yet fully understood. In this work, the effect of the crosslinking degree on the mechanical characteristics of the crosslinked systems made of branched polymers are explored by dissipative particle dynamics simulations. In addition to the stress-strain curve, the microscopic characteristics of the elastomer, such as the gel content, crystallinity, and microstructure, are obtained to gain insights into the structure-property relationship. As expected, an increase in the degree of crosslinking leads to a decrease in the degree of crystallinity, but an increase in the gel content. Moreover, the Young’s modulus increases with the crosslinker concentration, while the elongation at break decreases. In contrast, the tensile strength and toughness initially increase and then steadily decrease as the crosslinking degree increases. The microstructural characteristics are analyzed based on average bond length (l¯b) and radius of gyration of polymers (R¯g). As the crosslinker concentration increases, l¯b at break grows initially but becomes saturated beyond the optimal concentration, while R¯g at break always decreases. Our findings suggest that the maxima in tensile strength and toughness are the consequence of the competition between crosslinking and entanglement. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-07-31T16:28:45Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-07-31T16:28:45Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii ABSTRACT iv CONTENTS v LIST OF FIGURES vi Chapter 1 Introduction 1 Chapter 2 Method 4 2.1 Simulation method and model 4 2.2 Thermodynamic properties 7 2.3 Mechanical properties 9 Chapter 3 Result and Discussion 11 3.1 Melting temperature, crystallinity, and gel content 11 3.2 Stress-strain relationship 16 3.3 Competition between crosslinking and entanglement 22 Chapter 4 Conclusion 28 REFERENCES 30 | - |
| dc.language.iso | en | - |
| dc.subject | 交聯密度 | zh_TW |
| dc.subject | 彈性體 | zh_TW |
| dc.subject | 分子模擬 | zh_TW |
| dc.subject | 應力-應變曲線 | zh_TW |
| dc.subject | Molecular simulation | en |
| dc.subject | Elastomer | en |
| dc.subject | Stress-strain curve | en |
| dc.subject | Crosslinking density | en |
| dc.title | 彈性體之拉伸強度與韌性的最佳交聯密度: 交聯與纏結之間的競爭 | zh_TW |
| dc.title | Optimal Crosslinking Density of Elastomer for Tensile Strength and Toughness: Competition between Crosslinking and Entanglement | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 曹恆光;陳儀帆;黃俊仁 | zh_TW |
| dc.contributor.oralexamcommittee | Heng-Kwong Tsao;Yi-Fan Chen;Chun-Jen Huang | en |
| dc.subject.keyword | 彈性體,分子模擬,交聯密度,應力-應變曲線, | zh_TW |
| dc.subject.keyword | Elastomer,Molecular simulation,Crosslinking density,Stress-strain curve, | en |
| dc.relation.page | 39 | - |
| dc.identifier.doi | 10.6342/NTU202301105 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-06-26 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 4.28 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
