請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87929完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳文章 | zh_TW |
| dc.contributor.advisor | Wen-Chang Chen | en |
| dc.contributor.author | 賀勁傑 | zh_TW |
| dc.contributor.author | Jin-Chieh Ho | en |
| dc.date.accessioned | 2023-07-31T16:22:18Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-07-31 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-06-28 | - |
| dc.identifier.citation | 1. Capano, M. A.; Trew, R. J., Silicon carbide electronic materials and devices. MRS Bull. 1997, 22 (3), 19-23.
2. Mehta, N., Applications of chalcogenide glasses in electronics and optoelectronics: a review. 2006. 3. Stassen, I.; Burtch, N.; Talin, A.; Falcaro, P.; Allendorf, M.; Ameloot, R., An updated roadmap for the integration of metal–organic frameworks with electronic devices and chemical sensors. Chem. Soc. Rev. 2017, 46 (11), 3185-3241. 4. Wang, L.; Fu, X.; He, J.; Shi, X.; Chen, T.; Chen, P.; Wang, B.; Peng, H., Application challenges in fiber and textile electronics. Adv. Mater. 2020, 32 (5), 1901971. 5. Godfrey, A.; Hetherington, V.; Shum, H.; Bonato, P.; Lovell, N.; Stuart, S., From A to Z: Wearable technology explained. Maturitas 2018, 113, 40-47. 6. Whitesides, G. M., Soft robotics. Angew. Chem. Int. Ed. Engl. 2018, 57 (16), 4258-4273. 7. Hanker, J. S.; Giammara, B. L., Biomaterials and biomedical devices. Science 1988, 242 (4880), 885-892. 8. Bianchi, M. E.; Crippa, M. P.; Manfredi, A. A.; Mezzapelle, R.; Rovere Querini, P.; Venereau, E., High‐mobility group box 1 protein orchestrates responses to tissue damage via inflammation, innate and adaptive immunity, and tissue repair. Immunol. Rev. 2017, 280 (1), 74-82. 9. Haddad, S. A.; Houben, R. P.; Serdijin, W., The evolution of pacemakers. Eng. Med. Biol. Mag. 2006, 25 (3), 38-48. 10. Hassler, C.; Boretius, T.; Stieglitz, T., Polymers for neural implants. J Polym Sci B Polym Phys 2011, 49 (1), 18-33. 11. Lowe, C. R., Biosensors. Trends Biotechnol. 1984, 2 (3), 59-65. 12. Kingery, W. D.; Bowen, H. K.; Uhlmann, D. R., Introduction to ceramics. John wiley & sons: 1976; Vol. 17. 13. Manam, N.; Harun, W.; Shri, D.; Ghani, S.; Kurniawan, T.; Ismail, M. H.; Ibrahim, M., Study of corrosion in biocompatible metals for implants: A review. J. Alloys Compd. 2017, 701, 698-715. 14. Boyer, R. R., An overview on the use of titanium in the aerospace industry. Mater. Sci. Eng. A 1996, 213 (1-2), 103-114. 15. Sturgeon, T. J.; Memedovic, O.; Van Biesebroeck, J.; Gereffi, G., Globalisation of the automotive industry: main features and trends. Int. J. Technol. Learn. Innov. Dev. 2009, 2 (1-2), 7-24. 16. Liebenau, J., Medical science and medical industry: the formation of the American pharmaceutical industry. Springer: 1987. 17. Hung, K.; Zhang, Y.-T.; Tai, B. In Wearable medical devices for tele-home healthcare, The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE: 2004; pp 5384-5387. 18. Ho, J.-C.; Lin, Y.-C.; Chen, C.-K.; Hsu, L.-C.; Chen, W.-C., Hydrogel-based sustainable and stretchable field-effect transistors. Org. Electron. 2022, 100, 106358. 19. Trung, T. Q.; Ramasundaram, S.; Hwang, B. U.; Lee, N. E., An all‐elastomeric transparent and stretchable temperature sensor for body‐attachable wearable electronics. Adv. Mater. 2016, 28 (3), 502-509. 20. Xu, F.; Wu, M.-Y.; Safron, N. S.; Roy, S. S.; Jacobberger, R. M.; Bindl, D. J.; Seo, J.-H.; Chang, T.-H.; Ma, Z.; Arnold, M. S., Highly stretchable carbon nanotube transistors with ion gel gate dielectrics. Nano Lett. 2014, 14 (2), 682-686. 21. Shin, M.; Song, J. H.; Lim, G. H.; Lim, B.; Park, J. J.; Jeong, U., Highly stretchable polymer transistors consisting entirely of stretchable device components. Adv. Mater. 2014, 26 (22), 3706-3711. 22. Liang, J.; Li, L.; Chen, D.; Hajagos, T.; Ren, Z.; Chou, S.-Y.; Hu, W.; Pei, Q., Intrinsically stretchable and transparent thin-film transistors based on printable silver nanowires, carbon nanotubes and an elastomeric dielectric. Nat. Commun. 2015, 6 (1), 1-10. 23. Yu, Z.; Niu, X.; Liu, Z.; Pei, Q., Intrinsically stretchable polymer light‐emitting devices using carbon nanotube‐polymer composite electrodes. Adv. Mater. 2011, 23 (34), 3989-3994. 24. Liang, J.; Li, L.; Tong, K.; Ren, Z.; Hu, W.; Niu, X.; Chen, Y.; Pei, Q., Silver nanowire percolation network soldered with graphene oxide at room temperature and its application for fully stretchable polymer light-emitting diodes. ACS nano 2014, 8 (2), 1590-1600. 25. Filiatrault, H. L.; Porteous, G. C.; Carmichael, R. S.; Davidson, G. J.; Carmichael, T. B., Elastomeric Emissive Materials: Stretchable Light‐Emitting Electrochemical Cells Using an Elastomeric Emissive Material (Adv. Mater. 20/2012). Adv. Mater. 2012, 24 (20), 2653-2653. 26. Sekitani, T.; Nakajima, H.; Maeda, H.; Fukushima, T.; Aida, T.; Hata, K.; Someya, T., Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat. Mater. 2009, 8 (6), 494-499. 27. Liang, J.; Li, L.; Niu, X.; Yu, Z.; Pei, Q., Elastomeric polymer light-emitting devices and displays. Nat. Photonics 2013, 7 (10), 817-824. 28. Li, L.; Liang, J.; Gao, H.; Li, Y.; Niu, X.; Zhu, X.; Xiong, Y.; Pei, Q., A solid-state intrinsically stretchable polymer solar cell. ACS Appl. Mater. Interfaces 2017, 9 (46), 40523-40532. 29. Huang, J.; Ren, Z.; Zhang, Y.; Liu, K.; Zhang, H.; Tang, H.; Yan, C.; Zheng, Z.; Li, G., Stretchable ITO‐Free Organic Solar Cells with Intrinsic Anti‐Reflection Substrate for High‐Efficiency Outdoor and Indoor Energy Harvesting. Adv. Funct. Mater. 2021, 31 (16), 2010172. 30. Dauzon, E.; Sallenave, X.; Plesse, C.; Goubard, F.; Amassian, A.; Anthopoulos, T. D., Pushing the Limits of Flexibility and Stretchability of Solar Cells: A Review. Adv. Mater. 2021, 33 (36), 2101469. 31. Noh, J.; Kim, G.-U.; Han, S.; Oh, S. J.; Jeon, Y.; Jeong, D.; Kim, S. W.; Kim, T.-S.; Kim, B. J.; Lee, J.-Y., Intrinsically stretchable organic solar cells with efficiencies of over 11%. ACS Energy Lett. 2021, 6 (7), 2512-2518. 32. Qin, J.; Lan, L.; Chen, S.; Huang, F.; Shi, H.; Chen, W.; Xia, H.; Sun, K.; Yang, C., Recent progress in flexible and stretchable organic solar cells. Adv. Funct. Mater. 2020, 30 (36), 2002529. 33. Huang, S.; Guo, C. F.; Zhang, X.; Pan, W.; Luo, X.; Zhao, C.; Gong, J.; Li, X.; Ren, Z. F.; Wu, H., Buckled tin oxide nanobelt webs as highly stretchable and transparent photosensors. Small 2015, 11 (42), 5712-5718. 34. Lee, M. Y.; Hong, J.; Lee, E. K.; Yu, H.; Kim, H.; Lee, J. U.; Lee, W.; Oh, J. H., Highly flexible organic nanofiber phototransistors fabricated on a textile composite for wearable photosensors. Adv. Funct. Mater. 2016, 26 (9), 1445-1453. 35. Han, S.; Noh, S.; Kim, J.-W.; Lee, C.-R.; Lee, S.-K.; Kim, J. S., Stretchable Inorganic GaN-Nanowire Photosensor with High Photocurrent and Photoresponsivity. ACS Appl. Mater. Interfaces 2021, 13 (19), 22728-22737. 36. Liu, K.; Bian, Y.; Kuang, J.; Huang, X.; Li, Y.; Shi, W.; Zhu, Z.; Liu, G.; Qin, M.; Zhao, Z., Ultrahigh‐Performance Optoelectronic Skin Based on Intrinsically Stretchable Perovskite‐Polymer Heterojunction Transistors. Adv. Mater. 2022, 34 (4), 2107304. 37. Gong, X.; Yang, Q.; Zhi, C.; Lee, P. S., Stretchable energy storage devices: from materials and structural design to device assembly. Adv. Energy Mater. 2021, 11 (15), 2003308. 38. Tong, X.; Tian, Z.; Sun, J.; Tung, V.; Kaner, R. B.; Shao, Y., Self-healing flexible/stretchable energy storage devices. Mater. Today 2021, 44, 78-104. 39. Wang, J.; Lou, H.; Meng, J.; Peng, Z.; Wang, B.; Wan, J., Stretchable energy storage E-skin supercapacitors and body movement sensors. Sens. actuators. B Chem. 2020, 305, 127529. 40. Song, Z.; Zhang, X.; Li, X.; Duan, L.; Lü, W., Flexible and stretchable energy storage device based on Ni (HCO3) 2 nanosheet decorated carbon nanotube electrodes for capacitive sensor. J. Electrochem. Soc. 2019, 166 (16), A4014. 41. Xia, Y.; Whitesides, G. M., Soft lithography. Annu. Rev. Mater. Sci. 1998, 28 (1), 153-184. 42. Carlson, A.; Bowen, A. M.; Huang, Y.; Nuzzo, R. G.; Rogers, J. A., Transfer printing techniques for materials assembly and micro/nanodevice fabrication. Adv. Mater. 2012, 24 (39), 5284-5318. 43. Gopinathan, J.; Noh, I., Recent trends in bioinks for 3D printing. Biomater. Res. 2018, 22, 1-15. 44. Qiao, Y.; Wang, Y.; Tian, H.; Li, M.; Jian, J.; Wei, Y.; Tian, Y.; Wang, D.-Y.; Pang, Y.; Geng, X., Multilayer graphene epidermal electronic skin. ACS nano 2018, 12 (9), 8839-8846. 45. Li, Z.; Zhu, M.; Shen, J.; Qiu, Q.; Yu, J.; Ding, B., All‐fiber structured electronic skin with high elasticity and breathability. Adv. Funct. Mater. 2020, 30 (6), 1908411. 46. Ma, Z.; Li, S.; Wang, H.; Cheng, W.; Li, Y.; Pan, L.; Shi, Y., Advanced electronic skin devices for healthcare applications. JJ. Mater. Chem. B 2019, 7 (2), 173-197. 47. Hammock, M. L.; Chortos, A.; Tee, B. C. K.; Tok, J. B. H.; Bao, Z., 25th anniversary article: the evolution of electronic skin (e‐skin): a brief history, design considerations, and recent progress. Adv. Mater. 2013, 25 (42), 5997-6038. 48. Weng, W.; Chen, P.; He, S.; Sun, X.; Peng, H., Smart electronic textiles. Angew. Chem. Int. Ed. Engl. 2016, 55 (21), 6140-6169. 49. Koydemir, H. C.; Ozcan, A., Wearable and implantable sensors for biomedical applications. Rev Anal Chem 2018, 11, 127-146. 50. Strait, E., Prosthetics in developing countries. Prosthetic Resident 2006, 1, 1-3. 51. Huang, S.; Liu, Y.; Zhao, Y.; Ren, Z.; Guo, C. F., Flexible electronics: stretchable electrodes and their future. Adv. Funct. Mater. 2019, 29 (6), 1805924. 52. Kiddee, P.; Naidu, R.; Wong, M. H., Electronic waste management approaches: An overview. Waste Manage. 2013, 33 (5), 1237-1250. 53. Zeng, L.; Qiu, L.; Cheng, H.-M., Towards the practical use of flexible lithium ion batteries. Energy Stor. Mater. 2019, 23, 434-438. 54. Hu, Y.; Sun, X., Flexible rechargeable lithium ion batteries: advances and challenges in materials and process technologies. J. Mater. Chem. A 2014, 2 (28), 10712-10738. 55. Hatakeyama‐Sato, K.; Wakamatsu, H.; Yamagishi, K.; Fujie, T.; Takeoka, S.; Oyaizu, K.; Nishide, H., Ultrathin and stretchable rechargeable devices with organic polymer nanosheets conformable to skin surface. Small 2019, 15 (13), 1805296. 56. Nguyen, T. N.; Iranpour, B.; Cheng, E.; Madden, J. D., Washable and stretchable Zn–MnO2 rechargeable cell. Adv. Energy Mater. 2022, 12 (2), 2103148. 57. Song, W. J.; Kong, M.; Cho, S.; Lee, S.; Kwon, J.; Son, H. B.; Song, J. H.; Lee, D. G.; Song, G.; Lee, S. Y., Stand‐alone intrinsically stretchable electronic device platform powered by stretchable rechargeable battery. Adv. Funct. Mater. 2020, 30 (50), 2003608. 58. Li, X.; Zeng, S.; Li, W.; Lin, H.; Zhong, H.; Zhu, H.; Mai, Y., Stretchable hydrogel electrolyte films based on moisture Self-absorption for flexible Quasi-solid-state batteries. Chem. Eng. J. 2022, 439, 135741. 59. Lai, S.; Zucca, A.; Cosseddu, P.; Greco, F.; Mattoli, V.; Bonfiglio, A., Ultra-conformable Organic Field-Effect Transistors and circuits for epidermal electronic applications. Org. Electron. 2017, 46, 60-67. 60. Zucca, A.; Yamagishi, K.; Fujie, T.; Takeoka, S.; Mattoli, V.; Greco, F., Roll to roll processing of ultraconformable conducting polymer nanosheets. J. Mater. Chem. C 2015, 3 (25), 6539-6548. 61. Chen, X.; Huang, H.; Pan, L.; Liu, T.; Niederberger, M., Fully integrated design of a stretchable solid‐state lithium‐ion full battery. Adv. Mater. 2019, 31 (43), 1904648. 62. Firpo, G.; Angeli, E.; Repetto, L.; Valbusa, U., Permeability thickness dependence of polydimethylsiloxane (PDMS) membranes. J. Membr. Sci. 2015, 481, 1-8. 63. Shakeri, A.; Khan, S.; Didar, T. F., Conventional and emerging strategies for the fabrication and functionalization of PDMS-based microfluidic devices. Lab on a Chip 2021, 21 (16), 3053-3075. 64. Qi, D.; Zhang, K.; Tian, G.; Jiang, B.; Huang, Y., Stretchable electronics based on PDMS substrates. Adv. Mater. 2021, 33 (6), 2003155. 65. Miranda, I.; Souza, A.; Sousa, P.; Ribeiro, J.; Castanheira, E. M.; Lima, R.; Minas, G., Properties and applications of PDMS for biomedical engineering: A review. J. Funct. Biomater. 2021, 13 (1), 2. 66. Salauddin, M.; Rana, S. S.; Sharifuzzaman, M.; Rahman, M. T.; Park, C.; Cho, H.; Maharjan, P.; Bhatta, T.; Park, J. Y., A Novel MXene/Ecoflex Nanocomposite‐Coated Fabric as a Highly Negative and Stable Friction Layer for High‐Output Triboelectric Nanogenerators. Adv. Energy Mater. 2021, 11 (1), 2002832. 67. Mariello, M.; Fachechi, L.; Guido, F.; De Vittorio, M., Multifunctional sub-100 µm thickness flexible piezo/triboelectric hybrid water energy harvester based on biocompatible AlN and soft parylene C-PDMS-Ecoflex™. Nano Energy 2021, 83, 105811. 68. Liao, Z.; Yang, J.; Hossain, M.; Chagnon, G.; Jing, L.; Yao, X., On the stress recovery behaviour of Ecoflex silicone rubbers. Int. J. Mech. Sci. 2021, 206, 106624. 69. Abreu, F.; Forte, M.; Liberman, S., SBS and SEBS block copolymers as impact modifiers for polypropylene compounds. J. Appl. Polym. Sci. 2005, 95 (2), 254-263. 70. Zhou, B.; Liu, Z.; Li, C.; Liu, M.; Jiang, L.; Zhou, Y.; Zhou, F. L.; Chen, S.; Jerrams, S.; Yu, J., A highly stretchable and sensitive strain sensor based on dopamine modified electrospun SEBS fibers and MWCNTs with carboxylation. Adv. Electron. Mater. 2021, 7 (8), 2100233. 71. Su, Z., The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrol Earth Syst Sci 2002, 6 (1), 85-100. 72. Akindoyo, J.; Beg, M.; Ghazali, S.; Islam, M.; Jeyaratnam, N.; Yuvaraj, A., Polyurethane types, synthesis and applications-a review. RSC Adv 6: 114453–114482. 2016. 73. Mannsfeld, S. C.; Tee, B. C.; Stoltenberg, R. M.; Chen, C. V.; Barman, S.; Muir, B. V.; Sokolov, A. N.; Reese, C.; Bao, Z., Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 2010, 9 (10), 859-864. 74. Cohen, D. J.; Mitra, D.; Peterson, K.; Maharbiz, M. M., A highly elastic, capacitive strain gauge based on percolating nanotube networks. Nano Lett. 2012, 12 (4), 1821-1825. 75. Sun, J. Y.; Keplinger, C.; Whitesides, G. M.; Suo, Z., Ionic skin. Adv. Mater. 2014, 26 (45), 7608-7614. 76. Fan, X.; Wang, N.; Wang, J.; Xu, B.; Yan, F., Highly sensitive, durable and stretchable plastic strain sensors using sandwich structures of PEDOT: PSS and an elastomer. Mater. Chem. Front. 2018, 2 (2), 355-361. 77. Savagatrup, S.; Chan, E.; Renteria‐Garcia, S. M.; Printz, A. D.; Zaretski, A. V.; O'Connor, T. F.; Rodriquez, D.; Valle, E.; Lipomi, D. J., Plasticization of PEDOT: PSS by common additives for mechanically robust organic solar cells and wearable sensors. Adv. Funct. Mater. 2015, 25 (3), 427-436. 78. Vosgueritchian, M.; Lipomi, D. J.; Bao, Z., Highly conductive and transparent PEDOT: PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes. Adv. Funct. Mater. 2012, 22 (2), 421-428. 79. O’Connor, T. F.; Zaretski, A. V.; Savagatrup, S.; Printz, A. D.; Wilkes, C. D.; Diaz, M. I.; Sawyer, E. J.; Lipomi, D. J., Wearable organic solar cells with high cyclic bending stability: Materials selection criteria. Sol. Energy Mater Sol. Cells 2016, 144, 438-444. 80. Wang, Y.; Xu, Z., Interaction mechanism of doxorubicin and SWCNT: protonation and diameter effects on drug loading and releasing. RSC Adv. 2016, 6 (1), 314-322. 81. Gargi, D.; Kline, R. J.; DeLongchamp, D. M.; Fischer, D. A.; Toney, M. F.; O’Connor, B. T., Charge transport in highly face-on poly (3-hexylthiophene) films. J. Phys. Chem. C 2013, 117 (34), 17421-17428. 82. Chortos, A.; Lim, J.; To, J. W.; Vosgueritchian, M.; Dusseault, T. J.; Kim, T. H.; Hwang, S.; Bao, Z., Highly stretchable transistors using a microcracked organic semiconductor. Adv. Mater. 2014, 26 (25), 4253-4259. 83. Wu, H.-C.; Benight, S. J.; Chortos, A.; Lee, W.-Y.; Mei, J.; To, J. W.; Lu, C.; He, M.; Tok, J. B.-H.; Chen, W.-C., A rapid and facile soft contact lamination method: evaluation of polymer semiconductors for stretchable transistors. Chem. Mater. 2014, 26 (15), 4544-4551. 84. Savagatrup, S.; Printz, A. D.; Wu, H.; Rajan, K. M.; Sawyer, E. J.; Zaretski, A. V.; Bettinger, C. J.; Lipomi, D. J., Viability of stretchable poly (3-heptylthiophene)(P3HpT) for organic solar cells and field-effect transistors. Synth Met 2015, 203, 208-214. 85. Mun, J.; Wang, G. J. N.; Oh, J. Y.; Katsumata, T.; Lee, F. L.; Kang, J.; Wu, H. C.; Lissel, F.; Rondeau‐Gagné, S.; Tok, J. B. H., Effect of nonconjugated spacers on mechanical properties of semiconducting polymers for stretchable transistors. Adv. Funct. Mater. 2018, 28 (43), 1804222. 86. Wang, G.-J. N.; Zheng, Y.; Zhang, S.; Kang, J.; Wu, H.-C.; Gasperini, A.; Zhang, H.; Gu, X.; Bao, Z., Tuning the cross-linker crystallinity of a stretchable polymer semiconductor. Chem. Mater. 2018, 31 (17), 6465-6475. 87. Oh, J. Y.; Rondeau-Gagné, S.; Chiu, Y.-C.; Chortos, A.; Lissel, F.; Wang, G.-J. N.; Schroeder, B. C.; Kurosawa, T.; Lopez, J.; Katsumata, T., Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature 2016, 539 (7629), 411-415. 88. Zhang, S.; Xia, X.; Xie, D.; Xu, R.; Xu, Y.; Xia, Y.; Wu, J.; Yao, Z.; Wang, X.; Tu, J., Facile interfacial modification via in-situ ultraviolet solidified gel polymer electrolyte for high-performance solid-state lithium ion batteries. J. Power Sources 2019, 409, 31-37. 89. Noh, J.-S., Highly conductive and stretchable poly (dimethylsiloxane): poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonic acid) blends for organic interconnects. RSC Adv. 2014, 4 (4), 1857-1863. 90. Zhao, Q.; Stalin, S.; Zhao, C.-Z.; Archer, L. A., Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater. 2020, 5 (3), 229-252. 91. Li, S.; Zhang, S. Q.; Shen, L.; Liu, Q.; Ma, J. B.; Lv, W.; He, Y. B.; Yang, Q. H., Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries. Adv. Sci. 2020, 7 (5), 1903088. 92. Zhu, J.; Cai, D.; Li, J.; Wang, X.; Xia, X.; Gu, C.; Tu, J., In-situ generated Li3N/Li-Al alloy in reduced graphene oxide framework optimizing ultra-thin lithium metal electrode for solid-state batteries. Energy Stor. Mater. 2022, 49, 546-554. 93. Famprikis, T.; Canepa, P.; Dawson, J. A.; Islam, M. S.; Masquelier, C., Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 2019, 18 (12), 1278-1291. 94. Pan, J.; Peng, H.; Yan, Y.; Bai, Y.; Yang, J.; Wang, N.; Dou, S.; Huang, F., Solid-state batteries designed with high ion conductive composite polymer electrolyte and silicon anode. Energy Stor. Mater. 2021, 43, 165-171. 95. Li, L.; Wang, L.; Ye, T.; Peng, H.; Zhang, Y., Stretchable energy storage devices based on carbon materials. Small 2021, 17 (48), 2005015. 96. Xu, S.; Zhang, Y.; Jia, L.; Mathewson, K. E.; Jang, K.-I.; Kim, J.; Fu, H.; Huang, X.; Chava, P.; Wang, R., Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science 2014, 344 (6179), 70-74. 97. Vanfleteren, J.; Gonzalez, M.; Bossuyt, F.; Hsu, Y.-Y.; Vervust, T.; De Wolf, I.; Jablonski, M., Printed circuit board technology inspired stretchable circuits. MRS Bull. 2012, 37 (3), 254-260. 98. Vanfleteren, J.; Chtioui, I.; Plovie, B.; Yang, Y.; Bossuyt, F.; Vervust, T.; Dunphy, S.; Vandecasteele, B., Arbitrarily shaped 2.5 D circuits using stretchable interconnections and embedding in thermoplastic polymers. Procedia Technology 2014, 15, 208-215. 99. Ohmae, H.; Tomita, Y.; Kasahara, M.; Schram, J.; Smits, E.; Van den Brand, J.; Bossuyt, F.; Vanfleteren, J.; De Baets, J. In 9.4: Stretchable 45× 80 rgb led display using meander wiring technology, Proc. SID, Wiley Online Library: 2015; pp 102-105. 100. Kim, T.-i.; Kim, R.-H.; Rogers, J. A., Microscale inorganic light-emitting diodes on flexible and stretchable substrates. IEEE Photon. J. 2012, 4 (2), 607-612. 101. Shyu, T. C.; Damasceno, P. F.; Dodd, P. M.; Lamoureux, A.; Xu, L.; Shlian, M.; Shtein, M.; Glotzer, S. C.; Kotov, N. A., A kirigami approach to engineering elasticity in nanocomposites through patterned defects. Nat. Mater. 2015, 14 (8), 785-789. 102. Morikawa, Y.; Yamagiwa, S.; Sawahata, H.; Numano, R.; Koida, K.; Ishida, M.; Kawano, T., Flexible Devices: Ultrastretchable Kirigami Bioprobes (Adv. Healthcare Mater. 3/2018). Adv. Healthc. Mater. 2018, 7 (3), 1870017. 103. Ke, Y.; Yin, Y.; Zhang, Q.; Tan, Y.; Hu, P.; Wang, S.; Tang, Y.; Zhou, Y.; Wen, X.; Wu, S., Adaptive thermochromic windows from active plasmonic elastomers. Joule 2019, 3 (3), 858-871. 104. Vachicouras, N.; Tringides, C. M.; Campiche, P. B.; Lacour, S. P., Engineering reversible elasticity in ductile and brittle thin films supported by a plastic foil. Extreme Mech. Lett. 2017, 15, 63-69. 105. Someya, T.; Kato, Y.; Sekitani, T.; Iba, S.; Noguchi, Y.; Murase, Y.; Kawaguchi, H.; Sakurai, T., Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc. Natl. Acad. Sci. U.S.A. 2005, 102 (35), 12321-12325. 106. Graz, I. M.; Cotton, D. P.; Lacour, S. P., Extended cyclic uniaxial loading of stretchable gold thin-films on elastomeric substrates. Appl. Phys. Lett. 2009, 94 (7), 071902. 107. Graudejus, O.; Görrn, P.; Wagner, S., Controlling the morphology of gold films on poly (dimethylsiloxane). ACS Appl. Mater. Interfaces 2010, 2 (7), 1927-1933. 108. Lacour, S. P.; Jones, J.; Wagner, S.; Li, T.; Suo, Z., Stretchable interconnects for elastic electronic surfaces. Proc IEEE Inst Electr Electron Eng 2005, 93 (8), 1459-1467. 109. Akogwu, O.; Kwabi, D.; Midturi, S.; Eleruja, M.; Babatope, B.; Soboyejo, W., Large strain deformation and cracking of nano-scale gold films on PDMS substrate. Mater. Sci. Eng. B 2010, 170 (1-3), 32-40. 110. Lacour, S. P.; Chan, D.; Wagner, S.; Li, T.; Suo, Z., Mechanisms of reversible stretchability of thin metal films on elastomeric substrates. Appl. Phys. Lett. 2006, 88 (20), 204103. 111. Qi, D.; Liu, Z.; Liu, Y.; Jiang, Y.; Leow, W. R.; Pal, M.; Pan, S.; Yang, H.; Wang, Y.; Zhang, X., Highly stretchable, compliant, polymeric microelectrode arrays for in vivo electrophysiological interfacing. Adv. Mater. 2017, 29 (40), 1702800. 112. Lee, J.; Chung, S.; Song, H.; Kim, S.; Hong, Y., Lateral-crack-free, buckled, inkjet-printed silver electrodes on highly pre-stretched elastomeric substrates. J. Phys. D 2013, 46 (10), 105305. 113. Kim, D.-H.; Ahn, J.-H.; Choi, W. M.; Kim, H.-S.; Kim, T.-H.; Song, J.; Huang, Y. Y.; Liu, Z.; Lu, C.; Rogers, J. A., Stretchable and foldable silicon integrated circuits. Science 2008, 320 (5875), 507-511. 114. Kaltenbrunner, M.; Sekitani, T.; Reeder, J.; Yokota, T.; Kuribara, K.; Tokuhara, T.; Drack, M.; Schwödiauer, R.; Graz, I.; Bauer-Gogonea, S., An ultra-lightweight design for imperceptible plastic electronics. Nature 2013, 499 (7459), 458-463. 115. Drack, M.; Graz, I.; Sekitani, T.; Someya, T.; Kaltenbrunner, M.; Bauer, S., An imperceptible plastic electronic wrap. Adv. Mater. 2015, 27 (1), 34-40. 116. Joshipura, I. D.; Ayers, H. R.; Majidi, C.; Dickey, M. D., Methods to pattern liquid metals. J. Mater. Chem. C 2015, 3 (16), 3834-3841. 117. Oh, J. Y.; Son, D.; Katsumata, T.; Lee, Y.; Kim, Y.; Lopez, J.; Wu, H.-C.; Kang, J.; Park, J.; Gu, X., Stretchable self-healable semiconducting polymer film for active-matrix strain-sensing array. Sci. Adv. 2019, 5 (11), eaav3097. 118. Park, C. W.; Moon, Y. G.; Seong, H.; Jung, S. W.; Oh, J.-Y.; Na, B. S.; Park, N.-M.; Lee, S. S.; Im, S. G.; Koo, J. B., Photolithography-based patterning of liquid metal interconnects for monolithically integrated stretchable circuits. ACS Appl. Mater. Interfaces 2016, 8 (24), 15459-15465. 119. Pan, C.; Kumar, K.; Li, J.; Markvicka, E. J.; Herman, P. R.; Majidi, C., Visually Imperceptible Liquid‐Metal Circuits for Transparent, Stretchable Electronics with Direct Laser Writing. Adv. Mater. 2018, 30 (12), 1706937. 120. Dickey, M. D., Stretchable and soft electronics using liquid metals. Adv. Mater. 2017, 29 (27), 1606425. 121. Wirthl, D.; Pichler, R.; Drack, M.; Kettlguber, G.; Moser, R.; Gerstmayr, R.; Hartmann, F.; Bradt, E.; Kaltseis, R.; Siket, C. M., Instant tough bonding of hydrogels for soft machines and electronics. Sci. Adv. 2017, 3 (6), e1700053. 122. Kim, C.-C.; Lee, H.-H.; Oh, K. H.; Sun, J.-Y., Highly stretchable, transparent ionic touch panel. Science 2016, 353 (6300), 682-687. 123. Zhang, X.; Sheng, N.; Wang, L.; Tan, Y.; Liu, C.; Xia, Y.; Nie, Z.; Sui, K., Supramolecular nanofibrillar hydrogels as highly stretchable, elastic and sensitive ionic sensors. Mater. Horiz. 2019, 6 (2), 326-333. 124. Zhang, Z.; Cui, L.; Shi, X.; Tian, X.; Wang, D.; Gu, C.; Chen, E.; Cheng, X.; Xu, Y.; Hu, Y., Textile display for electronic and brain‐interfaced communications. Adv. Mater. 2018, 30 (18), 1800323. 125. Yang, C.; Suo, Z., vol. 3. Nat. Rev. Mater. 2018, 125-142. 126. Rivnay, J.; Inal, S.; Collins, B. A.; Sessolo, M.; Stavrinidou, E.; Strakosas, X.; Tassone, C.; Delongchamp, D. M.; Malliaras, G. G., Structural control of mixed ionic and electronic transport in conducting polymers. Nat. Commun. 2016, 7 (1), 1-9. 127. Oh, J. Y.; Kim, S.; Baik, H. K.; Jeong, U., Conducting polymer dough for deformable electronics. Adv. Mater. 2016, 28 (22), 4455-4461. 128. O'Connor, T. F.; Zaretski, A. V.; Shiravi, B. A.; Savagatrup, S.; Printz, A. D.; Diaz, M. I.; Lipomi, D. J., Stretching and conformal bonding of organic solar cells to hemispherical surfaces. Energy Environ. Sci. 2014, 7 (1), 370-378. 129. Nishide, H.; Oyaizu, K., Toward flexible batteries. Science 2008, 319 (5864), 737-738. 130. Zhou, D.; Shanmukaraj, D.; Tkacheva, A.; Armand, M.; Wang, G., Polymer electrolytes for lithium-based batteries: advances and prospects. Chem 2019, 5 (9), 2326-2352. 131. Lin, Z.; Guo, X.; Yu, H., Amorphous modified silyl-terminated 3D polymer electrolyte for high-performance lithium metal battery. Nano Energy 2017, 41, 646-653. 132. Ye, F.; Zhang, X.; Liao, K.; Lu, Q.; Zou, X.; Ran, R.; Zhou, W.; Zhong, Y.; Shao, Z., A smart lithiophilic polymer filler in gel polymer electrolyte enables stable and dendrite-free Li metal anode. J. Mater. Chem. A 2020, 8 (19), 9733-9742. 133. Yu, F.; Ye, Z.; Chen, W.; Wang, Q.; Wang, H.; Zhang, H.; Peng, C., Plane tree bark-derived mesopore-dominant hierarchical carbon for high-voltage supercapacitors. Appl. Surf. Sci. 2020, 507, 145190. 134. Muench, S.; Wild, A.; Friebe, C.; Haupler, B.; Janoschka, T.; Schubert, U. S., Polymer-based organic batteries. Chem. Rev. 2016, 116 (16), 9438-9484. 135. Mike, J. F.; Lutkenhaus, J. L., Electrochemically active polymers for electrochemical energy storage: opportunities and challenges. ACS Macro Lett. 2013, 2 (9), 839-844. 136. Suga, T.; Nishide, H., Redox-active radical polymers for a totally organic rechargeable battery. In Polymers for energy storage and delivery: polyelectrolytes for batteries and fuel cells, ACS Publications: 2012; pp 45-53. 137. Zhang, K.; Monteiro, M. J.; Jia, Z., Stable organic radical polymers: synthesis and applications. Polym. Chem. 2016, 7 (36), 5589-5614. 138. Hansen, K.-A.; Blinco, J. P., Nitroxide radical polymers–a versatile material class for high-tech applications. Polym. Chem. 2018, 9 (13), 1479-1516. 139. Friebe, C.; Schubert, U. S., High-power-density organic radical batteries. Electrochemical Energy Storage: Next Generation Battery Concepts 2019, 65-99. 140. Wang, M.; Baek, P.; Akbarinejad, A.; Barker, D.; Travas-Sejdic, J., Conjugated polymers and composites for stretchable organic electronics. J. Mater. Chem. C 2019, 7 (19), 5534-5552. 141. Kleinschmidt, A. T.; Lipomi, D. J., Stretchable conjugated polymers: A case study in topic selection for new research groups. Acc. Chem. Res. 2018, 51 (12), 3134-3143. 142. Ding, Z.; Liu, D.; Zhao, K.; Han, Y., Optimizing morphology to trade off charge transport and mechanical properties of stretchable conjugated polymer films. Macromolecules 2021, 54 (9), 3907-3926. 143. Lin, Y.-C.; Huang, Y.-W.; Hung, C.-C.; Chiang, Y.-C.; Chen, C.-K.; Hsu, L.-C.; Chueh, C.-C.; Chen, W.-C., Backbone Engineering of Diketopyrrolopyrrole-Based Conjugated Polymers through Random Terpolymerization for Improved Mobility–Stretchability Property. ACS Appl. Mater. Interfaces 2020, 12 (45), 50648-50659. 144. Higashihara, T., Strategic design and synthesis of π-conjugated polymers suitable as intrinsically stretchable semiconducting materials. Polym J 2021, 53 (10), 1061-1071. 145. Tybrandt, K.; Vörös, J., Fast and efficient fabrication of intrinsically stretchable multilayer circuit boards by wax pattern assisted filtration. small 2016, 12 (2), 180-184. 146. Kim, S. H.; Seo, H.; Kang, J.; Hong, J.; Seong, D.; Kim, H.-J.; Kim, J.; Mun, J.; Youn, I.; Kim, J., An ultrastretchable and self-healable nanocomposite conductor enabled by autonomously percolative electrical pathways. ACS nano 2019, 13 (6), 6531-6539. 147. Matsuhisa, N.; Chen, X.; Bao, Z.; Someya, T., Materials and structural designs of stretchable conductors. Chem. Soc. Rev. 2019, 48 (11), 2946-2966. 148. Choi, S.; Park, J.; Hyun, W.; Kim, J.; Kim, J.; Lee, Y. B.; Song, C.; Hwang, H. J.; Kim, J. H.; Hyeon, T., Stretchable heater using ligand-exchanged silver nanowire nanocomposite for wearable articular thermotherapy. ACS nano 2015, 9 (6), 6626-6633. 149. Yang, Y.; Ding, S.; Araki, T.; Jiu, J.; Sugahara, T.; Wang, J.; Vanfleteren, J.; Sekitani, T.; Suganuma, K., Facile fabrication of stretchable Ag nanowire/polyurethane electrodes using high intensity pulsed light. Nano Res. 2016, 9 (2), 401-414. 150. Hansen, T. S.; West, K.; Hassager, O.; Larsen, N. B., Highly stretchable and conductive polymer material made from poly (3, 4‐ethylenedioxythiophene) and polyurethane elastomers. Adv. Funct. Mater. 2007, 17 (16), 3069-3073. 151. Choong, C. L.; Shim, M. B.; Lee, B. S.; Jeon, S.; Ko, D. S.; Kang, T. H.; Bae, J.; Lee, S. H.; Byun, K. E.; Im, J., Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Adv. Mater. 2014, 26 (21), 3451-3458. 152. Jiang, Q.; Chu, Z.; Wang, P.; Yang, X.; Liu, H.; Wang, Y.; Yin, Z.; Wu, J.; Zhang, X.; You, J., Planar‐structure perovskite solar cells with efficiency beyond 21%. Adv. Mater. 2017, 29 (46), 1703852. 153. Li, P.; Sun, K.; Ouyang, J., Stretchable and conductive polymer films prepared by solution blending. ACS Appl. Mater. Interfaces 2015, 7 (33), 18415-18423. 154. Kayser, L. V.; Russell, M. D.; Rodriquez, D.; Abuhamdieh, S. N.; Dhong, C.; Khan, S.; Stein, A. N.; Ramírez, J.; Lipomi, D. J., RAFT polymerization of an intrinsically stretchable water-soluble block copolymer scaffold for PEDOT. Chem. Mater. 2018, 30 (13), 4459-4468. 155. Leaf, M. A.; Muthukumar, M., Electrostatic effect on the solution structure and dynamics of PEDOT: PSS. Macromolecules 2016, 49 (11), 4286-4294. 156. Dai, T.; Qing, X.; Zhou, H.; Shen, C.; Wang, J.; Lu, Y., Mechanically strong conducting hydrogels with special double-network structure. Synth Met 2010, 160 (7-8), 791-796. 157. Liu, K.; Bian, Y.; Kuang, J.; Huang, X.; Li, Y.; Shi, W.; Zhu, Z.; Liu, G.; Qin, M.; Zhao, Z., Ultrahigh‐Performance Optoelectronic Skin Based on Intrinsically Stretchable Perovskite‐Polymer Heterojunction Transistors. Advanced Materials 2022, 34 (4), 2107304. 158. Feig, V. R.; Tran, H.; Lee, M.; Bao, Z., Mechanically tunable conductive interpenetrating network hydrogels that mimic the elastic moduli of biological tissue. Nat. Commun. 2018, 9 (1), 1-9. 159. Lee, Y. Y.; Kang, H. Y.; Gwon, S. H.; Choi, G. M.; Lim, S. M.; Sun, J. Y.; Joo, Y. C., A strain‐insensitive stretchable electronic conductor: PEDOT: PSS/acrylamide organogels. Adv. Mater. 2016, 28 (8), 1636-1643. 160. Chen, C.-K.; Lin, Y.-C.; Miyane, S.; Ando, S.; Ueda, M.; Chen, W.-C., Thermally and Mechanically Stable Polyimides as Flexible Substrates for Organic Field-Effect Transistors. ACS Appl. Polym. Mater. 2020, 2 (8), 3422-3432. 161. Wang, X.; Dong, L.; Zhang, H.; Yu, R.; Pan, C.; Wang, Z. L., Recent progress in electronic skin. Adv. Sci. 2015, 2 (10), 1500169. 162. Adapa, A.; Nah, F. F.-H.; Hall, R. H.; Siau, K.; Smith, S. N., Factors influencing the adoption of smart wearable devices. INT J HUM-COMPUT INT 2018, 34 (5), 399-409. 163. Bettinger, C. J.; Bao, Z., Organic thin‐film transistors fabricated on resorbable biomaterial substrates. Adv. Mater. 2010, 22 (5), 651-655. 164. Ito, M.; Kon, M.; Ishizaki, M.; Sekine, N., Structure with transistor. Google Patents: 2010. 165. Kiess, H. G.; Baeriswyl, D., Conjugated conducting polymers. Springer: 1992; Vol. 102. 166. Lam, J. Y.; Shih, C. C.; Lee, W. Y.; Chueh, C. C.; Jang, G. W.; Huang, C. J.; Tung, S. H.; Chen, W. C., Bio‐Based Transparent Conductive Film Consisting of Polyethylene Furanoate and Silver Nanowires for Flexible Optoelectronic Devices. Macromol Rapid Commun 2018, 39 (13), 1800271. 167. Liu, N.; Chortos, A.; Lei, T.; Jin, L.; Kim, T. R.; Bae, W.-G.; Zhu, C.; Wang, S.; Pfattner, R.; Chen, X., Ultratransparent and stretchable graphene electrodes. Sci. Adv. 2017, 3 (9), e1700159. 168. Van Der Sluis, O.; Hsu, Y.-Y.; Timmermans, P.; Gonzalez, M.; Hoefnagels, J., Stretching-induced interconnect delamination in stretchable electronic circuits. J. Phys. D 2010, 44 (3), 034008. 169. Fuchs, S.; Shariati, K.; Ma, M., Specialty tough hydrogels and their biomedical applications. Adv. Healthc. Mater. 2020, 9 (2), 1901396. 170. Sharma, G.; Thakur, B.; Naushad, M.; Kumar, A.; Stadler, F. J.; Alfadul, S. M.; Mola, G. T., Applications of nanocomposite hydrogels for biomedical engineering and environmental protection. Environ Chem Lett 2018, 16 (1), 113-146. 171. Lai, F. I.; Hsieh, M. Y.; Yang, J. F.; Hsu, Y. C.; Kuo, S. Y., Antireflection layer of ZnO nanorod embedded in PDMS film for enhancing omnidirectional photovoltaic performance of CIGS photovoltaic cell. Int. J. Energy Res. 2021, 45 (1), 1142-1149. 172. Xu, J.; Wang, S.; Wang, G.-J. N.; Zhu, C.; Luo, S.; Jin, L.; Gu, X.; Chen, S.; Feig, V. R.; To, J. W., Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science 2017, 355 (6320), 59-64. 173. Shih, C.-C.; Lin, Y.-C.; Gao, M.; Wu, M.; Hsieh, H.-C.; Wu, N.-L.; Chen, W.-C., A rapid and green method for the fabrication of conductive hydrogels and their applications in stretchable supercapacitors. J. Power Sources 2019, 426, 205-215. 174. Teo, M. Y.; Kim, N.; Kee, S.; Kim, B. S.; Kim, G.; Hong, S.; Jung, S.; Lee, K., Highly stretchable and highly conductive PEDOT: PSS/ionic liquid composite transparent electrodes for solution-processed stretchable electronics. ACS Appl. Mater. Interfaces 2017, 9 (1), 819-826. 175. Li, J.; Qi, S.; Liang, J.; Li, L.; Xiong, Y.; Hu, W.; Pei, Q., Synthesizing a healable stretchable transparent conductor. AACS Appl. Mater. Interfaces 2015, 7 (25), 14140-14149. 176. Li, Y.; Li, X.; Zhang, S.; Liu, L.; Hamad, N.; Bobbara, S. R.; Pasini, D.; Cicoira, F., Autonomic Self‐Healing of PEDOT: PSS Achieved Via Polyethylene Glycol Addition. Adv. Funct. Mater. 2020, 30 (30), 2002853. 177. Singh, S. B.; Kshetri, T.; Singh, T. I.; Kim, N. H.; Lee, J. H., Embedded PEDOT: PSS/AgNFs network flexible transparent electrode for solid-state supercapacitor. Chem. Eng. J. 2019, 359, 197-207. 178. Kim, N.; Kang, H.; Lee, J. H.; Kee, S.; Lee, S. H.; Lee, K., Highly conductive all‐plastic electrodes fabricated using a novel chemically controlled transfer‐printing method. Adv. Mater. 2015, 27 (14), 2317-2323. 179. Su, J.-F.; Huang, Z.; Zhao, Y.-H.; Yuan, X.-Y.; Wang, X.-Y.; Li, M., Moisture sorption and water vapor permeability of soy protein isolate/poly (vinyl alcohol)/glycerol blend films. Ind Crops Prod 2010, 31 (2), 266-276. 180. Gurmessa, B. J.; Croll, A. B., Onset of plasticity in thin polystyrene films. Phys. Rev. Lett. 2013, 110 (7), 074301. 181. Vitoratos, E.; Sakkopoulos, S.; Dalas, E.; Paliatsas, N.; Karageorgopoulos, D.; Petraki, F.; Kennou, S.; Choulis, S. A., Thermal degradation mechanisms of PEDOT: PSS. Org. Electron. 2009, 10 (1), 61-66. 182. Lang, U.; Naujoks, N.; Dual, J., Mechanical characterization of PEDOT: PSS thin films. Synth Met 2009, 159 (5-6), 473-479. 183. Wei, Q.; Mukaida, M.; Naitoh, Y.; Ishida, T., Morphological change and mobility enhancement in PEDOT: PSS by adding co‐solvents. Adv. Mater. 2013, 25 (20), 2831-2836. 184. Choi, H. H.; Cho, K.; Frisbie, C. D.; Sirringhaus, H.; Podzorov, V., Critical assessment of charge mobility extraction in FETs. Nat. Mater. 2018, 17 (1), 2-7. 185. Lv, X.; Yuan, M.; Pei, Y.; Liu, C.; Wang, X.; Wu, L.; Cheng, D.; Ma, X.; Sun, X., The Enhancement of Antiviral Activity of Chloroinconazide by Aglinate-based Nanogel and Its Plant Growth Promotion Effect. J. Agr. Food Chem. 2021. 186. Stafford, C. M.; Harrison, C.; Beers, K. L.; Karim, A.; Amis, E. J.; VanLandingham, M. R.; Kim, H.-C.; Volksen, W.; Miller, R. D.; Simonyi, E. E., A buckling-based metrology for measuring the elastic moduli of polymeric thin films. Nat. Mater. 2004, 3 (8), 545-550. 187. Lee, J.-H.; Chung, J. Y.; Stafford, C. M., Effect of confinement on stiffness and fracture of thin amorphous polymer films. ACS Macro Lett. 2012, 1 (1), 122-126. 188. Tseng, Y.-T.; Lin, Y.-C.; Shih, C.-C.; Hsieh, H.-C.; Lee, W.-Y.; Chiu, Y.-C.; Chen, W.-C., Morphology and properties of PEDOT: PSS/soft polymer blends through hydrogen bonding interaction and their pressure sensor application. J. Mater. Chem. C 2020, 8 (18), 6013-6024. 189. Chen, J.; Zhu, Y.; Chang, X.; Pan, D.; Song, G.; Guo, Z.; Naik, N., Recent progress in essential functions of soft electronic skin. Adv. Funct. Mater. 2021, 31 (42), 2104686. 190. Wang, Y.; Lv, Z.; Chen, J.; Wang, Z.; Zhou, Y.; Zhou, L.; Chen, X.; Han, S. T., Photonic synapses based on inorganic perovskite quantum dots for neuromorphic computing. Adv. Mater. 2018, 30 (38), 1802883. 191. Oscurato, S. L.; Salvatore, M.; Maddalena, P.; Ambrosio, A., From nanoscopic to macroscopic photo-driven motion in azobenzene-containing materials. Nanophotonics 2018, 7 (8), 1387-1422. 192. Chang, Y. H.; Ku, C. W.; Zhang, Y. H.; Wang, H. C.; Chen, J. Y., Ultrafast Responsive Non‐Volatile Flash Photomemory via Spatially Addressable Perovskite/Block Copolymer Composite Film. Adv. Funct. Mater. 2020, 30 (21), 2000764. 193. Liu, X.-K.; Xu, W.; Bai, S.; Jin, Y.; Wang, J.; Friend, R. H.; Gao, F., Metal halide perovskites for light-emitting diodes. Nat. Mater. 2021, 20 (1), 10-21. 194. Hung, C. C.; Chiang, Y. C.; Lin, Y. C.; Chiu, Y. C.; Chen, W. C., Conception of a Smart Artificial Retina Based on a Dual‐Mode Organic Sensing Inverter. Adv. Sci. 2021, 8 (16), 2100742. 195. Yang, X.; Xiong, Z.; Chen, Y.; Ren, Y.; Zhou, L.; Li, H.; Zhou, Y.; Pan, F.; Han, S.-T., A self-powered artificial retina perception system for image preprocessing based on photovoltaic devices and memristive arrays. Nano Energy 2020, 78, 105246. 196. Liao, M.-Y.; Chiang, Y.-C.; Chen, C.-H.; Chen, W.-C.; Chueh, C.-C., Two-dimensional Cs2Pb (SCN) 2Br2-based photomemory devices showing a photoinduced recovery behavior and an unusual fully optically driven memory behavior. ACS Appl. Mater. Interfaces 2020, 12 (32), 36398-36408. 197. Chao, Y. H.; Chen, J. C.; Yang, D. L.; Tseng, Y. J.; Hsu, C. H.; Chen, J. Y., High‐Performance Non‐Volatile Flash Photomemory via Highly Oriented Quasi‐2D Perovskite. Adv. Funct. Mater. 2022, 2112521. 198. Shin, M.; Oh, J. Y.; Byun, K. E.; Lee, Y. J.; Kim, B.; Baik, H. K.; Park, J. J.; Jeong, U., Polythiophene nanofibril bundles surface‐embedded in elastomer: A route to a highly stretchable active channel layer. Adv. Mater. 2015, 27 (7), 1255-1261. 199. Sim, K.; Rao, Z.; Ershad, F.; Yu, C., Rubbery electronics fully made of stretchable elastomeric electronic materials. Adv. Mater. 2020, 32 (15), 1902417. 200. Chen, W.-C.; Fang, Y.-H.; Chen, L.-G.; Liang, F.-C.; Yan, Z.-L.; Ebe, H.; Takahashi, Y.; Chiba, T.; Kido, J.; Kuo, C.-C., High luminescence and external quantum efficiency in perovskite quantum-dots light-emitting diodes featuring bilateral affinity to silver and short alkyl ligands. Chem. Eng. J. 2021, 414, 128866. 201. Chiang, Y.-C.; Shih, C.-C.; Tung, S.-H.; Chen, W.-C., Blends of polythiophene nanowire/fluorine rubber with multiscale phase separation suitable for stretchable semiconductors. Polymer 2018, 155, 146-151. 202. Heimenz, P. C., Principles of colloid and surface chemistry. New York M. Dekker: 1986. 203. Oh, J. Y.; Shin, M.; Lee, T. I.; Jang, W. S.; Lee, Y.-J.; Kim, C. S.; Kang, J.-W.; Myoung, J.-M.; Baik, H. K.; Jeong, U., Highly bendable large-area printed bulk heterojunction film prepared by the self-seeded growth of poly (3-hexylthiophene) nanofibrils. Macromolecules 2013, 46 (9), 3534-3543. 204. Hatakeyama‐Sato, K.; Tezuka, T.; Ichinoi, R.; Matsumono, S.; Sadakuni, K.; Oyaizu, K., Metal‐free, solid‐state, paperlike rechargeable batteries consisting of redox‐active polyethers. ChemSusChem 2020, 13 (9), 2443-2448. 205. Hatakeyama‐Sato, K.; Wakamatsu, H.; Katagiri, R.; Oyaizu, K.; Nishide, H., An ultrahigh output rechargeable electrode of a hydrophilic radical polymer/nanocarbon hybrid with an exceptionally large current density beyond 1 A cm− 2. Adv. Mater. 2018, 30 (26), 1800900. 206. Liu, Z.; Wu, Z. S.; Yang, S.; Dong, R.; Feng, X.; Müllen, K., Ultraflexible in‐plane micro‐supercapacitors by direct printing of solution‐processable electrochemically exfoliated graphene. Adv. Mater. 2016, 28 (11), 2217-2222. 207. Zhai, Q.; Liu, Y.; Wang, R.; Wang, Y.; Lyu, Q.; Gong, S.; Wang, J.; Simon, G. P.; Cheng, W., Intrinsically stretchable fuel cell based on Enokitake‐like standing gold nanowires. Adv. Energy Mater. 2020, 10 (2), 1903512. 208. Wu, Z.; Li, P.; Zhang, Y.; Zheng, Z., Flexible and stretchable perovskite solar cells: device design and development methods. Small Methods 2018, 2 (7), 1800031. 209. Nan, K.; Kang, S. D.; Li, K.; Yu, K. J.; Zhu, F.; Wang, J.; Dunn, A. C.; Zhou, C.; Xie, Z.; Agne, M. T., Compliant and stretchable thermoelectric coils for energy harvesting in miniature flexible devices. Sci. Adv. 2018, 4 (11), eaau5849. 210. Kim, J. Y.; Oh, J. Y.; Lee, T. I., Multi-dimensional nanocomposites for stretchable thermoelectric applications. Appl. Phys. Lett. 2019, 114 (4), 043902. 211. Lee, H.; Jung, G.; Keum, K.; Kim, J. W.; Jeong, H.; Lee, Y. H.; Kim, D. S.; Ha, J. S., A textile‐based temperature‐tolerant stretchable supercapacitor for wearable electronics. Adv. Funct. Mater. 2021, 31 (50), 2106491. 212. Pullanchiyodan, A.; Manjakkal, L.; Ntagios, M.; Dahiya, R., MnO x-electrodeposited fabric-based stretchable supercapacitors with intrinsic strain sensing. ACS Appl. Mater. Interfaces 2021, 13 (40), 47581-47592. 213. Qiu, M.; Liu, H.; Tawiah, B.; Jia, H.; Fu, S., Zwitterionic triple-network hydrogel electrolyte for advanced flexible zinc ion batteries. Compos. Commun. 2021, 28, 100942. 214. Subjalearndee, N.; He, N.; Cheng, H.; Tesatchabut, P.; Eiamlamai, P.; Limthongkul, P.; Intasanta, V.; Gao, W.; Zhang, X., Gamma (ɣ)-MnO 2/rGO Fibered Cathode Fabrication from Wet Spinning and Dip Coating Techniques for Cable-Shaped Zn-Ion Batteries. Adv. Fiber Mater. 2022, 1-18. 215. Winsberg, J.; Janoschka, T.; Morgenstern, S.; Hagemann, T.; Muench, S.; Hauffman, G.; Gohy, J. F.; Hager, M. D.; Schubert, U. S., Poly (TEMPO)/zinc hybrid‐flow battery: A novel,“green,” high voltage, and safe energy storage system. Adv. Mater. 2016, 28 (11), 2238-2243. 216. Ge, H.; Feng, X.; Liu, D.; Zhang, Y., Recent advances and perspectives for Zn-based batteries: Zn anode and electrolyte. Nano Research Energy 2023, 2 (1), e9120039. 217. Nishide, H., Organic redox polymers as electrochemical energy materials. Green Chem. 2022. 218. Hatakeyama-Sato, K.; Nagano, T.; Noguchi, S.; Sugai, Y.; Du, J.; Nishide, H.; Oyaizu, K., Hydrophilic organic redox-active polymer nanoparticles for higher energy density flow batteries. ACS Appl. Polym. Mater. 2019, 1 (2), 188-196. 219. Oyaizu, K.; Nishide, H., Radical polymers for organic electronic devices: a radical departure from conjugated polymers? Adv. Mater. 2009, 21 (22), 2339-2344. 220. Koshika, K.; Chikushi, N.; Sano, N.; Oyaizu, K.; Nishide, H., A TEMPO-substituted polyacrylamide as a new cathode material: an organic rechargeable device composed of polymer electrodes and aqueous electrolyte. Green Chem. 2010, 12 (9), 1573-1575. 221. Tseng, Y.-T.; Lin, Y.-C.; Shih, C.-C.; Hsieh, H.-C.; Lee, W.-Y.; Chiu, Y.-C.; Chen, W.-C., Morphology and properties of PEDOT: PSS/soft polymer blends through hydrogen bonding interaction and their pressure sensor application. J. Mater. Chem. C 2020, 8 (18), 6013-6024. 222. Lin-Gibson, S.; Bencherif, S.; Cooper, J. A.; Wetzel, S. J.; Antonucci, J. M.; Vogel, B. M.; Horkay, F.; Washburn, N. R., Synthesis and characterization of PEG dimethacrylates and their hydrogels. Biomacromolecules 2004, 5 (4), 1280-1287. 223. Qu, S.; Liu, J.; Han, X.; Deng, Y.; Zhong, C.; Hu, W., Dynamic stretching–electroplating metal‐coated textile for a flexible and stretchable zinc–air battery. Carbon Energy 2022, 4 (5), 867-877. 224. Li, Y.; Fu, J.; Zhong, C.; Wu, T.; Chen, Z.; Hu, W.; Amine, K.; Lu, J., Recent advances in flexible zinc‐based rechargeable batteries. Adv. Energy Mater. 2019, 9 (1), 1802605. 225. Chikushi, N.; Yamada, H.; Oyaizu, K.; Nishide, H., TEMPO-substituted polyacrylamide for an aqueous electrolyte-typed and organic-based rechargeable device. Sci. China Chem. 2012, 55, 822-829. 226. Heredia Rivera, U.; Kadian, S.; Nejati, S.; White, J.; Sedaghat, S.; Mutlu, Z.; Rahimi, R., Printed low-cost PEDOT: PSS/PVA polymer composite for radiation sterilization monitoring. ACS sensors 2022, 7 (4), 960-971. 227. Phelps, E. A.; Enemchukwu, N. O.; Fiore, V. F.; Sy, J. C.; Murthy, N.; Sulchek, T. A.; Barker, T. H.; García, A. J., Maleimide cross‐linked bioactive peg hydrogel exhibits improved reaction kinetics and cross‐linking for cell encapsulation and in situ delivery. Adv. Mater. 2012, 24 (1), 64-70. 228. Liu, D.; Su, L.; Liao, J.; Reeja‐Jayan, B.; Majidi, C., Rechargeable Soft‐Matter EGaIn‐MnO2 Battery for Stretchable Electronics. Adv. Energy Mater. 2019, 9 (46), 1902798. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87929 | - |
| dc.description.abstract | 傳統元件由於其受限於變形能力、電拉伸性和生物相容性等因素,限制了應用於新興產業的可能性。因此,本論文旨在開發具有高度彈性和卓越功能性的薄膜,並應用於各種全拉伸元件,以滿足可穿戴電子、生物醫學感測器和軟體機器人等領域的需求。然而,目前全拉伸元件所面臨的問題主要有三點:其一,在拉伸過程中元件的電性效果通常表現不佳。其二,元件易於在反覆拉伸後出現損壞,耐久性不佳。其三,在高度或反覆拉伸時,元件的不同層常出現分層現象,進而導致易損壞。為了克服這些困難,本論文選擇了適合的高分子材料並採用特定的製程方法來製備可拉伸複合薄膜。同時,通過多種鑑定技術對這些薄膜的力學和電性進行了評估。最終,將所開發的複合薄膜應用到電子設備中,例如電晶體、光記憶體和充電電池,以確保其實用性。
本論文首先專注於開發可拉伸電極,以作為所有元件和電路的基礎單元。我們採用了導電高分子poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)和軟性高分子polyvinyl alcohol (PVA)的複合材料,以獲得具有高拉伸性和高導電性的電極。添加PVA可與PSS之間形成氫鍵,提升薄膜的拉伸耐久性,同時增加電極與其他層之間的附著力,進一步改善電晶體和其他元件在高應變環境下的耐久性和電氣性能。 接著,本論文將所開發的電極應用於光記憶體和充電電池。然而,拉伸光記憶體和電池面臨的另一個挑戰是元件結構過於複雜,導致分層問題嚴重,進而影響元件在高應變環境下的耐久性和電氣性能。因此,本論文同樣利用高分子易於加工和複合的優勢,開發出結構簡單的光記憶體和充電電池,以克服上述問題。 在光記憶體方面,本研究使用了poly(3-hexylthiophene)-nano fiber (P3HT-NF)、pervoskite-quantum dot (PVSK-QD)和styrene ethylene butylene styrene (SEBS)的複合薄膜。該複合薄膜將傳統記憶體中的半導體層、鈍器層和光敏感層合併為一層,以解決分層的問題。同時,透過材料間的自發相分離形貌,這種複合薄膜能夠讓光記憶體在高拉伸狀態下依然保持高記憶體特性。 在充電電池方面,本研究設計了僅有三層結構的電池。陰極由PEDOT:PSS/PVA/poly(TEMPO-substituted acrylamide) (PTAm)複合製備,陽極則由single-walled carbon nanotubes (SWCNTs)/zinc製備,固態電解質則使用合成的poly(ethylene glycol) dimethacrylates (PEGDMA)水膠。這種簡單的元件結構和抗水氧的電極賦予該電池優異的拉伸性和耐久性。同時,具有優異的氧化還原能力的活性物質,使得該電池能夠提供高且穩定的輸出電壓,並具有良好的充放電循環性能。 總結而言,本研究利用高分子複合薄膜成功開發出多種具有優異元件特性的全拉伸元件。這些策略奠定了獨立式全拉伸元件的基礎,為拉伸式元件提供了明確的指引,使其更上層樓。 | zh_TW |
| dc.description.abstract | Tranditional rigid electronics are limited by the lack of deformability, stretchability, and biocompatibility, which hampers their potential in emerging industries. Therefore, the objective of this thesis is to create highly stretchable and functional composite films for a range of stretchable devices, catering to the needs of wearable electronics, biomedical sensors, and soft robotics. However, current stretchable devices face three primary challenges. Firstly, the electrical performance of these devices often deteriorates during stretching. Secondly, they are prone to damage and lack durability after repeated stretching. Lastly, frequent delamination between layers occurs during various deformation, resulting in device failure. To overcome these issues, this thesis focuses on selecting suitable polymers and employing specific processing techniques to fabricate stretchable composite films. The mechanical and electrical properties of these films are evaluated using various characterization techniques. Finally, the developed composite films are integrated into electronics such as transistors, photomemory, and rechargeable batteries to ensure their practicality.
This thesis initially concentrates on the development of stretchable electrodes, which serve as fundamental components for all electronics and circuits. I employ a composite comprising the conductive polymer poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) and the soft polymer polyvinyl alcohol (PVA) to achieve electrodes with high stretchability and conductivity. The addition of PVA facilitates the formation of hydrogen bonds with PSS, thereby improving the film's stretchability. Furthermore, the inclusion of PVA enhances the adhesion between the electrode and other layers, thereby improving the durability and electrical performance of transistors and other devices under high tension. Next, the developed electrodes are utilized in photomemory and rechargeable batteries. However, stretchable photomemory and batteries also face the challenge of complex device configurations, leading to severe delamination that affects their durability and electrical performance under high tension. Therefore, this thesis also designs simplified configurations for photomemory and rechargeable batteries to overcome the aforementioned issues. For the photomemory, a composite film comprising poly(3-hexylthiophene)-nanofiber (P3HT-NF), perovskite-quantum dot (PVSK-QD), and styrene ethylene butylene styrene (SEBS) is employed. This composite film combines the semiconductor, passivation, and photosensitive layers into a single layer to minimize the risk of delamination. Moreover, the spontaneous phase separation morphology between the materials allows the photomemory to maintain high memory characteristics even under severe deformation. In the case of the rechargeable battery, a sandwich configuration is designed. The cathode consists of a PEDOT:PSS/PVA/poly(TEMPO-substituted acrylamide) (PTAm) composite, while the anode is composed of single-walled carbon nanotubes (SWCNTs)/zinc. The solid-state electrolyte comprises a synthesized poly(ethylene glycol) dimethacrylates (PEGDMA) hydrogel. The simple configuration and water-and-air-stable electrodes impart excellent stretchability and durability to the battery. Additionally, the active material, with its outstanding redox capability, allows the battery to provide a high and stable output voltage and exhibit good charge-discharge cycling performance. In conclusion, this thesis successfully develops various stretchable devices with exceptional electrical stretchability by utilizing polymer composite films. These strategies lay the foundation for self-sufficient electronics and provide clear guidelines for advancing stretchable devices to new heights. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-07-31T16:22:18Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-07-31T16:22:18Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
博士學位論文學術倫理申明書 ii 誌謝 iii 中文摘要 iv ABSTRACT vi CONTENTS ix LIST OF FIGURES xii LIST OF TABLES xxiv Chapter 1 Introduction 1 1.1 Traditional rigid electronics 2 1.1.1 Limitation of traditional rigid electronics 2 1.1.2 Impact of traditional rigid electronics on different industries 6 1.2 Stretchable electronics 10 1.2.1 Overview of stretchable electronics 10 1.2.2 Application of stretchable electronics 13 1.2.3 Limitation and challenges 16 1.3 Polymer composite films for stretchable electronics 22 1.3.1 Overview of polymer for stretchable devices 22 1.3.2 Definition and properties of polymer composite films 33 1.3.3 Advantages of polymer composite films for stretchable devices 34 1.3.4 Recent research and development of polymer composite films for stretchable devices 35 1.3.5 Technology for stretchable electronics integration 39 1.4 Definition of stretchability 41 1.5 Mechanisms and principles of devices 43 1.6 Motivation 50 1.7 Research objective 52 Chapter 2 Fully Stretchable OFETs through the Stretchable Electrodes 55 2.1 Background 55 2.2 Experimental Section 59 2.2.1 Materials 59 2.2.2 Device fabrication 60 2.2.3 Characterization 62 2.3 Results and Discussion 65 2.3.1 Mechanical properties of PVA/PMAA hydrogel 65 2.3.2 Mechanical and electrical properties of stretchable electrodes 70 2.3.3 Fully stretchable OFETs 76 2.3.4 Recycle and reuse process of fully stretchable OFETs 91 2.4 Summary 93 Chapter 3 Fully Stretchable Photonic Electronics through the Vertical Phase Separation Morphology 94 3.1 Background 94 3.2 Experimental Section 97 3.2.1 Materials 97 3.2.2 Polymer composite film preparation 98 3.2.3 Device fabrication 100 3.2.4 Characterization 102 3.3 Results and Discussion 103 3.3.1 Morphological identification of vertical phase separation films 103 3.3.2 Photophysical properties of vertical phase separation films 111 3.3.3 Conventional photomemory 114 3.3.4 Fully stretchable photomemory 127 3.4 Summary 140 Chapter 4 Fully Stretch-rechargeable Battery through a Sandwich Configuration…….. 141 4.1 Background 141 4.2 Experimental Section 144 4.2.1 Materials 144 4.2.2 Synthesis of PEGDMA 145 4.2.3 Preparation of anode 146 4.2.4 Device fabrication 147 4.2.5 Characterization 148 4.3 Results and Discussion 149 4.3.1 Morphological identification of electrodes 149 4.3.2 Electrical and electrochemical properties of electrodes 152 4.3.3 Physical properties of gel-state electrolyte 159 4.3.4 Fully stretch-rechargeable battery 161 4.4 Summary 169 Chapter 5 Conclusion and Future work 170 Autobiography 174 Publication List 175 Comments for Defense 177 REFERENCE 198 | - |
| dc.language.iso | en | - |
| dc.subject | 全拉伸光記憶體 | zh_TW |
| dc.subject | 有機高分子 | zh_TW |
| dc.subject | 複合薄膜 | zh_TW |
| dc.subject | 全拉伸電晶體 | zh_TW |
| dc.subject | 全拉伸可充電電池 | zh_TW |
| dc.subject | 拉伸電極 | zh_TW |
| dc.subject | organic polymer | en |
| dc.subject | fully stretchable transistor | en |
| dc.subject | fully stretchable photomemory | en |
| dc.subject | composite film | en |
| dc.subject | stretchable electrode | en |
| dc.subject | fully stretch-rechargeable battery | en |
| dc.title | 高分子複合薄膜之物性探討及其於全拉伸電子元件之應用 | zh_TW |
| dc.title | Polymer Composite Films for Fully Stretchable Electronics and Their Physical Properties | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 廖英志;闕居振;劉振良;邱昱誠;小柳津 研一 | zh_TW |
| dc.contributor.oralexamcommittee | Ying-Chih Liao;Chu-Chen Chueh;Cheng-Liang Liu;Yu-Cheng Chiu;Kenichi Oyaizu | en |
| dc.subject.keyword | 有機高分子,複合薄膜,拉伸電極,全拉伸電晶體,全拉伸光記憶體,全拉伸可充電電池, | zh_TW |
| dc.subject.keyword | organic polymer,composite film,stretchable electrode,fully stretchable transistor,fully stretchable photomemory,fully stretch-rechargeable battery, | en |
| dc.relation.page | 225 | - |
| dc.identifier.doi | 10.6342/NTU202301145 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-06-29 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 12.76 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
